Aquarium: AOP for Ruby

Dean Wampler

Object Mentor; Inc:
dean@objectmentor.com

AOSD 2008
April 3, 2008

Thursday, April 3, 2008

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com

(Goals and Features

® Provide an intuitive syntax.

® Support runtime - addition and removal of
advice.

® Advise Java through JRuoy.

® Demonstrate the value of AOP In
dynamically-typed languages.

Why Rulby2?

® |{'S what the cool Kids are using.

x “[Revenge of the Smalltalkers.”

| anguage trendads...
anad waves of Innovation

x | ate 80’s - early 90's: C++

® | ate 90’s: Java
x | ate 00’s: Ruby

Groovy vs. Ruby

x (Groovy might be better for advising Java.

® RUby IS better, otherwise. ©

Provide an intuitive syntax.

Domaln=specHicilanguage:ioraspect-like
Denavior?

class BankAccount creates getter
attr_reader :balance balance()

def initialize \
0

@balaqfe

@balance
lale attribute
def depositCamount)

@balance += amount

end
def withdrawCamount)
@balance -= amount
end

end

| et's add a persistence
ASPECL...

1 he requirements are:

Before reading the balance,
read the current value from the database.

After changing the balance,
write the current value to the database.

Before accessing the account,
authenticate and authorize the user.

Can | “compile” those
reguirements’?

Aqgquarium: AOP for Ruby

class BankAccount

reopen the class

advice type
e for"e/ \ e bointcut ;" works like “or”

ccalling = [:deposit,” withdraw] |\

do |.}
read opject state from aatabase

advice (do ... end block)

end i

2"? Requirement

advice type

i
after \

i pointcut

Wiite object state to database

end i

advice

3% Requirement

€€ €¢)’

bointcut - °,” works like “o

before \ i
ccalling => [:deposit, :withdrawl,\

raccessing => :balance \
do |..]l
raise
end
end

¢ I

unless user_permitted

Small print...

include library

require “aquarium’
1hclude Aquarium::AspectDSLE
before .. do |jp, object, *args]

Join point active parameters
context object bassed to
method

end

Runtime aadition and
removal of agvice.

Not limited:to:static:Weaving:::

lemporary aspects

foo = FooBar.new(..)
foo.non_critical method
aspect = Aspect.new :before, \
ccalls to => all_methods, \
:1h_object => foo do |[join_point|
puts “Entering #{join_point}”

end
foo.critical method # outout happens...
aspect.unadvise # stop the output...

Aadvise Java thru Jsuoy.

1 he performance:of:dava;

the flexible power: ot Rtby.

Hic sunt

adracones

Bleeding=edge;
JUggling=KNIVES
approach to:dava
AOP:.

Java aspects in Ruby!

foo =|Java::com.demo.FooBar . new(..)

aspect = Aspect.new :before, \
:calls_to => :critical method, \
:1n_object => foo do |join_point|

puts “Entering #{join_point}”

end

foo.critical _method

aspect.unadvise

AOP for dynamically-typed
languages.

Metaprogramming:isn:t:enough.

Drawbacks of
metaprogramming alone

x Have to map AOP design to
metaprogramming coae.

x No Pointcut Language.

1 he future of aspects...

® Radical statements:

x | anguages like Java, .NET will imit
aspects 1o pointcuts+aadvise.

x Dynamic languages promise real
innovation in AOSD.

[anguage Oriented
Programming

Application

Domain-Specific Languages
Aspects (Pointcuts + Advise)

Compiled Objects (Java, ...)

Improve Kuby. on Kails

x \Vhat the cool Kids use for web apps.
x Nice APl (effective DSLS).

x Complex MP.code inside.

One example.
VWhat you write:

class Customer < ActiveRecord: :Base
has_many: BankAccounts

end

VWhat Ralls does:

module ActiveRecord::Associations::..
def has_many(..)
reflection =
create_has_many(C..)
“alias person:-has many. bank._accounts”
name2 = “alias _#{reflection.name}”

continued...

eval <<-EOF
alias_method #{name2},
destroy_without_callbacks
def destroy_without callbacks

#{reflection.namet .clear

It's just before advice!

EOE Original method

Refactored with Aguarium

reflection = ..
before :calling =>
cdestroy_without_callbacks do
eval *#{reflection.name}.clear”
end

Aguarium;

® Provides an intuitive syntax.

® SUpports runtime adaition - and removal of
advice.

x Advises Java through JRuby. (sort of...)

® Demonstrates the value of AOP In
dynamically-typed languages.

3.5 out of 4!

Thank youl

® FOor more Information:
x Cttp://aquarium.rubyforge.org
®x dean@objectmentor.com

x http://objectmentor.com

x Cttp://aspectprogramming.com/papers

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://objectmentor.com
http://objectmentor.com

