
Aquarium: AOP for Ruby
Dean Wampler

Object Mentor, Inc.

dean@objectmentor.com

AOSD 2008
April 3, 2008

1Thursday, April 3, 2008

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com

Goals and Features

Provide an intuitive syntax.

Support runtime addition and removal of
advice.

Advise Java through JRuby.

Demonstrate the value of AOP in
dynamically-typed languages.

2Thursday, April 3, 2008

Why Ruby??

It’s what the cool kids are using.

“Revenge of the Smalltalkers.”

3Thursday, April 3, 2008

Language trends…
and waves of innovation

Late 80’s - early 90’s: C++

Late 90’s: Java

Late 00’s: Ruby

4Thursday, April 3, 2008

Groovy vs. Ruby

Groovy might be better for advising Java.

Ruby is better, otherwise. ☺

5Thursday, April 3, 2008

Provide an intuitive syntax.
Domain-specific language for aspect-like
behavior?

6Thursday, April 3, 2008

class BankAccount
 attr_reader :balance
 def initialize
 @balance = 0
 end
 def deposit(amount)
 @balance += amount
 end
 def withdraw(amount)
 @balance -= amount
 end
end

creates getter
balance()

@balance
attribute

7Thursday, April 3, 2008

Let’s add a persistence
aspect...

8Thursday, April 3, 2008

The requirements are:

Before reading the balance,,
read the current value from the database.

After changing the balance,,
write the current value to the database.

Before accessing the account,,
authenticate and authorize the user.

9Thursday, April 3, 2008

Can I “compile” those
requirements?

10Thursday, April 3, 2008

Aquarium: AOP for Ruby
class BankAccount
 …

 before \
 :calling => [:deposit, :withdraw] \
 do |…|
 # read object state from database

 end
 …

advice type

advice (do … end block)

pointcut

reopen the class

“,” works like “or”

11Thursday, April 3, 2008

2nd Requirement

 …

 after \
 :calling => [:deposit, :withdraw] \
 do |…|
 # write object state to database

 end
 …

advice type

pointcut

advice

12Thursday, April 3, 2008

3rd Requirement

 …
 before \
 :calling => [:deposit, :withdraw],\
 :accessing => :balance \
 do |…|
 raise “…” unless user_permitted
 end
 end

“,” works like “or”pointcut

13Thursday, April 3, 2008

Small print...

require “aquarium”
class BankAccount
 include Aquarium::AspectDSL
 before … do |jp, object, *args|

 …
 end

join point
context

active
object

parameters
passed to
method

include library

add methods to class

14Thursday, April 3, 2008

Runtime addition and
removal of advice.
Not limited to static weaving...

15Thursday, April 3, 2008

Temporary aspects
foo = FooBar.new(…)
foo.non_critical_method
aspect = Aspect.new :before, \
 :calls_to => :all_methods, \
 :in_object => foo do |join_point|
 puts “Entering #{join_point}”
end
foo.critical_method # output happens...

aspect.unadvise # stop the output...

16Thursday, April 3, 2008

Advise Java thru JRuby.
The performance of Java,

the flexible power of Ruby.

17Thursday, April 3, 2008

Hic sunt
dracones
Bleeding-edge,
juggling-knives
approach to Java
AOP...

18Thursday, April 3, 2008

Java aspects in Ruby!

foo = Java::com.demo.FooBar.new(…)
aspect = Aspect.new :before, \
 :calls_to => :critical_method, \
 :in_object => foo do |join_point|
 puts “Entering #{join_point}”
end
foo.critical_method
aspect.unadvise

19Thursday, April 3, 2008

AOP for dynamically-typed
languages.
Metaprogramming isn’t enough.

20Thursday, April 3, 2008

Drawbacks of
metaprogramming alone

Have to map AOP design to
metaprogramming code.

No Pointcut Language.

21Thursday, April 3, 2008

The future of aspects...

Radical statements:

Languages like Java, .NET will limit
aspects to pointcuts+advise.

Dynamic languages promise real
innovation in AOSD.

22Thursday, April 3, 2008

Language Oriented
Programming

Application

Compiled Objects (Java, …)

Aspects (Pointcuts + Advise)

Domain-Specific Languages

23Thursday, April 3, 2008

Improve Ruby on Rails

What the cool kids use for web apps.

Nice API (effective DSL’s).

Complex MP code inside.

24Thursday, April 3, 2008

One example.
What you write:

class Customer < ActiveRecord::Base
 has_many BankAccounts
 …
end

25Thursday, April 3, 2008

What Rails does:

module ActiveRecord::Associations::…
def has_many(…)
 reflection =
 create_has_many(…)
 # “alias_person_has_many_bank_accounts”

 name2 = “alias_#{reflection.name}”
 …

26Thursday, April 3, 2008

continued...
 …
 eval <<-EOF
 alias_method #{name2},
 destroy_without_callbacks
 def destroy_without_callbacks
 #{reflection.name}.clear
 #{name2}
 end
 EOF
 …

It’s just before advice!

Original method

27Thursday, April 3, 2008

Refactored with Aquarium

 reflection = …
 before :calling =>
 :destroy_without_callbacks do
 eval “#{reflection.name}.clear”
 end

28Thursday, April 3, 2008

Aquarium:

Provides an intuitive syntax.

Supports runtime addition and removal of
advice.

Advises Java through JRuby. (sort of…)

Demonstrates the value of AOP in
dynamically-typed languages.

3.5 out of 4!

29Thursday, April 3, 2008

Thank you!

For more information:

http://aquarium.rubyforge.org

dean@objectmentor.com

http://objectmentor.com

http://aspectprogramming.com/papers

30Thursday, April 3, 2008

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://objectmentor.com
http://objectmentor.com

