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Goals and Features

Provide an intuitive syntax.

Support runtime addition and removal of 
advice.

Advise Java through JRuby. 

Demonstrate the value of AOP in 
dynamically-typed languages.
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Why Ruby??

It’s what the cool kids are using.

“Revenge of the Smalltalkers.”
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Language trends…
and waves of innovation

Late 80’s - early 90’s: C++

Late 90’s: Java

Late 00’s: Ruby
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Groovy vs. Ruby

Groovy might be better for advising Java.

Ruby is better, otherwise. ☺
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Provide an intuitive syntax.
Domain-specific language for aspect-like 
behavior?
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class BankAccount
  attr_reader :balance
  def initialize
    @balance = 0
  end
  def deposit(amount)
   @balance += amount
  end
  def withdraw(amount)
   @balance -= amount
  end
end

creates getter 
balance() 

@balance 
attribute
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Let’s add a persistence 
aspect...
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The requirements are:

Before reading the balance,,
read the current value from the database.

After changing the balance,,
write the current value to the database.

Before accessing the account,,
authenticate and authorize the user.
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Can I “compile” those 
requirements?
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Aquarium: AOP for Ruby
class BankAccount
 …

 before \
  :calling => [:deposit, :withdraw] \
    do |…|
    # read object state from database

 end
 …

advice type

advice (do … end block)

pointcut

reopen the class

“,” works like “or”
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2nd Requirement

  …

  after \
  :calling => [:deposit, :withdraw] \
    do |…|
    # write object state to database

  end
  …

advice type

pointcut

advice
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3rd Requirement

  …
  before \
   :calling => [:deposit, :withdraw],\
   :accessing => :balance \
   do |…|
     raise “…” unless user_permitted
   end
 end

“,” works like “or”pointcut
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Small print...

require “aquarium”
class BankAccount
  include Aquarium::AspectDSL
  before … do |jp, object, *args|

    …
  end

join point
context

active
object

parameters
passed to 
method

include library

add methods to class
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Runtime addition and 
removal of advice.
Not limited to static weaving...
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Temporary aspects
foo = FooBar.new(…)
foo.non_critical_method
aspect = Aspect.new :before, \
  :calls_to => :all_methods, \
  :in_object => foo do |join_point|
    puts “Entering #{join_point}”
end
foo.critical_method  # output happens...

aspect.unadvise      # stop the output...
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Advise Java thru JRuby.
The performance of Java,

the flexible power of Ruby.

17Thursday, April 3, 2008



Hic sunt 
dracones
Bleeding-edge, 
juggling-knives 
approach to Java 
AOP... 
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Java aspects in Ruby!

foo = Java::com.demo.FooBar.new(…)
aspect = Aspect.new :before, \
  :calls_to => :critical_method, \
  :in_object => foo do |join_point|
    puts “Entering #{join_point}”
end
foo.critical_method
aspect.unadvise
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AOP for dynamically-typed 
languages.
Metaprogramming isn’t enough.
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Drawbacks of 
metaprogramming alone

Have to map AOP design to 
metaprogramming code.

No Pointcut Language.
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The future of aspects...

Radical statements:

Languages like Java, .NET will limit 
aspects to pointcuts+advise.

Dynamic languages promise real 
innovation in AOSD.
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Language Oriented 
Programming

Application

Compiled Objects (Java, …)

Aspects (Pointcuts + Advise) 

Domain-Specific Languages
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Improve Ruby on Rails

What the cool kids use for web apps.

Nice API (effective DSL’s).

Complex MP code inside.
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One example.
What you write:

class Customer < ActiveRecord::Base
  has_many BankAccounts
  …
end
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What Rails does:

module ActiveRecord::Associations::…
def has_many(…)
  reflection = 
   create_has_many(…)
   # “alias_person_has_many_bank_accounts” 

   name2 = “alias_#{reflection.name}”
   …
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continued...
  …
  eval <<-EOF 
    alias_method #{name2}, 
           destroy_without_callbacks
    def destroy_without_callbacks
      #{reflection.name}.clear
      #{name2}
    end
  EOF
  …

It’s just before advice!

Original method
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Refactored with Aquarium

  reflection = …
  before :calling =>
      :destroy_without_callbacks do
    eval “#{reflection.name}.clear”
  end
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Aquarium:

Provides an intuitive syntax.

Supports runtime addition and removal of 
advice.

Advises Java through JRuby. (sort of…)

Demonstrates the value of AOP in 
dynamically-typed languages.

3.5 out of 4!
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Thank you!

For more information:

http://aquarium.rubyforge.org

dean@objectmentor.com

http://objectmentor.com

http://aspectprogramming.com/papers
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