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Sammanfattning 

Detta arbete utvärderar möjligheterna att använda vattnet från fiskodlingar som näringskäl-

la i ekologisk hydroponisk odling, så som är fallet i akvaponiska odlingssystem. Att ersätta 

syntetiska gödselmedel med organiska är avgörande för utvecklingen av ekologisk hydro-

ponisk odling.  Dessutom ingår etablering av en sjukdomsundertryckande mikroflora som 

en del av växtskyddsstrategin i moderna hydroponiska odlingar. Därför analyserades och 

jämfördes både näringsmässiga och mikrobiella egenskaper hos fiskodlingsvatten med de 

från en ekologisk hydroponisk näringslösning. Resultaten visade att både den hydroponis-

ka näringslösningen och fiskodlingsvattnet hade brist på flertalet essentiella västnärings-

ämnen, dock var den ekologiska näringslösningen mest optimal. Den ekologiska närings-

lösningen hade högst densitet av aeroba bakterier, så väl som av fluorescerande pseudo-

monader. Nivån av svampar var likvärdig. Halten av fluorescerande pseudomonader var 

märkbart mindre efter att fiskodlingsvattnet passerat anläggningens biofilter.  

   En kvalitativ analys av mikrofloran i en akvaponisk odling skulle kunna öka förståelsen 

av mikroorganismers uppträdande i denna unika miljö samt potentiell inverkan på växt-

skydd och växtnäringscykeln.    

 



 

 

Abstract 

This paper evaluates the prospects for utilizing aquaculture effluents as a nutrient source in 

organic hydroponic, as is the case in aquaponics. The development of organic hydroponics 

is dependent on replacing synthetic fertilizers with organically derived nutrients, such as 

those found in aquaculture effluents. Also, in hydroponic cultivation the establishment of a 

plant pathogen suppressive micro flora is part of the plant protection strategy. Therefore, 

both nutritional and microbial qualities of aquaculture water and organic hydroponic nutri-

ent solution were analyzed and compared. Results showed both aquaculture water and or-

ganic hydroponic solution to be deficient in a number of essential elements, although or-

ganic hydroponic solution was closer to recommendations. The organic nutrient solution 

had the highest densities of aerobic bacteria as well as fluorescent pseudomonades. Levels 

of fluorescent pseudomonades in aquaculture water were significantly lower after passing 

through the biofilter. Qualitative analysis of microorganisms in an actual aquaponic farm 

would help to better understand the composition of the micro flora in this unique environ-

ment and its implications for nutrient cycling as well as plant health.     
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1 Introduction 

Aquaculture is the fastest growing sector of all animal food production. From 

2000 to 2008 production almost doubled. Nearly half of the fish consumed glob-

ally is provided by aquaculture, and a majority of this comes from freshwater sys-

tems (FAO, 2011). The discharge of aquaculture effluents and raised competition 

over the use of freshwater is identified as some of the main issues of environ-

mental concern associated with open and flow-through aquaculture. (FAO, 2006) 

(FAO, 2011) Recirculating aquaculture systems on the other hand, is an example 

of water efficient food production (FAO, 2011). In recirculating aquaculture sys-

tems, great numbers of fish are cultured in minimal volumes of water. The same 

water is recirculated repeatedly and must be treated in a biological filter to avoid 

toxic levels of nitrogenous waste products. The process of reusing treated water 

results in accumulation of mineral nutrients and organic matter. If daily water ex-

change is less than two percent of the total volume, nutrients accumulate in con-

centrations close to levels found in hydroponic nutrient solutions (Rakocy et al., 

2006). 

In hydroponic growing systems plants are cultivated in small containers, gutters or 

mats with a majority of the nutrients supplied by a liquid medium (Savvas, 2003). 

Closed hydroponic systems waste very little water and fertilizer. Despite the ad-

vantages of recycling nutrients and water, most growers worldwide use open sys-

tems to reduce the risk of disease (Carruthers, 2007). When growers first adopted 

the hydroponic technology the ideal was a sterile system, free from microorgan-

isms. This proved impossible. New pathogens emerged, thriving in the liquid me-

dium with little competition from other microorganisms (Postma et al., 2008). The 

modern approach in closed hydroponic systems is to use biological control meth-

ods to fight and prevent disease (Atkin & Nichols, 2004).  

Consumers and governments push for food that is safe, nutritious and sustainable 

(Carruthers, 2007). Organic hydroponics can offer products that might meet these 
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criteria. With respect to efficient resource use and biological pest management, 

hydroponic systems are already well developed. If soilless cultivation can be ac-

cepted in the organic standards, the major challenge for organic hydroponic is to 

replace synthetic fertilizers with those derived from organic sources (Atkin & 

Nichols, 2004). This paper compares the nutritional and microbiological properties 

of the nutrient solution from a closed organic hydroponic with those of water from 

a recirculating aquaculture facility to evaluate the suitability of aquaculture efflu-

ents as a source of organic fertilizer for hydroponic systems, as is the case in aq-

uaponic systems. Aquaponic culture integrates fish and hydroponic plant produc-

tion into one recirculating system. Most plant nutrients are provided by effluents 

from the aquaculture subsystem. Aquaculture effluents are removed of nitrogenous 

waste products in the hydroponic component and then returned. The same culture 

water may be continuously recirculated for years (Rakocy et al., 2004). Successful 

and sustainable integration requires optimizing growth of three integrated biologi-

cal components: fish, plant and nitrification bacteria. The challenge is to maximize 

production and minimize release of nutrient loaded wastewater to the environment 

(Tyson et al., 2011).      

1.1 Purpose of study 

The purpose of this study was to evaluate recirculated aquaculture water as a nu-

trient source for organic hydroponics.   

1.2 Hypothesises 

1. Water from the recirculating aquaculture system contains the highest density of 

cultivable microorganisms, compared to the recirculating biosolid nutrient solu-

tion in the hydroponic facility. 

2. The biosolid based nutrient solution used in the hydroponic facility is more nu-

tritionally optimized as lettuce fertilizer, than is water from the recirculating aq-

uaculture system. 
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2 Background 

2.1 Aquaculture effluents as a nutrient source for hydroponic 
cultivation systems  

In this paper effluents from a recycling aquaculture system are compared to nutri-

ent solution from an organic hydroponic. Although this comparison can provide 

useful information, utilizing aquaculture effluents in hydroponics is not feasible 

with the two being separate systems. The real benefits first emerge when hydro-

ponics and aquaculture are fused into one closed system; an aquaponic system. A 

well functioning system has to balance the needs of fish, plants and microorgan-

isms to maximize production outputs and minimize pollution (Tyson et al., 2011). 

Great advantages with aquaponic are that fish effluents become a resource for 

plants, and plants treat the water (Rakocy et al., 2006). A challenge is that nitrifi-

cation and plant growth cannot be optimized simultaneously (Savidov, 2004) (Ty-

son, 2011). Table 1 displays the relationships between important environmental 

parameters and the biological components of an aquaponic system. 

 Table 1. Relation between environmental parameters and biological components in aquaponic sys-

tems. 

Parameters Fish Nitrification bacteria Plant 

pH 5.5- 6.5  Below optimal levels 

of performance. 1 

Optimal for plant 

growth and mineral 

nutrient solubility.1  

pH 7.5 -8.0  Optimal performan-

ce.1 

Essential mineral 

nutrients less avail-

able.2 

Ammonia Excreted by fish, 

toxic at low con-

centrations.3 

Remove ammonia by 

nitrification. 3 

Plants absorbing 

ammonium reduce 

levels of ammonia 

in water. Source of 

nitrogen for plants.1 
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Nitrate Relatively non –

toxic for fish.3 

Final product from 

the full bacterial nitri-

fication of ammonia. 

Process that demands 

oxygen 3 

Main source of 

nitrogen for plants.1 

    

Mineral nutrients Excreted by fish, 

accumulate in 

recirculating 

water.2 

 Absorbed by plants, 

essential for growth 

and development. 2 

1.Tyson et al (2011). 

2. Rakocy et al. (2006). 

3. Hagopian & Riley (1998). 

 

 

  Nitrogen is vital for plant growth and the mineral nutrient required in largest 

amount (Taiz & Zeiger, 2006).  Sixty to ninety percent of nitrogenous waste in 

aquaculture are in the form of ammonia (NH3) and ammonium (NH4), originating 

from the gills of the fish. Urine, feces, gill cation exchange and uneaten feed also 

contributes to total nitrogenous waste loading in aquaculture. In the case of tank 

reared fish, very small amounts of feed remain uneaten (Hagopian & Riley, 1998) 

Part of the ammonia excreted is ionized into ammonium and these two forms to-

gether make up the total ammonia nitrogen, abbreviated TAN (Figure 1) (Tyson et 

al., 2011). 

   
       

  

Figur 1. Total ammonia nitrogen (TAN) equilibrium in water (Tyson et al., 2011). 

Unionized ammonia is toxic to fish even at low concentrations and must not ac-

cumulate in the recirculating water. The same applies to nitrite, but lethal concen-

trations vary substantially between species and stages in the life cycle of fish. Ni-

trate on the other hand, in some cases, can exceed the toxic levels of ammonia a 

million times before reaching lethal concentrations. Thus the full nitrification of 

ammonia and nitrite is an essential part of the recirculating aquaculture system 

(Hagopian & Riley, 1998). In the aquaponic system, potentially toxic ammonia is 

removed both by microbial activities and by phytoremediation (Tyson et al., 

2011).  

In general, all mineral plant nutrients except calcium, potassium and iron are 

present in adequate amounts in aquaculture effluents, according to Rakocy et al. 
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(2004). Minimizing daily water exchange is important to achieve accumulation of 

mineral nutrients (Rakocy et al., 2006).  Keeping pH above 7.0 is the key to effec-

tive nitrification, but the process itself lowers pH. To compensate for the low pH, 

and at the same time raise levels of calcium and potassium,  Rakocy et al. (2004) 

continuously added Ca(OH)2 and KOH to their aquaponic system. Iron deficiency 

was avoided by adding iron chelate. Fish waste provided all other nutrients in this 

experiment. Tyson et al. (2011) also emphasized the importance of effective nitri-

fication, suggesting pH 7.5-8.0 rather than at optimum for plant mineral nutrient 

solubility in the range pH 5.5-6.5, for water quality to remain high. Savidov 

(2004) argued for another strategy in which pH is decreased to 6.2. At this level 

mineral nutrients are more soluble and plant growth is favored. Savidov (2004) 

showed that plants are very effective as the main nutrient control mechanism in 

aquaponics, absorbing ammonium very fast. As well, at acidic pH the TAN equi-

librium is weighted towards ammonium, decreasing levels of free ammonia 

(Savidov, 2004). Ammonium is a source of nitrogen, but in high levels it is toxic 

to plants. Ammonium also affects the plant indirectly. When assimilated by the 

roots, a lot of oxygen is consumed. A well aerated root environment, such as in 

soilless cultivation, facilitates assimilation of ammonium. (Silber & Bar-Tal, 

2008:307-310). Also, ammonium depresses the uptake of potassium, calcium and 

magnesium. (Marschner, 1995: 38-39) 

 By regulating pH with phosphoric acid, potassium can be supplemented to 

meet plant demand without affecting pH (Savidov, 2004). Calcium and magnesi-

um were abundant in the local water and available in adequate amounts at the low-

er pH. Fe was supplemented (Savidov, 2004). Savidov (2004) identifies imbal-

anced fish feed as the source of deficiency in aquaponics and suggests developing 

plant based fish feed with higher levels of potassium.          

2.2 The role of microbes in hydroponic cultivation systems. 

It has become evident that a soilless growing system free of microbes is unrealistic 

and emphasis has been shifted towards establishing a micro flora that suppresses 

plant pathogens (Postma, 2004). A lot of research has been done to quantify and 

identify microorganisms and their influence on suppressing plant pathogens and 

plant disease attacks in different hydroponic systems (Vallace et al., 2010).  Mi-

croorganisms in soilless culture can inhabit growing media, nutrient solution and 

rhizosphere. Diversity and density of microbes in the respective habitat is affected 

by growing media, nutrient solution and age and cultivar of plant species (Vallace 
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et al., 2010). The micro flora can act to suppress pathogens by competition, para-

sitism, antibiosis and systemic induced resistance in the plant (Vallace et al., 

2010). Studies of the micro flora in aquaponics have so far focused on nitrifiers 

and their role in nitrification (Tyson et al., 2011). But establishment of plant path-

ogens should be of no less concern in aquaponics than in hydroponics. Patterns of 

microbial diversity and density in the aquaponic system could be expected to dif-

fer from those in hydroponic cultures. Therefore the micro floras of aquaponic 

cultures need to be studied from the perspective of disease suppression as well as 

nitrification.   
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3 Materials and Methods 

3.1 Samples 

Samples were collected in two separate facilities, a closed hydroponic greenhouse 

system and a recirculating aquaculture system. Sampling occurred at three occa-

sions, every other week, in January and February 2012.    

   In the hydroponic greenhouse facility organically certified lettuce was produced. 

Nutrient solution was circulated and based on bio-solids. Growing medium was 

peat and production staggered. Solution samples were collected in 3 sterile glass 

bottles (2L) from the nutrient solution tank and immediately placed in cool bags.  

Water from recirculating aquaculture facility producing tilapia was collected at 

two cardinal points: fish rearing tank outflow and from biofilter outflow. Three 

sterile glass bottles (2L) where filled with water from each cardinal point and im-

mediately placed in cooler.  

2 liter samples were collected for microbiological analysis and transferred to a 

cool storage when arriving at the research facility. For each two liters of sample a 

50 ml sample was collected as well, to be used for chemical analysis. These sam-

ples were stored in a freezer. Temperature was measured on site with infrared 

thermometer.   

 

3.2 Microbiological analyses 

3.2.1 Treatments 

The following three groups of heterotrophic microorganisms were analyzed: gen-

eral bacterial flora, general fungal flora and fluorescent pseudomonades. Groups 
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of microbes were distinguished by different treatments (medium, incubation time, 

incubation temperature) (Table 2). 

To determine the density of cultivable microbes, each group was analyzed quanti-

tatively with regard to colony forming units (cfu) per volume (ml) of sample.  

Table 2. Treatments for analysis of colony forming units(cfu). 

Group to be ana-

lyzed 

Medium Incubation tem-

perature (°C) 

Incubation time 

(h) 

Analysis 

General bacterial 

flora in water 

samples. 

R2A 25 48 Visual standard-

ized count of 

bacterial cfu. 

General fungal 

flora 

0.5 malt extract 

(MA) 

22 96 Visual standard-

ized count of 

fungal cfu. 

Fluorescent pseu-

domonades 

King agar B 

(KB) 

25 24 Visual standard-

ized count of 

fluorescent colo-

nies under UV 

light. 

  

3.2.2 Preparations, dilutions and plating 

Samples of water and nutrient solution were serially diluted in 0.85 NaCl. From 

each dilution step, 50µl were spread in duplicates using a spiral plater. Plating was 

performed mechanically using a WASP 2 apparatus (Whitley Automated Spiral 

Plater 2, Don Whitley Scientific Limited, Shirley, UK).  

 

3.2.3 Analysis 

Colony forming units were quantified with a standardized counting procedure, 

using a circular grid specially designed for manual counting of spiral plates. The 

grid showed areas representing a dispersed volume of sample solution and was 

placed over the petri dish for the counting of colony forming units. Starting from 

the outside and working towards the center, the smallest area containing 30 cfu 

was chosen for calculating density of viable microbes in the dispersed solution 

(cfu ml
-1

). Each area was duplicated radially opposite and together represent a 

specified dispersed volume. Once the appropriate area for calculation was deter-

mined, a count of cfu in complementary areas was performed. If the largest desig-

nated area contained less than 30 cfu, total count of colony forming units was per-

formed. Three dilution levels were chosen to be plated for each sample and medi-
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um. The two replicates easiest to count, of the three dilutions of each sample, was 

used for calculating density of viable cultivable microorganisms.  

 

3.2.4 Sources of error 

Samples collected were to be analyzed within 48 hours and kept cool during all 

times. During the first cycle of sampling and analysis the spiral plater was mal-

functioning and no results were obtained at the first sampling. This means analysis 

could not be performed within 48 hours. Water samples were used for additional 

analyses, other than comprised in this paper, therefore sample bottles were used a 

lot in the lab and not always kept cool.  

An error occurred during plating in the second cycle. All petri dishes went in 

the spiral plater before it was realized that the vacuum pump was not turned on, 

with the effect that no volumes were sucked up and dispersed. Since the suction 

tube is dipped in ethanol and rinsed twice during the plating procedure, it was de-

cided to use the same plates again. This increase the risk of contamination, but all 

plates were exposed to the same treatment.  

3.3 Chemical Analyses 

Chemical parameters such as pH, electrical conductivity (EC) and mineral ele-

ments where analyzed externally (LMI, Sweden). Samples were sent to the labora-

tory for analysis as soon as possible after collection.  

Total nitrogen (TN), ammonium, nitrite, nitrate and total organic carbon (TOC) 

analysis was performed by using Lange Cuvette Tests (LCK) (Hach-Lange, USA) 

(Products and equipment specified in Table 4.). The instructions on how to use the 

individual kits for each parameter where followed and the designated cuvettes 

where analyzed in a fully automated photo spectrometer, the LANGE XION
Σ
500 

(Hach-Lange, USA), calculating the results automatically. See Hach –LANGE 

manual for more information (Hach –Lange, [online] 2012 -05 -28). 

Table 3. Hach –Lange (USA) products used to analyze chemical parameters. 

Analyzed 

Parameter  

Product 

name 

Additional apparatus used for 

preparing sample 

Total Nitrogen 

(TN) 

LCK 338 

Total Ni-

trogen 

LANGE LT200 (Thermostat) 

Ammonium LCK 303 None 
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Ammonia 

(2.5 -60.0 

mg l-1)  

Nitrate LCK 340 

Nitrate (22 

-155 mg l-1) 

None 

Nitrite LCK 342 

Nitrite 

(0.05 -20 

mg l-1) 

None 

Total Organic 

Carbon (TOC) 

LCK 385 

TOC (3 -30 

mg l-1)  

LANGE TOC-X5 (Shaker) 

LANGE LT200 (Thermostat) 

 

The timing of the sampling occasions should have been more carefully selected 

with respect to fertilization and feeding cycles. Information on the last time nutri-

ents where added to the nutrient solution or when fish was last fed was not noticed 

for any of the sampling occasions. 

3.4 Statistical Analyses 

3.4.1 Analysis of microbiological parameters 

 

Differences in microbial density between hydroponic nutrient solution, fish rearing 

tank water and biofilter effluent in relation to sampling occasion were tested using 

ANOVA General Linear Model. Nutrient solution and aquaculture water were 

compared on all shared parameters (19 chemical and physical, 3 microbiological) 

using ANOVA General Linear Model. This model makes comparisons on three 

levels: Sample site, sample occasion and selected parameter. Sample site was set 

as a fixed factor and sampling occasion as a random factor. All sample sites were 

categorized as independent. The Tukey method was used, on a 95.0 % confidence 

level, to calculate significance between sample site means on all shared parameters 

and to obtain grouping information. Minitab 16 (Minitab Inc, Pennsylvania, USA)  

statistical software was used for statistical calculations.   
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4 Results 

4.1 Results from Chemical Analysis 

Aquaponic showed low values on all parameters compared to standard nutrient 

solution, except for manganese. The pH was corresponding better to the require-

ments of crop cultivation in aquaculture water than in the nutrient solution. Nitrate 

levels were very low in all sampling sites, but were highest in nutrient solution. 

Levels of ammonium were low as well, but closer to optimum in nutrient solution 

than in water. The ratio of nitrate -ammonium was closer to recommendations for 

plant cultivation in aquaculture water, but low in all samples (Table 4).     

 Table 4. Inorganic nitrogen, total organic carbon, pH and electrical conductivity (EC) of samples 

compared to recommended hydroponic nutrient solution for cultivation of lettuce (Sonneveld & 

Straver, 1994). Results obtained from LCK –test when not specified otherwise. Different letters on 

results means significant difference. 

(mmol l-1) Hydroponic  Fish tank  

Biofilter 

effluent.  

Standard 

nutrient 

solution (25 
○C) Hydroponic 

∆ 

Biofilter Fish tank 

pH1 7.20 a 6.17 b 5.83 b NA 

   EC1 (mS/cm) 2.24 a 0.78 b 0.76 b 2.6 -0.36 -1.82 -1.84 

TOC  3.16 a 1.58 b 1.07 c NA 

   TN  11.16 a 4.89 b 5.05 c NA 

   Ammonia 

(NH4)  0.79 a 0.40 b 0.34 b 1.25 -0.46 -0.85 -0.91 

Nitrite (NO2)  0.29 a 0.00 b 0.00 b NA 

   Nitrate (NO3) 1.73 a 0.96 b 0.97 b 19 -17.27 -18.04 -18.03 

NO3/NH4 2.20 2.40 2.87 15.20 -13.00 -12.80 -12.33 

1 Results from external analysis (LMI, Sweden) 
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Water from the the sample sites in the aquaculture system was deficient in all mac-

ronutrients and very low on phosporous and potassium. The nutrient solution 

showed abundance of magnesium, sulfur and calcium, but deficiency of phospho-

rous, potassium and silicon. (Table 5).  

Table 5. Essential macro elements from sample sites compared to recommended hydroponic nutrient 

solution (Sonneveld & Straver, 1994).¨ 

Essential 

elements 

(mmol/l) 

Hydroponic 

mean 

Fishtank 

mean 

Biofilter 

mean 

Standard 

hydroponic 

solution. ΔHydroponic 

Δfish rearing 

tank 

Δbiofilter 

effluent 

P  0,38 a 0,08 b 0,08 b 2,0 -1,62 -1,92 -1,92 

K 5,39 a 0,42 b 0,42 b 11,0 -5,61 -10,58 -10,58 

Mg 1,36 a 0,37 b 0,37 b 1,0 0,36 -0,63 -0,63 

S 2,22 b 0,43 b 0,42 b 1,125 1,10 -0,70 -0,70 

Ca 5,07 a 2,02 b 2,01 b  4,5 0,57 -2,48 -2,49 

Si 0,38 a 0,16 b 0,16 b 0,5 -0,12 -0,34 -0,34 

Of all essential elements in nutrient solution and aquaculture water that showed 

deficiency compared to standard nutrient solution, nutrient solution was closer to 

optimum. Aquaculture samples were deficient in all microelements except manga-

nese, with levels of molybdenum and iron to be considered very low. Nutrient so-

lution was deficient in boron and zinc, but abundant in microelements manganese, 

copper, iron and molybdenum. Levels of manganese was abundant in all samples, 

but highest in hydroponic medium (Table 6).  

Table 6. Essential microelements from sample sites compared to recommended hydroponic nutrient 

solution for lettuce cultivation (Sonneveld & Straver, 1994). Results obtained from external analysis 

(LMI, Sweden) 

Essential 

elements 

(µmol/l) 

 Hydroponic  Fishtank  Biofilter  

Standard 

nutrient solu-

tion. ΔHydroponic 

Δfish rearing 

tank 

Δbiofilter 

outflow 

Mn 4.75 a 2.12 b 2.12  b 0.0 4.75 2.12  2.12  

B  17.10 a 3.37 b  3.34  b 30  -12.90 -26.6  -26.7  

Cu 2.41 a  0.26  b 0.23 b 0.75  1.66  -0.49  -0.52  

Fe  59.86 a 0.60 b  0.75 b 40  19.86  -39.40  -39.25  

Zn 2.68 a 2.10 a 2.08 a 4  -1.32  -1.904  -1.92  

Mo 3.94 a 0.06 b  0.08 b 0.5  3.44  -0.44  -0,42  
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4.2 Results from Microbiological Analysis 

Total density of microorganisms was highest in the nutrient solution. Counts of the 

general bacterial flora showed significant differences between the nutrient solution 

and the aquaculture water, with highest numbers in the nutrient solution. No sig-

nificant difference was found between fungal counts in any sample site. The oc-

currence of fluorescent pseudomonades was significantly different between all 

sample sites and most abundant in nutrient solution (Table 7). 

Table 7. Microbial density of hydroponic and aquacultural water based on viable count. Values 

within the same row followed by different letters are statistically different according to Tukey´s-test 

(p< 0.05). 

log cfu ml-

1 

Cultured mic-

robial groups 

Hydroponic Fish tank Biofilter 

MA Fungi 4.9a 5.3a 4.5a 

R2A General bacte-

rial flora 

6.5a 5.2b 4.8b 

KB Fluorescent 

pseudomonades 

3.9a 2.3b 0.9c 

 

 

 

 

 

 

 

 

 

 



 

14 

 

5 Discussion 

5.1 Nutritional qualities of aquaculture water compared to 
organically derived nutrient solution. 

In reference to recommended standard solution for the hydroponic cultivation of 

lettuce (Sonnenveld & Straver, 1994) neither the organic nutrient solution nor the 

aquaculture effluents provided the complete range of nutrients in sufficient 

amounts. In comparison between the two locations, the nutrient solution was better 

adapted to plant requirements on all parameters. The acidic pH suggests that bac-

terial nitrification in aquaculture biofilter was not working at the full potential.  

Levels of essential elements deviate from recommended values and both aqua-

culture water and organic nutrient solution might seem inadequate as nutrient 

sources for hydroponic cultivation. But in organic hydroponic the liquid medium 

is not the only nutrient source. According to the Swedish certification body for 

organic farming (KRAV, 2012) short time cultivars such as lettuce must have a 

minimum pot size of 0.2 L, with a majority of nutrients coming from the growing 

medium. This would mean that the organic nutrient solution is merely a comple-

mentary nutrient source. And although organic nutrient solution showed better 

values than aquaculture water, they were not that far apart. Pantanella et al. (2012) 

found that a balanced aquaponic system can accumulate minerals in amounts that 

are on the same levels as those in conventional hydroponic nutrient solution, and 

produce the same yields and quality of lettuce as conventional hydroponic cul-

tures. This means an aquaculture balanced to provide plant nutrients should be 

more than adequate as a complementary nutrient source for organic hydroponic.  

Of course the use of aquaculture effluents must also be accepted by organic stand-

ards for this resource to be utilized in certified organic cultures. KRAV (2012), 

representing the Swedish certification body for organic farming, does not allow 
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any feces or urine as fertilizer. This might rule out aquaculture effluents. The larg-

er volume of growing medium per pot in KRAV–certified greenhouse production 

(KRAV, 2012) can also be an obstacle for adapting aquaponic cultures to this 

standard. Optimizing the irrigation frequency can compensate for deficiencies in 

the nutrient solution. The use of this tool can be restricted if container size and 

growing medium do not allow good drainage and oxygenation. The important task 

of ammonia assimilation and nitrification in the root environment will be de-

pressed by oxygen depletion. (Silber & Bar-Tal, 2008) Organic aquaponic cultiva-

tion is therefore dependent on a growing medium that fulfills the organic stand-

ards, supply adequate nutrients and allows for excellent drainage and aeration to 

optimize nitrification and assimilation of nitrogenous waste and essential elements 

by plants.  

   The low nutrient levels in the sampled aquaculture water could be explained by 

high water exchange rate in combination with fish feed low on plant nutrients. 

Levels of ammonia seemed to be very low, but still there were no indication of 

nitrification process in the biofilter. But if nutrients were added as fish feed in the 

main pools, and water removed during filtration process, chemical analysis should 

have revealed significantly lower levels of essential elements after filtration. This 

was not the case for any of the analyzed essential elements. One explanation could 

be that the aquaculture facility was not recirculating water at all, or exchanging it 

at high rates. In that case the sampling point that should have been after biofilter is 

instead straight from the water source. This could explain why levels of fluores-

cent pseudomonades are higher in the rearing tank than in the inflowing water. 

They grow faster in the rearing tank than the other analyzed microbial groups, in 

contrast to being selectively removed by filtration. Sampling of the aquaculture 

water source would have helped to reveal the actual circumstances.  

 

 

    

5.2 Microbial densities 

Because aquaculture water is polluted by fish waste, cfu was suspected to be high-

er than in the organic hydroponic. This proved to be false. The organic hydroponic 

had higher density of aerobic bacteria and fluorescent pseudomonades, but similar 

levels of fungi compared to aquaculture water. Density of fluorescent pseudomo-

nades varies between sample sites, being much lower at the biofilter outflow. This 
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is interesting considering the importance of fluorescent pseudomonades in sup-

pressing plant pathogens (Haas & Défago, 2005). Only fluorescent pseudomo-

nades were significantly lower, no changes in general bacteria or fungal cfu could 

be found. One explanation for the reduced levels of pseudomonades could be if 

this bacterial group was more abundant, compared to general bacteria and fungi, 

on suspended solids than in free water. The significantly lower levels of organic 

carbon support the idea that suspended solids were removed by mechanical filtra-

tion and sedimentation during the filtering process. But, as discussed above, the 

overall impression from chemical analysis is that the sampled aquaculture facility 

does not show the properties one could expect from a recirculating aquaculture 

system. In that case total organic carbon is not removed by filtration; it was just 

added by fish and feed in the rearing tank.  

  Qualitative analysis of microorganisms in an actual aquaponic farm would help 

to better understand the composition of the micro flora in this unique environment 

and its implications for nutrient cycling as well as plant health. 
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6 Conclusion 

 

1. Occurrence of aerobic bacteria was significantly higher in biosolid based nutri-

ent solution than in aquaculture water. Levels of fluorescent pseudomonades 

were significantly different between all samples. Highest numbers were found 

in the lettuce fertigator and least in biofilter effluents.  No significant differ-

ences in regard to fungal cfu where found between any of the sampling sites.  

  

2. The biosolid based nutrient solution was more nutritionally optimized than aq-

uaculture water. Aquaculture water from the sampling site was far from optimal 

as nutrient source for lettuce cultivation, but so was the biosolid based nutrient 

solution. Recirculated aquaculture water should be more than adequate, com-

pared to sampled organic nutrient solution, as a complementary nutrient source 

in organic hydroponic.  
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