Aqueous Reactions & Sol'n Stoichiometry

Chapter 5

Properties of Aqueous Solutions

- Electrolytic Properties
 - ionic conduct electricity (electrolytes)
 - non-ionic do not conduct electricity (non-electrolytes)
- Ionic Compounds in Water
 - electrolytes
 - dissociate when dissolved in water
- Molecular Compounds in Water
 - non-electrolytes
 - do not dissociate when dissolved in water exceptions: those that react with water (e.g. NH₃, HCl)
- Strong and Weak Electrolytes
 - strong dissociate completely NaCl (s) → Na+ (aq) + Cl- (aq)
 - weak dissociate only partly
 CH₃COOH (s)

 → H⁺ (aq) + CH₃COO⁻ (aq)

Precipitation Reactions

occur when the mixed solutions contain a combination of ions which form a sparingly soluble (or insoluble) compound

$$Pb(NO_3)_2 (aq) + 2 KI (aq) \rightarrow PbI_2 (s) + 2 KNO_3 (aq)$$

Solubility Guidelines for lonic Compounds

- solubility amount of substance that can be dissolved in 1 L of water at 25°C
- substances with solubility < 0.01 mol/L considered insoluble

Predicting Precipitation Reactions

when two ionic compounds are mixed in aqueous solution - check the solubilities of the compounds formed when the ions "switch partners"

- if either of the new compounds is insoluble (or slightly soluble) - precipitation occurs
- if both new compounds are insoluble two precipitation reactions occur
- if both new compounds are soluble no precipitation occurs

Solubility Rules

TABLE 5.1 Solubility Rules for Ionic Compounds

Usually Soluble

Group 1A, ammonium NH ₄ ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , NH ₄ ⁺	All Group 1A (alkali metal) and ammonium salts are soluble.
Nitrates, NO ₃	All nitrates are soluble.
Chlorides, bromides, iodides, Cl ⁻ , Br ⁻ , I ⁻	All common chlorides, bromides, and iodides are soluble except AgCl, Hg ₂ Cl ₂ , PbCl ₂ ; AgBr, Hg ₂ Br ₂ , PbBr ₂ ; AgI, Hg ₂ I ₂ ; PbI ₂ .
Sulfates, SO_4^{2-}	Most sulfates are soluble; exceptions include $CaSO_4$, $SrSO_4$, $BaSO_4$, and $PbSO_4$.
Chlorates, ClO ₃	All chlorates are soluble.
Perchlorates, ClO ₄	All perchlorates are soluble.
Acetates, CH ₃ COO ⁻	All acetates are soluble.

^{© 2005} Brooks/Cole - Thomson

Solubility Rules (cont'd)

Usually Insoluble

Phosphates, PO ₄ ³⁻	All phosphates are insoluble except those of NH_4^+ and Group 1A elements (alkali metal cations).
Carbonates, CO ₃ ²⁻	All carbonates are insoluble except those of NH_4^+ and Group 1A elements (alkali metal cations).
Hydroxides, OH	All hydroxides are insoluble except those of NH_4^+ and Group 1A (alkali metal cations). $Sr(OH)_2$, $Ba(OH)_2$, and $Ca(OH)_2$ are slightly soluble.
Oxalates, C ₂ O ₄ ²⁻	All oxalates are insoluble except those of NH_4^+ and Group 1A (alkali metal cations)
Sulfides, S ²⁻	All sulfides are insoluble except those of NH_4^+ Group 1A (alkali metal cations), and Group 2A (MgS, CaS, and BaS are sparingly soluble).

Exchange Reactions

- also known as metathesis
- cations exchange with each other
- driving force for exchange
 - formation of a precipitate
 - generation of a gas
 - production of a weak electrolyte
 - production of nonelectrolyte

$$AX + BY \rightarrow AY + BX$$
 $AgNO_3$ (aq) + KCl (aq) \rightarrow AgCl (s) + KNO₃ (aq)

Predict whether or not a precipitate will form when the following two solutions are mixed:

```
(a) AgNO<sub>3</sub> (aq) + NaCl (aq) yes, AlCl (s)
```

(b)
$$Pb(NO_3)_2$$
 (aq) + KI (aq)
yes, PbI_2 (s)

(c)
$$Ba(ClO_3)_2$$
 (aq) + Li_2SO_4 (aq) yes, $BaSO_4$ (s)

(d)
$$BaCl_2$$
 (aq) + $NaOH$ (aq)
yes, $Ba(OH)_2$ (s)

Ionic Equations

molecular equation:

$$Pb(NO_3)_2$$
 (aq) + 2 KI (aq) $\rightarrow PbI_2$ (s) + 2 KNO₃ (aq)

complete ionic equation:

 $Pb^{2+}(aq) + 2 I^{-}(aq) \rightarrow PbI_{2}(s)$

$$Pb^{2+}(aq) + 2 NO_3^{-}(aq) + 2 K^{+}(aq) + 2 I^{-}(aq) \rightarrow PbI_2(s) + 2 K^{+}(aq) + 2 NO_3^{-}(aq)$$
net ionic equation:
$$spectator ions$$

net ionic equation shows only ions and molecules directly involved in reaction

An aqueous solution of sodium carbonate is mixed with an aqueous solution of calcium chloride. A white precipitate immediately forms. Write a net ionic equation to account for this. What are the spectator ions?

$$Na_2CO_3$$
 (aq) + $CaCI_2$ (aq) \rightarrow $CaCO_3$ (s) + 2 $NaCI$ (aq)

$$2 \text{ Na}^+ + \text{CO}_3^{2-} + \text{Ca}^{2+} + 2 \text{ Cf}^- \rightarrow \text{CaCO}_3 + 2 \text{ Na}^+ + 2 \text{ Cf}^-$$

$$Ca^{2+} \text{ (aq)} + CO_3^{2-} \text{ (aq)} \rightarrow \text{CaCO}_3 \text{ (s)}$$
spectator

Acid and Base Reactions

Acids

- substances that ionize or react in water to increase concentration of H⁺ ions (protons)
 - HCl and HNO₃ monoprotic acids
 - H_2SO_4 diprotic acid H_2SO_4 (aq) \rightarrow H^+ (aq) + HSO_4^- (aq) HSO_4^- (aq) \leftrightarrow H^+ (aq) + SO_4^{2-} (aq)
- strong acids
 HNO₃, H₂SO₄, HClO₃, HClO₄, HCl, HBr, HI
- weak acids all others including (but not limited to) HF, CH₃COOH, HCOOH, H₂C₂O₄, H₃PO₄

Acid and Base Reactions (cont'd)

Bases

- H⁺ ion acceptors
- react with H⁺ ions to form water

$$H^+$$
 (aq) + OH^- (aq) $\rightarrow H_2O(\ell)$

increase [OH-] when dissolved in water

NaOH (aq)
$$\rightarrow$$
 Na⁺ (aq) + OH⁻ (aq)
NH₃ (aq) + H₂O (ℓ) \leftrightarrow NH₄⁺ (aq) + OH⁻ (aq)

strong bases

include Ba(OH)₂ and hydroxides of the alkali metals (NaOH, KOH, etc.), the soluble ionic hydroxides

weak bases

all slightly soluble or insoluble hydroxides and other compounds like NH₃, etc.

Reactions of Acids

- neutralization reaction (acid + base \rightarrow salt + water) HCl (aq) + NaOH (aq) \rightarrow NaCl (aq) + H₂O (ℓ) H⁺ (aq) + OH⁻ (aq) \rightarrow H₂O (ℓ) net ionic equation
- acid + carbonate (or HCO_3) \rightarrow salt + water + CO_2 gas 2 HCI (aq) + Na_2CO_3 (aq) \rightarrow 2 NaCI (aq) + H_2O (ℓ) + CO_2 (g)
- acid + metal oxide \rightarrow salt + water 2 HNO₃ (aq) + MgO (s) \rightarrow Mg(NO₃)₂ (aq) + H₂O (ℓ)
- $acid + metal \rightarrow salt + H_2 gas$ 2 $HCl (aq) + Mg (s) \rightarrow MgCl_2 (aq) + H_2 (g)$

Reactions of Bases

- base + ammonium salt \rightarrow salt + water + NH₃ gas NaOH (aq) + NH₄Cl (aq) \rightarrow NaCl (aq) + H₂O (ℓ) + NH₃ (g)
- base + non-metal oxide \rightarrow salt + water 2 NaOH(aq) + N₂O₅ (g) \rightarrow 2 NaNO₃ (aq) + H₂O (ℓ)

Oxidation-Reduction Reactions

- characterized by transfer of electrons
- oxidation
 - loss of electrons during reaction
 - oxidation number increases (becomes more positive)
- reduction
 - gain of electrons during reaction
 - oxidation number decreases (becomes more negative)

4 Fe (s) + 3
$$O_2$$
 (aq) \rightarrow 2 Fe₂ O_3 (s)

Oxidation-Reduction Reactions

Oxidation Numbers

determined by following a simple set of rules

- 1. oxidation number of atoms in neutral molecule must add up to zero; those in an ion must add up to charge on the ion
- 2. Group I elements --> +1
 Group II elements --> +2
 Group III elements --> +3
- fluorine always -1 in compounds other halogens -1, except in compounds with oxygen or other halogens
- 4. hydrogen is +1 *except* in metal hydrides (e.g. LiH) rule 2 takes precedence here
- oxygen is -2 in compounds; exceptions: compounds with F (#3) and compounds with O–O bonds (#2 and #4)
- 6. elemental form --> 0

Assign oxidation numbers to the atoms in the following:

$$Na = +1, Cl = -1$$

$$CI = +1, O = -2$$

(c)
$$Fe_2(SO_4)_3$$

$$Fe = +3$$
, $S = +6$, $O = -2$

(d)
$$SO_2$$

$$S = +4, O = -2$$

(e)
$$I_2$$

$$I = 0$$

$$K = +1$$
, $Mn = +7$, $O = -2$

$$Ca = +2, H = -1$$

Redox Reactions

Revisit reaction between metal and acid (or metal salt)

$$A + BX \rightarrow AX + B$$

$$Zn (s) + 2 HBr (aq) \rightarrow ZnBr_2 (aq) + H_2 (g)$$

$$Mn (s) + Pb(NO_3)_2 (aq) \rightarrow Mn(NO_3)_2 (aq) + Pb (s)$$

These are displacement reactions

Redox Reactions (cont'd)

Metals can be oxidized by aqueous solutions of various salts

Fe (s) + Ni(NO₃)₂ (aq)
$$\rightarrow$$
 Fe(NO₃)₂ (aq) + Ni (s)

Net ionic equation:

Fe (s) + Ni²⁺ (aq)
$$\rightarrow$$
 Fe²⁺ (aq) + Ni (s)

Remember: Whenever one substance is oxidized another must be reduced

All metals <u>will not</u> be oxidized by acids or metal salt. How do we determine which will??

Redox Reactions and Activity Series

- metals at top most easily oxidized
- any metal on list can be oxidized by any metal ion below it

$$Cu(s) + 2 Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2 Ag(s)$$

BUT

$$2 \text{ Ag (s)} + \text{Cu}^{2+} (\text{aq}) / 2 \text{ Ag}^{+} (\text{aq}) + \text{Cu (s)}$$

Which of the following metals will be oxidized by Pb(NO₃)₂: Zn, Cu, Fe?

Zn & Fe can be oxidized by Pb²⁺ since they are both above Pb in the activity series table.

$$Zn (s) + Pb^{2+} (aq) \rightarrow Zn^{2+} (aq) + Pb (s)$$

Fe (s) + Pb²⁺ (aq)
$$\rightarrow$$
 Fe²⁺ (aq) + Pb (s)

© 2005 Brooks/Cole - Thomson

Concentrations of Solutions

concentration - amount of solute dissolved in a given quantity of solvent or solution

molarity (M) =
$$\frac{\text{moles solute}}{\text{volume of sol'n in liters}}$$

1.00 M --> 1.00 mol solute / 1 L sol'n

dissolve 0.25 mol NaCl in 0.500 L sol'n:

Molarity = 0.25 mol / 0.500 L = 0.50 M

Calculate the molarity of a solution prepared by dissolving 10.0 g of AgNO₃ in enough water to make 250.0 mL of solution.

mol of
$$AgNO_3 = (10.0 \text{ g}) \left(\frac{1 \text{ mol } AgNO_3}{169.8731 \text{ g}} \right) = 0.05887 \text{ mol}$$

molarity = $\left(\frac{0.05887 \text{ mol}}{0.2500 \text{ L}} \right) = 0.235 \text{ M}$

Dilution

Sometimes you want to take a concentrated solution and make a more dilute solution of it. When you do this, the moles of solute remain constant throughout the process.

$$M_i V_i = M_f V_f$$

A flask contains 625 mL of 3.05 M calcium nitrate solution. What volume of 15.8 M $Ca(NO_3)_2$ contains the same number of moles of $Ca(NO_3)_2$ as this solution?

$$M_i V_i = M_f V_f$$

$$V_f = \left(\frac{(3.05 \text{ M})(0.625 \text{ L})}{15.8 \text{ M}}\right) = 0.121 \text{ L}$$

What is the molar concentration of nitrate ions in 3.05 M calcium nitrate?

 $3.05 \text{ M} \text{ Ca}(NO_3)_2$

2 NO₃⁻ for every 1 Ca(NO₃)₂

molarity =
$$(3.05 \text{ M Ca(NO}_3)_2) \left(\frac{2 \text{ mol NO}_3^{-1}}{1 \text{ mol Ca(NO}_3)_2} \right) = 6.10 \text{ M NO}_3^{-1}$$

How many milliliters of 4.5 M HCl are required to prepare 200 mL of 0.75 M HCl?

$$M_i V_i = M_f V_f$$

$$(4.5 \text{ M}) \text{ V}_i = (0.75 \text{ M})(200 \text{ mL})$$

$$V_i = \frac{(0.75 \text{ M})(200 \text{ mL})}{4.5 \text{ M}} = 33 \text{ mL}$$

(a) Describe how to prepare 0.500 L of 0.0250 M aqueous solution of potassium dichromate

$$mol = (0.500 L) \left(\frac{0.0250 mol}{L} \right) = 0.0125 mol$$

mass =
$$(0.0125 \text{ mol}) \left(\frac{294.1846 \text{ g}}{1 \text{ mol}} \right) = 3.68 \text{ g}$$

Weigh out 3.68 g of K₂Cr₂O₇ and dissolve in small amount of water. Dilute to 500 mL.

Example 9 (cont'd)

(b) Describe how to dilute the solution from part (a) to obtain a solution with a final concentration of 0.0140 M.

$$M_iV_i = M_fV_f$$

$$V_f = \frac{(0.0250 \text{ M})(0.500 \text{ L})}{0.0140 \text{ M}} = 0.893 \text{ L}$$

Dilute solution in (a) to 893 mL.

When the orange salt potassium dichromate is added to a solution of concentrated hydrochloric acid, it reacts according to the following net ionic equation:

$$K_2Cr_2O_7 + 14 HCI \rightarrow 2 K^+ + 2 Cr^{3+} + 8 Cl^- + 7 H_2O + 3 Cl_2$$

Suppose that 6.20 g of K₂Cr₂O₇ reacts with 100.0 ml of concentrated HCl (13.0 M). Calculate the final concentration of Cr³⁺ ion that results and the number of moles of chlorine gas produced.

$$\begin{split} &\text{mol } K_2 C r_2 O_7 = \left(6.20 \text{ g}\right) \left(\frac{1 \text{ mol}}{294.1846 \text{ g}}\right) = 0.021075 \text{ mol } K_2 C r_2 O_7 \\ &\text{mol } H C I = \left(0.1000 \text{ L}\right) \left(\frac{13.0 \text{ mol}}{1 \text{ L}}\right) = 1.30 \text{ mol } H C I \\ &\text{mol } C I_2 \text{ from } K_2 C r_2 O_7 = \left(0.021075 \text{ mol } K_2 C r_2 O_7\right) \left(\frac{3 \text{ mol } C I_2}{1 \text{ mol } K_2 C r_2 O_7}\right) = 0.0632 \text{ mol } C I_2 \\ &\text{mol } C I_2 \text{ from } H C I = \left(1.30 \text{ mol } H C I\right) \left(\frac{3 \text{ mol } C I_2}{14 \text{ mol } H C I}\right) = 0.279 \text{ mol } C I_2 \end{split}$$

Example 10 (cont'd)

$$K_2Cr_2O_7 + 14 HCI \rightarrow 2 K^+ + 2 Cr^{3+} + 8 Cl^- + 7 H_2O + 3 Cl_2$$

mol K₂Cr₂O₇ =
$$(6.20 \text{ g}) \left(\frac{1 \text{ mol}}{294.1846 \text{ g}} \right) = 0.021075 \text{ mol } \text{K}_2\text{Cr}_2\text{O}_7$$

$$\text{mol Cr}^{3+} \text{ from } \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7 = \left(0.021075 \text{ mol } \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7\right) \left(\frac{2 \text{ mol Cr}^{3+}}{1 \text{ mol } \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7}\right) = 0.0422 \text{ mol Cr}^{3+}$$

molarity of
$$Cr^{3+} = \frac{0.0422 \text{ mol } Cr^{3+}}{0.100 \text{ L}} = 0.422 \text{ M}$$

Titrations

 chemical reactions of solution of known concentration with solution of unknown concentration

- point at which stoichiometrically equivalent amounts of HCI and NaOH are brought together is called the equivalence point (endpoint)
- typically use an indicator that changes color at the equivalence point

What is the molarity of a solution of sodium hydroxide if it requires 23.97 mL of that solution to reach the phenolphthalein endpoint when adding it to a solution containing 0.5333 g of KHC₈H₄O₄?

$$KHC_8H_4O_4 + NaOH \rightarrow NaKC_8H_4O_4 + H_2O$$

mol KHC₈H₄O₄ =
$$(0.5333 \text{ g}) \left(\frac{1 \text{ mol}}{204.2234 \text{ g}} \right) = 0.0026114 \text{ mol KHC}_8 \text{H}_4 \text{O}_4$$

$$mol \ NaOH = (0.0026114 \ mol \ KHC_8H_4O_4) \left(\frac{1 \ mol \ NaOH}{1 \ mol \ KHC_8H_4O_4}\right) = 0.0026114 \ mol \ NaOH$$

molarity of NaOH =
$$\frac{0.0026114 \text{ mol}}{0.02397 \text{ L}}$$
 = 0.1089 M

The indicator methyl red turns from yellow to red when the solution in which it is dissolved changes from basic to acidic. A 25.00 mL volume of a sodium hydroxide solution is titrated with 0.8367 M HCl. It takes 22.48 mL of this acid to reach a methyl red endpoint. Find the molarity of the sodium hydroxide solution.

mol HCI =
$$(0.02248 \text{ L}) \left(\frac{0.8367 \text{ mol}}{1 \text{ L}} \right) = 0.018809 \text{ mol HCI}$$

mol NaOH @ endpoint =
$$(0.018809 \text{ mol HCl}) \left(\frac{1 \text{ mol NaOH}}{1 \text{ mol HCl}} \right) = 0.018809 \text{ mol NaOH}$$

molarity of NaOH =
$$\frac{0.018809 \text{ mol}}{0.02500 \text{ L}}$$
 = 0.7524 M