

Aquaponics 101

Maxine Hunter

UF/IFAS Extension Marion County Residential Horticulture Agent I Updated 4/21/20

What is aquaponics?

- Aquaculture + Horticulture
- Aquaponics is a food production system that combines conventional aquaculture (raising aquatic animals such as snails, fish, crayfish or prawns in tanks) with hydroponics (cultivating plants in water) in a soilless environment.
- Utilizes a recirculating system and natural bacterial cycles to convert fish waste to plant nutrients. The size, complexity, and types of foods grown in an aquaponics system can be very different.

Benefits of Aquaponics

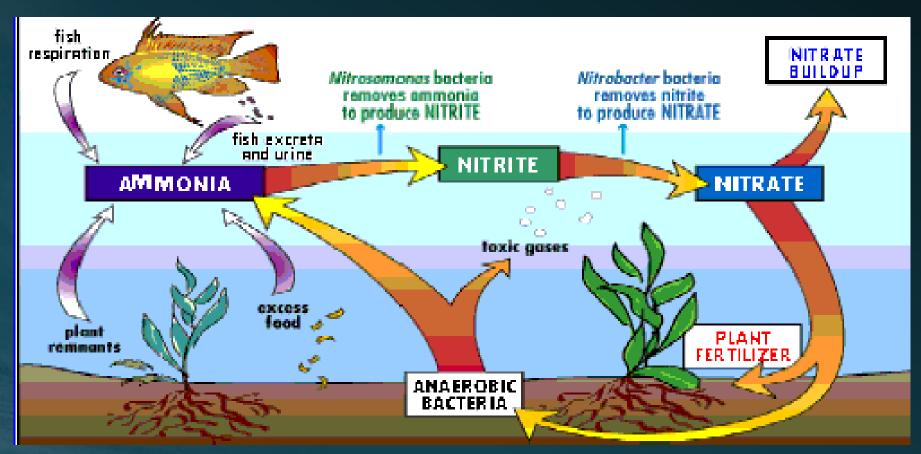
- Environmentally friendly and sustainable
- Uses less water than traditional gardening (90% less)
- Can be run on solar, gas, or electrical power source
- Recycles nutrients
- Can be made from mostly recycled materials
- Fish and vegetation can be consumed
- Year round, convenient gardening
- Can be built in any space- indoor or outdoor
- Food security- more production in less space
- Organic production

Types of Aquatic Species

- Goldfish and Koi
- Tilapia
- Bream or crappie
- Bass or perch
- Catfish
- Shrimp, crawfish, lobster
- Ornamentals- cichlids

Types of Plants

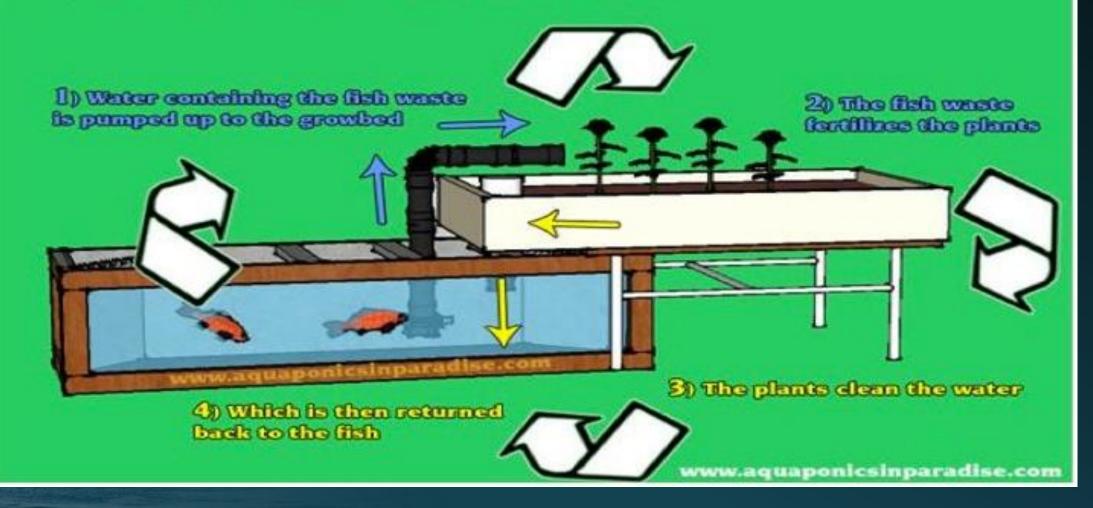
- Ornamentals
 - English Ivy
 - Heartleaf Philodendron
 - Pothos
 - Bamboo


- Vegetables
 - Cucumbers
 - Lettuce
 - Herbs
 - Tomato
 - Peppers
 - Squash
 - Arugula
 - Beans

What plants are not recommended?

- Ornamentals
 - Azaleas
 - Calendula
 - Zinnias
 - Chrysanthemums

- Vegetables
 - Blueberries
 - Corn
 - Perennial plants
 - Strawberries
 - Blackberries
 - Root crops
 - Carrots
 - Beets
 - Potatoes
 - Onions


The Nitrogen Cycle

• Thanks to <u>http://www.pondenterprises.com/filter/nitrogen.html</u> for the picture.

Aquaponics

Aquaponics is a self-watering closed-loop system that uses fish effluent and plants in a complementing recirculating enviroment to grow vegetables at an accelerated rate.

Types of Aquaponic Systems

- Floating- Wick system
- Nutrient Film Technique
- Ebb and flow

Aquariaponics

Barrel-ponics

Commercial Aquaponics

Florida Aquaponic Farms

- Trader's Hill Farm- Hilliard, FL
- Green Acre Aquaponics- Brooksville, FL
- Sahib Aquaponics- Orlando, FL
- Morningstar Fishermen- Dade City, FL
- Norm Avery- St. Johns, FL
- Hydroponics Plus- Delray Beach, FL
- Chatterson Farms- Clermont, FL
- Aquaponic Lynx- Yalaha, FL
- West Coast Aqua Farms- North Port, FL
- Owl Springs Farm- High Springs, FL
- Jareds Farm- Oviedo, FL

,0,

Ξi

7/16/2019

AQUACULTURE & FISHERIES **BUSINESS INSTITUTE**

AFBI ANNUAL AWARDS

AQUAPONICS – WORKSHOPS

November 11-13, 2019 - Commercial Aquaponics Workshop

DEMOPOLIS CATFISH UPDATE MEETINGS

NEWS AND EVENTS

RESEARCH PROJECTS

AQUACULTURE RESOURCES AND BUSINESS LINKS OF INTEREST

CURRENT AQUACULTURE ACTIVITIES

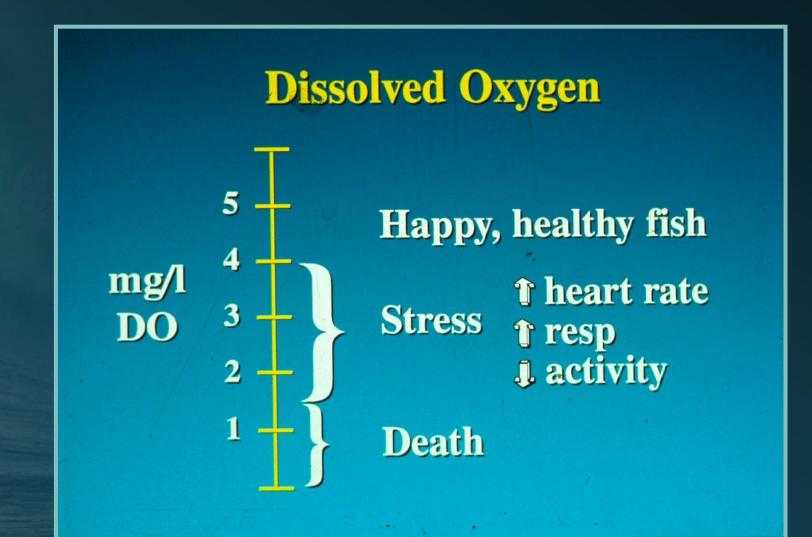
CATFISH FARMER VIDEOS

AQUAPONICS - WORKSHOPS

Aquaponic Workshops are offered as a response to the community's overwhelming interest in aquaponics. Participants will receive detailed instruction on the basics of aquaponics, a tour of the school's fish and plant 10:42 AM

S

P


3

O Type here to search

"Normal Parameters" for Fish Culture <u>Fresh Water</u> <u>Salt</u>

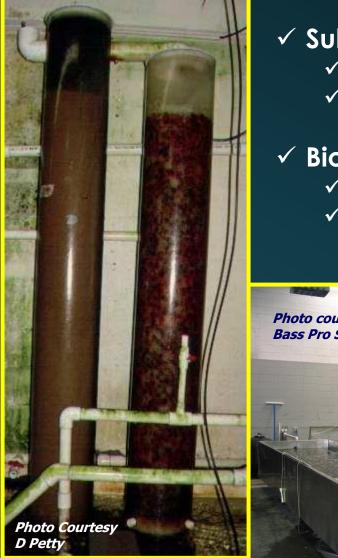
•	Dissolved Oxygen:	saturation (Pond: > 5 mg/L)	<u>Water</u>
•	Carbon Dioxide:		saturation
		<20 mg/L	< 20 mg/L
•	Total Ammonia Nitrogen:	6.5 - 9.0	7.8 - 8.3
•	Unionized Ammonia Nitrogen:	< 1 mg/L	
•	Nitrite:		< 0.5 mg/l
	Nitrate:		<0.05 mg/
	Total Alkalinity:	< 0.05 mg/L	
•	Total Hardness:		
		0 mg/L	0 mg/L
		< 20 mg/L	< 50 mg/L
		> 100 mg/L	> 250 mg/
		> 20 mg/L	> 250 mg/

OK, We do have to mention ... Oxygen

pH ... for fish vs plants

Fresh Water Fish: Prefer pH 6.5-9.0

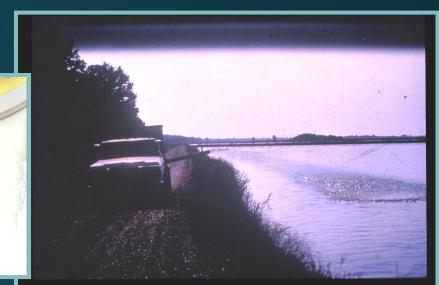
Salt Water Fish: Prefer pH 7.8-8.3


Lethal limits: $PH \leq 4.0$ $PH \geq 11.0$

Plants: pH of 5.5 – 6.5

Optimal up-take of nutrients
Most nutrients water soluble
Not a good fit for fish

Problems with Acidic pH...


- \checkmark Sub-optimal for almost all fish
 - \checkmark Poor growth rates
 - ✓ Acidosis....decreased blood pH???
- Bio-filters (nitrifying bacteria) not happy
 Can result in ammonia accumulation
 Conversion to nitrate compromised

Ammonia

• Source:

- Fish excrete NH₃ across gllls
- Fish foods tend to be very high protein (>35%)
- Ammonia metabolized by bacteria in system:
 - Excreted as NH₃, which ionizes to NH₄⁺, forming an equilibrium that is pH dependent
 - Higher pH favors NH_3 , the toxic unionized form
 - Nitrifying bacteria require oxygen, surface area, carbon source (ie. alkalinity)

Nitrate

End product of Nitrogen Cycle...

This is what the plants have been Waiting for!!!!

What Does it Take for Efficient Biofiltration????

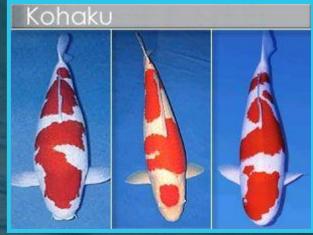
Basic Requirements for Bio-Filter:

- 1. Surface area
- 2. Oxygen
- 3. Alkalinity
- 4. Nitrogen source

Mcarthurwatergardens.com

Toxins in City Water....

Chlorine


- Highly toxic to fish
 - 0.02 mg/L clinical disease
 - 0.04 mg/L lethal
- Sublethal exposure common
 - Signs include excess mucus, flashing, agitation and chronic mortalities

Chloramine

- Ammonia used to stabilize chlorine molecule
- Dechlorination can result in significant levels of ammonia being released

Let's Talk About the Fish....

Target Species for Aquaponic Production: Channel Catfish Tilapia Koi Other????

Factors that may Decrease the Host Immune System

"Stress"

- > Poor Water Quality
- > Crowding
- Rough Handling
- Recent Transport

Inadequate Nutrition

≻Inadequate Vitamin C≻Inappropriate Feeds

Toxin Exposure

Residual Chlorine
Pre-Existing Disease State

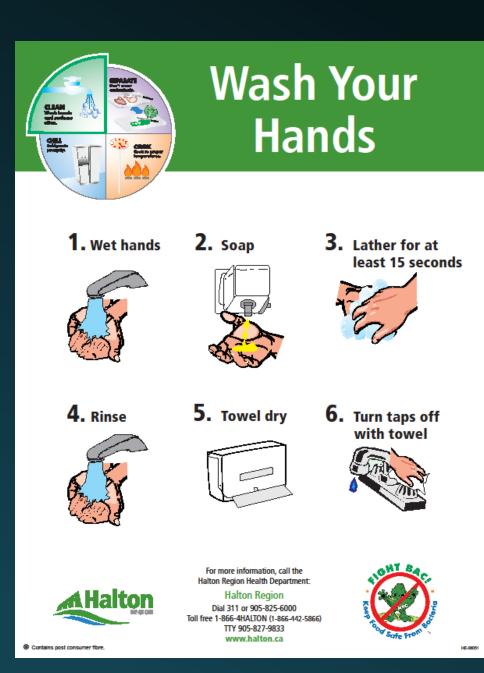
Excessive Parasite Load
Sub-Lethal Viral Infection

The Bottom Line...

Know "Normal" so you can recognize "Abnormal"!

✓ Body position
✓ Color (change)
✓ Feeding
✓ Respiration rate
✓ Interactions

 When problems occur, remember that most fish disease problems are


multifactorial.

- Be as precise as possible in describing what's wrong.
- Don't be afraid to ask for help!

Sanitation

- Before and After Anything you Touch
- Wash hands for 20 seconds
- Human sanitation
- Harvesting produce safely
- Managing warm-blooded animal feces
- Water sources for fish and produce
- Zoonosis prevention
- Disposing of the system's waster water

Handling produce

GOOD

BAD

UH-CTAHR On-Farm Food Safety: Aquaponics, July 2009

Closing Thoughts...

- Aquaponics is new and exciting!
- Water chemistry is critical
- Focus on PH and N-Cycle to start
- City water not fish friendly!
- Consider
 "new" products!
 Be Creative!!!!

References:

- Aquaponics Food Safety: <u>www.ams.usda.gov/gapghp</u> Updated 10.2018
- http://sfaas.auburn.edu/afbi/aquaponics-workshops/
- Bernstein, S. (2011). Aquaponic Gardening: A Step-by-step Guide to Raising Vegetables and Fish Together. New Society Publishers.
- On Farm Food Safety: Aquaponics <u>http://www.ctahr.hawaii.edu/oc/freepubs/pdf/FST-38.pdf</u>
- Chalmers, G. A. (2004). "Aquaponics and Food Safety ". Lethbridge, Alberta April. http://www.fastonline.org/images/manuals/Aquaculture/Aquaponic_Information/Aquaponics_and_Food_Safety.pdf
- Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: aquaponics—integrating fish and plant culture. SRAC Publication, 454, 1-16.
- Veludo, M., Hughes, A., & Le Blan, B. Introduction to Aquaponics: A Key to Sustainable Food Production.
- Yamamoto, J., & Brock, A. A Comparison of the Effectiveness of Aquaponic Gardening to Traditional Gardening Growth Method.
- <u>http://www.aces.edu/dept/fisheries/education/documents/barrel-ponics.pdf</u>
- Food Safety: http://smallfarms.ifas.ufl.edu/food_safety/index.html