
XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 1

© 2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
PowerPC is a trademark of IBM Corp. and is used under license. All other trademarks are the property of their respective owners.

Summary Each new generation of commercial aircraft has grown more complex, especially with the heavy
reliance of fly-by-wire and the associated avionics. As more systems are designed into airframes,
traditional point-to-point wiring schemes are no longer practical. The designers of the Airbus
A380 searched for a solution to reduce the amount of wiring, increase bandwidth, and make use
of commercial-off-the-shelf (COTS) technology where possible. ARINC Specification 664
(ARINC 664), Part 7 is the result of that search.

This application note provides users with a detailed overview of the architecture and function of
avionics full-duplex switched Ethernet (AFDX) as defined in the specification ARINC 664,
Part 7 ([Ref 1]). In addition, a detailed description of how various functional blocks required for
an AFDX end system can be mapped to both the Virtex®-4 and Virtex-5 architectures is
included.

ARINC 664
Overview

AFDX combines concepts taken from asynchronous transfer mode (ATM) and applies them to a
variant of IEEE Std 802.3 (Ethernet). At the physical layer, AFDX consists of a star-topology, full-
duplexed switched Ethernet (either 100BASE-TX or 100BASE-FX). This topology eliminates the
collision issue found in half-duplexed Ethernet.

Note: For background on the development of AFDX, see “Appendix A: Background,” page 24.

In addition, the network is profiled. In an airframe, all connection, addressing, and bandwidth
requirements for the entire network are known in advance. Each part of the network can be
tailored to the specific connection. The network profile is updated when there are any upgrades
and changes to the electronics of the aircraft.

At the protocol level, AFDX creates the concept of a virtual link (VL) — a point-to-point or
multicast connection through the network. The VL mimics the unidirectional connections found
in ARINC Specification 429 [Ref 2] (see also “ARINC 429,” page 24). Again, as the network is
profiled, the addressing and bandwidth requirements of each VL is defined in advance.

Moreover, the network is deterministic with the latency for each connection known in advance.
The traffic flow and shaping mechanisms help guarantee the latency, jitter, and bandwidth for
each link, providing the QoS required for avionics systems.

The last issue to be addressed is robustness. AFDX relies on parallel, redundant networks to
provide an additional level of fault tolerance. Each data packet is sent across both networks
simultaneously. Redundancy management mechanisms ensure that only one copy of each
packet is transmitted, and that sequential order of the packets is maintained.

ARINC Specification 664 is divided into eight parts:

• Part 1, Systems Concepts and Overview [Ref 3]

• Part 2, Ethernet Physical and Data Link Layer Specifications

• Part 3, Internet-based Protocols and Services

• Part 4, Internet-based Address Structures and Assigned Numbers

• Part 5, Network Interconnection Services and Functional Elements

• Part 6, Reserved

Application Note: Virtex-4 and Virtex-5 FPGAs

XAPP1130 (v1.0.1) May 22, 2009

Architecting ARINC 664, Part 7 (AFDX)
Solutions
Author: Ian Land and Jeff Elliott

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 2

• Part 7, Avionics Full Duplex Switched Ethernet (AFDX) Network

• Part 8, Upper Layer Services

AFDX is defined by Part 7, along with IEEE Std 802.3 (Ethernet standard).

AFDX – The
Details

Network Topology

An AFDX network consists of up to 24 end systems connected to a switch (Figure 1). Switches
can be cascaded to increase the capacity of the network. Total switch capacity is limited to
4,096 VLs (including the routing of VLs either originating or terminating beyond end systems
connected to that switch).

Note: There is no explicit limit on the number of VLs an end system can support. The maximum number
is a function of the amount of required bandwidth of each VL and its maximum frame length.

The network is profiled — all routes and addressing are predefined and contained in the
configuration for both end systems and switches, simplifying network configuration.
Transmitting end systems are responsible for enforcing bandwidth limits, and receiving end
systems manage redundancy. Switches are responsible for routing frames, policing bandwidth,
and shaping traffic.

X-Ref Target - Figure 1

Figure 1: AFDX Topology (Redundancy Not Shown)
X1130_01_030809

Tx

Rx

RxTx

RxTx

RxTx

RxTx

RxTx

RxTx

Rx

TxAFDX
Switch

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Tx

Rx

RxTx

RxTx

RxTx

RxTx

RxTx

RxTx

Rx

TxAFDX
Switch

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxRx

Tx

Rx

RxTx

TxRx

RxTx

TxRx

RxTx

TxRx

Rx

TxAFDX
Switch

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 3

There is no intra-switch communication (other than passing data frames) between redundant or
cascaded switches. All routes are based upon the switch’s routing table.

The standard (ARINC 664, Part 7) also allows for the mapping of other protocols over AFDX.
For example, ARINC 429 links can be built across an AFDX network through the use of
concentrators/protocol conversion modules.

Redundancy

To increase the robustness of the system, an AFDX network consists of two redundant
networks; each end system has two Ethernet ports (A and B), with A ports connected to switch
A and B ports, which are connected to switch B (Figure 2). Identical frames are sent by the end
system on both ports simultaneously. Each switch routes their frames independently to the
destination end systems. The receiving end system is responsible for managing the reception
of redundant frames, deleting duplicates and any out-of-order frames.

Note: Redundancy is not required for all VLs and can be turned off for a given VL, provided a thorough
evaluation of the impact is completed.

Frame Format

The AFDX frame format (Figure 3) is compliant with IEEE Std 802.3 (Ethernet). The frame
contains addressing for identifying source and destination end systems as well as the assigned
virtual link. AFDX frame length can vary from 64 to 1518 bytes (plus a 7-byte frame preamble,
1 frame start byte, and 12-byte interframe gap (IFG), with a data payload between 1 and
1471 bytes (payload must be padded to a minimum length of 17 bytes).

The one-byte frame sequence number is used to maintain ordinal integrity for frames of a given
VL as well as assist in detecting missing frames. During transmission, the sequence number is
incremented by one for each VL frame, starting at 0 and wrapping at 255 to 1.

Note: A sequence number of 0 is used to indicate a reset condition of the transmitting end system.

X-Ref Target - Figure 2

Figure 2: AFDX Redundancy
X1130_02_012309

Tx

Rx

RxTx

RxTx

RxTx

RxTx

RxTx

RxTx

Tx

RxAFDX Switch
Network B

Tx

Rx

RxTx

RxTx

RxTx

RxTx

RxTx

RxTx

Tx

RxAFDX Switch
Network A

Avionics
Subsystem

AFDX
End System

Rx

TxController
A

Rx

TxController
B

Avionics
Subsystem

AFDX
End System

Rx

Tx Controller
A

Rx

Tx Controller
B

X-Ref Target - Figure 3

Figure 3: AFDX Frame
X1130_03_030809

AFDX Frame

7 Bytes

Preamble

1 Byte

Start
Frame

Delimiter

6 Bytes

Destination
Address

6 Bytes

Source
Address

2 Bytes

0x800
IPv4

20 Bytes

IP Structure

8 Bytes

UDP Structure

1–1471 Bytes

AFDX Payload

0–16 Bytes

Padding

1 Byte

SN

4 Bytes

Frame
Check

Sequence

12 Bytes

Inter-
Frame
Gap

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 4

Addressing

At the data link layer, each VL is assigned a MAC address by the system integrator. The 48-bit
MAC destination address (Figure 4) consists of 32 bits to constant field (identical for all end
systems in the network) and 16 bits to identify the VL. AFDX frames are routed by the switch to
all destination end systems identified for the VL in the switch configuration.

The 48-bit MAC source address (Figure 5) identifies the Ethernet controller of the end system
originating the frame. The first 24 bits of the address are set to a constant value. Following the
constant value is a 16-bit unique identifier for the controller set by the system integrator (ARINC
664 provides only general guidance on setting this value). Following the 16-bit unique identifier
is a 3-bit value used to identify which network the controller is connected to (001 for network A
and 010 for network B — all other values are not used). The final 5 bits are set to a constant:
0 0000.

Note: The focus of this application note is on the data link and physical layers. For more information
about IP addressing within the network, refer to the ARINC 664, Part 7 standard.

Virtual Links

The goal of ARINC 664, Part 7, is to preserve point-to-point links while reducing the amount of
wiring. The physical point-to-point links of ARINC 429 [Ref 2] are replaced by virtual links,
connecting sensors and actuators with control units (Figure 6). VL links are time-division
multiplexed at the end system for transmission over the network.

X-Ref Target - Figure 4

Figure 4: MAC Destination Address Format

X-Ref Target - Figure 5

Figure 5: MAC Source Address Format

X1130_04_012309

48 Bits

32 Bits

XXXX XX11 XXXX XXXX XXXX XXXX XXXX XXXX

16 Bits

Virtual Link IdentifierConstant Field

NNNN NNNN NNNN NNNN

X1130_05_012309

48 Bits

24 Bits

0000 0010 0000 0000 0000 0000

Constant Field

16 Bits

User-Defined Identifier

NNNN NNNN NNNN NNNN

3 Bits

Interface ID

NNN

5 Bits

0000 0

Constant Field

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 5

Each VL is guaranteed a specific maximum bandwidth as well as an end-to-end maximum
latency. The assigned bandwidth is controlled by the end system and enforced in the switch,
where the latency is defined by the system integrator, bounded by the limits set in the standard
(see “Latency,” page 8). In addition, a VL is assigned a maximum allowed frame size of LMAX.

Note: In the switch specification section of the standard, LMAX is referred to as SMAX. In addition, that
section specifies a minimum allowed frame size SMIN for each VL (see “Frame Filtering,” page 10).

The total of all bandwidth assigned to VLs cannot exceed the total bandwidth available in the
network. Additionally, the demands on bandwidth at each switch must be known because each
switch must handle VLs originating and terminating at attached end systems and any VLs
being forwarded to other switches in the network.

Each VL can be composed of up to four sub-VLs. Sub-VLs are used to handle less critical data
with less stringent bandwidth requirements (bandwidth guarantees apply only at the VL level).
Data queues for each sub-VL are read in a round-robin fashion, with each frame containing data

X-Ref Target - Figure 6

Figure 6: Virtual Links over an AFDX Network

X1130_06_012309

Tx

Rx

RxTx

RxTx

RxTx

RxTx

RxTx

RxTx

Rx

TxAFDX
Switch

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Tx

Rx

RxTx

RxTx

RxTx

RxTx

RxTx

RxTx

Rx

TxAFDX
Switch

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxRx

Tx

Rx

RxTx

TxRx

RxTx

TxRx

RxTx

TxRx

Rx

TxAFDX
Switch

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

Avionics
Subsystem

AFDX
End System

TxTxRx

VL1

VL1

VL2

VL2

VL2

VL3

VL3

VL3

VL4

VL4

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 6

only from one sub-VL queue (any fragmentation has to be handled at the IP layer). After a frame
for a sub-VL is created, that frame is handled by the network no differently than a VL frame.

Note: Sub-VLs are an optional implementation, available to the end user as needed. Moreover, the
standard does not specify how sub-VLs are identified. Possibly a unique VL identifier can be assigned to
each sub-VL by the system integrator.

End Systems

Virtual Link Management

The primary responsibility is the management of transmitting and receiving data for the virtual
links. An end system can handle a maximum of 128 VLs and can be built to any needed
configuration, for example, to transmit four VLs and receive six VLs, with one receive VL being
composed of three sub-VLs. A one-size-fits-all design is not required.

For each VL and sub-VL, the end system must maintain a FIFO queue (sub-VLs FIFO queues
are read in a round-robin fashion to fill its assigned VL FIFO queue) — ordinal integrity of
transmitted frames must be maintained. The size of the VL/sub-VL queues is not specified by
the ARINC 664, Part 7, but the total of all queues for a given application (or partitions as defined
by ARINC Specification 653 [Ref 4]) must be at least 8 kB (an application or partition can have
one or more VLs).

For transmission, the end system is responsible for:

• Reading each VL queue.

• Incrementing the VL frame sequence number.

• Scheduling each frame for transmission to maintain the bandwidth guarantee within the
allowed jitter.

• Transmitting redundant frames on both controllers A and B.

On reception, the end system is responsible for:

• Deleting redundant frames and policing ordinal integrity.

• Separating data by VL and writing received frames to the appropriate queue.

Note: The end system must continue to transmit frames even if there is a link failure.

For a redundant VL reception, an end system should:

• When redundancy management is active, pass one copy of redundant data to the partition
(see “Redundancy Management”).

• When redundancy management is not active, pass both copies of redundant data to the
partition.

For a non-redundant VL reception, the end system should pass data from either channel to the
partition (redundancy management can be active or not).

Bandwidth Control

The bandwidth control mechanism varies the frame payload and frame transmission interval.
Essentially, each VL is assigned a transmission time slot — a VL can transmit a frame within an
assigned bandwidth allocation gap. A bandwidth allocation gap represents the minimum time
interval (less allowed jitter) between the beginning of consecutive frames for a given VL
(Figure 7); however, an end system can transmit frames from differing VLs within the limits
defined by IEEE Std 802.3.

Note: If no data is available for a VL at the next available bandwidth allocation gap, the end system is not
required to transmit any data (in other words, an empty frame). Moreover, the bandwidth allocation gap
represents the minimum interval for transmission — a VL can transmit data at a longer interval than its
assigned bandwidth allocation gap. Although not explicitly stated, the standard implies that frames
exceeding the allocated bandwidth are dropped at the incoming AFDX port.

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 7

Bandwidth allocation gaps range from a minimum of 1 ms to a maximum of 128 ms, the size
determined by Equation 1.

Equation 1

where k is an integer in the range of 0 to 7.

The bandwidth allocation gap value for each VL is assigned by the system integrator, based on the
needs of the application, and stored in the configuration tables for the end system (and switch).

Via the traffic shaping function/scheduler, the end system reads each VL queue as needed, then
determines the optional transmission order, taking advantage of the allowed jitter in scheduling
frames. Each frame is transmitted outside the limits set by the bandwidth allocation gap (less jitter)
for its VL, respecting the proper interframe gap between frames from differing VLs (Figure 8).

An end system must be capable of transmitting data at the maximum frame rate supported by
the medium. Conversely, the end system must be able to receive and process frames at that
same maximum rate.

Jitter

The traffic shaping function is allowed to introduce jitter when transmitting frames. This jitter
allows the end system flexibility when transmitting simultaneous (or near simultaneous) frames
from differing VLs.

For AFDX, jitter is defined as the time between the beginning of the bandwidth allocation gap
interval and the first bit of the frame to be transmitted in that bandwidth allocation gap interval,
measured at the transmitting end system. The standard allows for 40 μs of jitter as the result of
the transmitting technology plus an amount based upon the bandwidth requirements of the
VLs, limited to a maximum of 500 μs. The maximum allowed jitter is shown in Equation 2.

X-Ref Target - Figure 7

Figure 7: Single VL Transmission within Set Bandwidth Allocation Gap and Defined Jitter

Bandwidth Allocation Gap Bandwidth Allocation Gap Bandwidth Allocation Gap

Jitter
Window

Jitter
Window

Jitter
Window

Frame Frame Frame

X1130_07_012309

Bandwidth Allocation Gap Size 2
k

=

X-Ref Target - Figure 8

Figure 8: Scheduling Two VL Streams

JitterVL1 JitterVL1 JitterVL1

Frame VL1 Frame VL1 Frame VL1

X1130_08_012309

Frame VL2

Bandwidth Allocation GapVL2

Bandwidth Allocation GapVL1

Bandwidth Allocation GapVL2 Bandwidth Allocation GapVL2

JitterVL2 JitterVL2 JitterVL2

Frame VL2Frame VL2

IFG + Preamble

Bandwidth
Allocation
GapVL1 Bandwidth Allocation GapVL1

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 8

Equation 2

where:

JitterMAX is in μs, limited to a maximum of 500 μs.

LMAX is in bytes.

NBW is the bandwidth of the transmission medium in bits per second.

Latency

ARINC 664, Part 7 does not specify a system-wide latency but does provide some limits at the
end system and switch level.

For an End System

For an end system, the standard limits the latency during reception to less than 150 μs. During
transmission, the maximum latency for a VL is defined as:

Equation 3

where p represents the number of the frame in a sequence of a data burst, or fragmented data.
For a single frame with evenly spaced data, p = 1.

For a Switch

The standard defines latency for the switch as the elapsed time between the reception of the
last bit of the frame until the transmission of the last bit of the frame. Switch latency is
composed of three parts: technological latency of the switching function, the configuration
latency due to switch loading, and the time required to transmit the frame on the medium.

The standard specifies a limit only for the technological latency (less than 100 μs).

Determining End System Capacity

The standard sets no limit on the number of VLs an end system can support and states that an
end system must be able to transmit at the medium’s maximum frame rate. However, the end
system must respect bandwidth limits and LMAX values for each VL as well as comprehend the
total VL limit at the switch.

The worst-case (minimum) number of VLs occurs when LMAX for each VL is 1,518 bytes and
each VL is assigned the maximum bandwidth (bandwidth allocation gap = 1 ms). At 100 Mb/s,
a frame of this size (1,518 bytes + 20 bytes overhead) takes 123.04 μs to transmit. With each
VL respecting a bandwidth allocation gap of 1 ms, an end system could only handle eight VLs.

Note: This is based on a unit analysis only. It is doubtful that an end system could effectively schedule
traffic from all eight, maximum-bandwidth, maximum-frame-length VLs. Thorough traffic modeling is
required to determine the feasible maximum.

Without considering limitations at the switch level, the best case (maximum) number of VLs
occurs when LMAX for each VL is 64 bytes, and each VL is assigned the minimum bandwidth
(bandwidth allocation gap = 128 ms). At 100 Mb/s, a frame of this size (64 bytes + 20 bytes
overhead) takes 6.72 μs to transmit. With each VL respecting a bandwidth allocation gap of
1 ms, an end system could handle 19,047 VLs — far exceeding the capacity of the switch.

Limits on the number of VLs to be supported by an end system must be set by the system
integrator.

Redundancy Management

During transmission, unless not required by the VL, the end system must simply transmit
redundant frames via both controllers. The standard specifies that redundant frames must be
sent within 0.5 ms of each other.

JitterMAX 40

20 LMAX+() 8×
i Set of VLs{ }∈

∑
NBW

--+≤

LatencyMAX framep()≤ p bandwidth allocation gap JitterMAX technological_latency_in_transmission+ +×

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 9

During reception, the end system must first check each incoming frame’s integrity on both
channels in parallel (irrespective of redundancy settings). For each received frame passed from
the MAC, the Integrity Checker must verify that the frame received has the expected sequence
number for its VL — the previous sequence number (PSN) received plus either one or two
(taking into account that sequence numbers wrap from 255 to 1). If the Integrity Checker
encounters an invalid frame, the frame is dropped and the system is notified of the error. The
result of this check allows a single dropped frame in the data stream.

Note: This check is based upon the last frame received, even if it was discarded. This last requirement
implies that the previous sequence number must be updated with the sequence number of the discarded
frame and used to check the next frame, allowing for a dropped data stream to be resumed.

There are two special cases when the Integrity Checker must pass a frame that appears out of
order (not equal to PSN +1 or PSN +2):

• A sequence number of zero is always accepted (indicates a transmitting end system
reset).

• Any frame sequence number is accepted for the first valid frame received after a receiving
end system reset.

Note: The specification requires that it is possible to disable integrity checking on a VL-by-VL basis.
Integrity checking status is set at end system start-up via the configuration file.

After the Integrity Checker has a valid frame, it passes that frame to the Redundancy Manager,
where the frames from both channels are compared, passing the first valid frame to the
partition and dropping any redundant frames.

The Redundancy Manager operates in a two-step process (on a VL-by-VL basis):

• If a frame received on either channel is in ascending VL frame sequence number, then it is
passed to the partition.

• Next, the Redundancy Manager looks for a duplicate frame from the other channel.

For AFDX, a duplicate/redundant frame is defined as a frame with the same identical VL
sequence number as the last frame passed by the Redundancy Manager (for that VL), received
with a specified time window (defined by the standard as SkewMAX). A redundant frame
received after SkewMAX is identified as a new frame and passed to the partition.

The values for SkewMAX (in ms) should be set by the system integrator based upon the network
topology. The standard does not explicitly state but assumes that the values for SkewMAX are
specific to a VL received at a specific end system.

Note: The standard also does not specify a maximum value for SkewMAX; however, a maximum of 5 ms
is implied in the commentary.

Switches

An AFDX switch consists of up to 24 full-duplex (but non-redundant) Ethernet ports, a central
switch fabric, plus its own single-channel end system for data loading and monitoring functions.
In the minimal system configuration, there are two redundant switches, one for network A and
one for network B; however, there is no communication between switches, so each routes its
traffic independently of the other.

In many ways, an AFDX switch resembles a commercial switch — frames are forwarded based
on a static routing table, no redundancy, etc. However, the AFDX switch must perform two vital
functions: frame filtering and traffic policing. The goal of these functions is to only pass valid
frames (from both structure and bandwidth perspectives) to the switch fabric. This strategy
isolates bad links from the rest of the network.

In addition, switch output ports must discard any frame that is older than a maximum delay
value specified on a port-by-port basis in the configuration file. This requirement helps remove
old data from the network (the assumption is that the redundant version of the frame was

http://www.xilinx.com

AFDX – The Details

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 10

transmitted successfully by the redundant switch, and the older redundant frame would be
removed at the receiving end system anyway).

The standard requires that the switch provides a traffic prioritization mechanism, allowing
high-priority traffic precedence over low priority traffic. The standard specifies that this
prioritization be based on the destination end system, but specified on a VL basis in the
configuration file.

Note: This standard seems to be in contradiction because a VL can have more than one destination end
system. In other words, the situation could easily arise where a transmitting port must handle a mix of low
and high priority VLs destined for the same end system.

Because design of an AFDX switch is beyond the scope of this document, not all aspects of the
switch functionality are covered in detail. Refer to ARINC 664, Part 7 for details [Ref 1].

Frame Filtering

Upon frame reception at a switch port, the frame is filtered to ensure the validity of a frame
based upon the parameters contained in the configuration table. For each received frame:

• The frame size is verified to be within the defined limits of VL length (between SMIN and
LMAX/SMAX).

• The frame is verified to have an integer number of bytes to check alignment.

• The FCS for the frame is calculated and verified against the value contained in the frame.

• The incoming switch port assignment for the VL is verified.

• The destination MAC addressed for the VL is verified as reachable.

Any frame not verified as valid is discarded and an entry is made into the management
information base (MIB). Valid frames are passed to the traffic policing function.

Traffic Policing

Valid frames are then filtered for bandwidth. Any frame that exceeds the defined bandwidth limit
for the VL is discarded. The standard specifies a token-bucket algorithm for policing bandwidth
and allows the option of selecting either frame-based or byte-based policing.

Note: The standard does not explicitly state that an entry for any frame discarded by the traffic policing
function needs to be logged to the MIB; however, best practices recommend logging.

Regardless of which version of the algorithm is chosen, discarded frames are not used in
calculating bandwidth used. The goal is to enforce the bandwidth limit by blocking only those
frames in excess of the defined limit.

Switch End System

In addition to the switch ports, each switch has its own end system. The design of the switch
end system resembles the other end systems in the network except there is no requirement for
redundancy.

The switch end system handles all direct communication with the switch and supports both
data loading and network management.

Network Management

Management of an AFDX network is handled via a network management function that
communicates with each AFDX network component (equipment, subscriber, and switch) to
monitor the health and status of the network.

Note: The standard does not discuss where or how the network management function should be hosted.

Network health is monitored via simple network management protocol (SNMP) agents running
on each subscriber (line-replaceable unit (LRU)/partition) and end system (including the switch

http://www.xilinx.com

Solutions for Building End Systems

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 11

end system). Health status and errors are logged to the local MIBs, with status messages sent
as requested by the network management function.

Application Level

In parallel with the development of AFDX is the rise of integrated modular avionic (IMA). Rather
than having dedicated hardware for each onboard function (LRU), a standardized computing
platform is used to run one or multiple avionics applications/subsystems (partitions). Each
partition is assigned individual address spaces, and limits are set on their CPU usage to create
isolation between partitions. Within an AFDX network, each partition is assigned an IP address.

Avionics subsystems communicate with the network via a standard application programming
interface (API). Each partition can transfer data to the end system via either communication or
service access point (SAP) ports. ARINC653 [Ref 4] defines two types of communication ports,
sampling and queuing, both accessible via UDP. ARINC 664 allows for a third port type, SAP, to
support legacy UDP/TCP traffic outside the API defined by ARINC653.

These ports are the communication points for VLs. Each VL or sub-VL is sourced by a single
AFDX communication port; each VL and sub-VL terminates at one AFDX communication port
per destination partition.

Solutions for
Building End
Systems

The basic building blocks required to build an AFDX end system are: two Ethernet controllers
(MAC plus PHY), a processor, memory, and general-purpose logic. Because of the profiled and
custom nature of an AFDX network, Xilinx® FPGAs with their flexibility are ideal solutions.

The Virtex-5 FXT and Virtex-4 FX families, with their embedded Ethernet MACs and
PowerPC® processors, represent ideal solutions for AFDX end systems. In addition, devices
from these families provide ample memory and logic resources to implement end system
building blocks plus user logic. Both of these families are available in extended temperature
ranges, making them suitable for avionics applications.

Given the compatibility between the architectures of both Virtex-5 FXT and Virtex-4 FX FPGAs,
the two families can be viewed as a continuum of solutions — from the smallest Virtex-4 FX
device for an end system with low bandwidth demands to the largest Virtex-5 FXT devices for
an end system with high bandwidth demands and locally hosted AFDX partitions.

The Virtex-4 FX Family

Virtex-4 FX FPGAs extend the earlier Virtex series of devices, adding additional resources
such as embedded Ethernet MAC. Family members are equipped with either two or four
embedded Ethernet MACs and either one or two embedded PowerPC405 processors
(PPC405 processor), making even the smallest member suitable for constructing an end
system.

The Virtex-4 FPGA Tri-Mode Ethernet MAC supports 10/100/1000 Mb/s data rates and is
designed to IEEE Std 802.3-2002 specifications. The Ethernet MAC can operate at single-
speed (10, 100, or 1000 Mb/s) or in tri-mode, and in either full or half duplex. The embedded
MAC supports Media Independent Interface (MII), Gigabit Media Independent Interface (GMII),
and Reduced Gigabit Media Independent Interface (RGMII) for connecting to an external PHY.

The Virtex-4 FPGA Ethernet MAC block [Ref 5] contains two Ethernet MACs that share a single
host interface (Figure 9). The host interface can use either the generic host bus or the DCR bus
through the DCR bridge to communicate with the embedded PPC405 processor.

http://www.xilinx.com

Solutions for Building End Systems

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 12

The PPC405 processor is a 32-bit implementation of the PowerPC embedded-environment
architecture. The processor provides fixed-point embedded applications with high performance
at low power consumption:

• Up to 450 MHz operation

• 1.5 DMIPs/MHz performance

• Five-stage datapath pipeline

• 16 KB instruction cache

• 16 KB data cache

• Enhanced instruction and data on-chip memory (OCM) controllers

• Auxiliary Processor Unit (APU) interface for direct connection from PPC405 to
coprocessors in the FPGA logic

Refer to the PowerPC Processor Reference Guide [Ref 6], Virtex-5 Family Overview [Ref 7],
and Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide [Ref 8] for more details.

The Virtex-5 FXT Family

The Virtex-5 FXT family extends the capabilities found in Virtex-4 FPGAs, improving logic,
memory, and DSP performance, and enhancing serial connectivity speeds, with enhanced
processor performance and PCIe Endpoint capabilities. Family members are equipped with
either four, six, or eight embedded Ethernet MACs and either one or two embedded
PowerPC 440 processors (PPC440 processor).

Similar to the Virtex-4 FPGA Ethernet MAC block, the Virtex-5 FPGA Ethernet MAC block
contains two Ethernet MACs that share a single host interface. The host interface can use
either the generic host bus or the DCR bus through the DCR bridge to communicate with the
embedded PPC440 processor. The Virtex-5 FPGA Ethernet MAC block adds additional
flexibility in the processor interface, reduces clock resource requirements, and improves
configuration capabilities over the Virtex-4 FPGA version.

X-Ref Target - Figure 9

Figure 9: Virtex-4 FPGA Ethernet MAC Block

PHY
Host Interface

Ethernet MAC
Block

FPGA Logic

DCR Bus

TX0/RX0

TX1/RX1

Generic Host Bus

DCR
Bridge

To PowerPC 405 block

RX Stats MUX1 TX Stats MUX1

RX Stats MUX0 TX Stats MUX0

EMAC1
ClientTX1/RX1

ClientTX0/RX0
EMAC0

StatsIP0

StatsIP1

X1130_09_013009

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 13

The 32-bit embedded PPC440 processor contains a dual-issue, superscalar, pipelined
processing unit, along with other functional elements required to implement embedded system-
on-a-chip solutions:

• Up to 550 MHz operation

• Greater than 1000 DMIPS per processor (2.0 DMIPS/MHz)

• Seven-stage pipeline

• Multiple instructions per cycle

• Out-of-order execution

• 128-bit processor local buses (PLBs)

• Integrated scatter/gather DMA controllers

• Dedicated interface for connection to DDR2 memory controller

• Auxiliary processor unit (APU) interface and controller

Refer to Embedded Processor Block in Virtex-5 FPGAs Reference Guide [Ref 9], First Portable
AFDX Datasheet [Ref 10], and ML410 Embedded Development Platform User Guide [Ref 11]
for more details.

Building an End
System

As with any design, deciding which functions are best handled by hardware and which are best
handled by software is key. This application note presents two possible solutions: a more
processor-centric solution and a more hardware-centric solution.

A processor-centric solution has the advantage of allowing the use of an off-the-shelf solution,
which speeds development, but it lacks the ability to customize/differentiate a solution and can
be limited in performance.

A hardware-centric solution allows for more customization and has obvious performance
advantages, but it has a longer development cycle.

Note: Due to the similarities between the Virtex-4 and Virtex-5 FPGA architectures, the solutions
described in this application note are applicable to both. Any differences in application between the
families are highlighted.

Processor-Centric Solution

Because both Virtex-4 FX and Virtex-5 FXT FPGAs offer embedded PowerPC processors, they
lend themselves to a processor-centric solution. In the processor-centric solution, the entire
AFDX protocol stack is implemented in software — integrity checking, redundancy, VL, and
bandwidth management are all hosted in software. In addition, the IP layer, AFDX ports, and
network management functions are included. COTS solutions for a software-only AFDX
protocol stack are available (see ML510 Embedded Development Platform User Guide [Ref 12]
for an example); however, there can be limits to the number of VLs and total bandwidth
available.

The processor-centric mode uses both Ethernet MACs in the MAC block, passing data to/from
the processor via a packet FIFO. The protocol stack running in the mediated processor handles
all aspects of the protocol, providing data to avionics partitions via AFDX communication ports.
In addition, the processor handles the network management functions with a hosted SNMP
agent, writing to the MIB contained in either internal or external memory (depending upon its
required size and the amount of memory required by the protocol stack).

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 14

Note: For this (and other AFDX solutions described in this application note), the Ethernet MACs must be
placed in promiscuous mode because the MAC address in an AFDX frame represents the VL and not the
controller — the AFDX switch filters any frame not intended for the end system.

This solution leaves room for other user applications as it places little demand on the basic
FPGA logic.

Hardware-Centric Solution

In the hardware-centric solution, the parts of the AFDX protocol stack below the IP layer are
implemented in hardware; integrity checking, redundancy management, VL transmit and
decode, and bandwidth control are all implemented in hardware, offloading these tasks from
the processor. The embedded processor handles the IP layer and above.

The advantage of a hardware-centric solution is performance and scalability. The hardware is
designed to meet the needs of the specific application (number of receive and transmit VL/sub-
VLs, number and size of transmit and receive frames, etc.).

Receive Path

The receive path (Figure 11) consists of an external 100BASE-TX PHY (on both networks A
and B) connected to the pair of Ethernet MACs in the FPGA. These Ethernet MACs then pass
data to dual integrity checkers (via a FIFO). A single redundancy manager block reads data
from both integrity checkers (again via FIFO), and passes only unique valid frames in ordinal
order for each VL to the PowerPC processor (unless otherwise configured).

X-Ref Target - Figure 10

Figure 10: Processor-Centric AFDX Solution

Host
Interface

Ethernet MAC Block

FPGA Logic

DCR
Bridge

EMAC0

EMAC1

X1130_10_013009

PHY

PHY

FIFO

FIFO

Network A

Network B

PowerPC

IP Layer

UDP Layer

AFDX Ports

SNMP Agent

Avionics
Partitions

VL Database
MIB

Redundancy
Manager

Integrity
Checker

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 15

Ethernet MACs

For each of these operations, both the integrity checkers and redundancy manager must
maintain a database for each VL. Because the end system is required to maintain statistics for
the network management function, some or all of this data could be stored off-chip in the MIB.

The Ethernet MACs must be configured for:

• Full-duplex operation

• 100 Mb/s operation only (no auto-negotiation)

• Address filtering disabled

Integrity Checker

For each frame passed to the integrity checker (Figure 12), the block must check the frame
sequence number for that VL stream. Any frame with a sequence number that is not the next
expected number or the next expected number plus one is dropped, and an entry is made into
the MIB (unless the frame sequence number is zero or this is the first frame received after end
system reset). Any frame found to be valid is passed to the redundancy manager (writing to a
common FIFO for both channels). In both cases, the last sequence number entry for that VL
must be updated in the database.

Note: The integrity checker can write valid frames to a common FIFO because the redundancy manager
only needs a supply of valid frames and does not need to know which channel the frame is received on.

Rather than store the last sequence number, it can be more efficient to increment the last
sequence number to allow for a unity comparison. After a match fail, the value can be
incremented again and compared. If a second match fail is detected, the frame is discarded but
the sequence number of that frame can be incremented and stored in the database.

X-Ref Target - Figure 11

Figure 11: AFDX Receive Path

Host
Interface

Ethernet MAC Block

FPGA Logic

DCR
Bridge

EMAC0

EMAC1

X1130_11_013009

PHY

PHY

FIFO

FIFO

Integrity
Checker

Integrity
Checker

FIFO

Network A

Network B

Redundancy
Manager

SkewMAX
Timer

PowerPC

IP Layer

UDP Layer

AFDX Ports

SNMP Agent

Avionics
Partitions

VL Database
MIB

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 16

Because each VL is checked independently, integrity checker engines can run in parallel if
more performance is needed (the standard requires that the end system is able to receive
frames at the maximum frame rate specified by the standard, in other words, back-to-back with
the required IFG). This option requires a demultiplexer block to segregate frames by VL, or the
frames could be read in a round-robin fashion, but a contention-handling function is required
(for example, allowing an integrity checker engine to lock a database entry for a given VL).

Redundancy Manager

The redundancy manager (Figure 13) reads the next frame from the common post-integrity-
checker FIFO, reading both the VL and sequence number for the frame. The manager compares
the sequence number of the received frame to the last sequence number passed by the manager

X-Ref Target - Figure 12

Figure 12: Integrity Checker Flowchart

Reset

Fetch Frame

Pass Frame as Valid
SeqNum = Frame No + 1

Fetch Frame

Frame No =
0; SeqNum; or
SeqNum + 1?

Fetch Frame

Yes

Drop Frame
SeqNum = Frame No + 1

Enter Error in MIB

No

X1130_12_012809

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 17

for that VL. If the received sequence number is greater than the sequence number of the last
frame passed by the redundancy manager or if the last frame was received more than
SkewMAX ms ago, the frame is passed to the processor and the database is updated. If the
received sequence number is less than the last received frame sequence number, the frame is
discarded.

Note: Although it is not clear from the standard whether SkewMAX is an end-system-wide or VL-specific
value, it must be tracked for each VL, however, implying individual timers are required for each VL.
X-Ref Target - Figure 13

Figure 13: Redundancy Manager Flowchart

Reset

Fetch Frame

X1130_13_030809

SKEWMAX
exceeded?

Yes

No

Frame No =
SeqNum?

Yes

No

Frame No =
SeqNum?

No

Yes

Drop Frame
Enter Error in MIB

Pass Frame as Valid
SeqNum = Frame No + 1

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 18

PowerPC Processor

The redundancy manager passes valid frames to the PowerPC processor, which is responsible
for handling the IP, UDP layers, plus the SNMP agent and AFDX ports. VL data is passed via
the AFDX ports to the avionics partitions.

Transmit Path

The transmit path (Figure 14) consists of VL data streams from the avionics partitions being
passed to the PowerPC processor, which in turn handles the AFDX ports, UDP and IP layers,
and the scheduling of frames for transmission. Frames are written to a FIFO in transmission
order. The regulator reads frames from the FIFO and then transmits each frame, respecting the
VL’s bandwidth allocation gap and jitter limits. Based on the redundancy settings, frames are
passed to either one or both of the Ethernet MACs, which then transmit the frames via the
external PHY.
P

PowerPC Processor

Aside from managing the incoming AFDX ports, SNMP agent and the UDP and IP layers, the
PowerPC processor must handle scheduling (ordering) frames for transmission (the regulator
handles transmission timing). The standard does not specify an algorithm or method for
scheduling frames, but the scheduling function must take the following into account:

• The allowed bandwidth for each VL (in the sense of the VL’s bandwidth allocation gap).
Frames can be delayed but should not be scheduled, so that a frame of one VL does not
block the transmission of another frame.

• The loading in each VL’s incoming queue. VLs must be allowed to transmit at their
maximum bandwidth. Frames can be delayed when needed, but the queue must be served.

• The required transmission time for the frame.

• The remaining transmission window for that frame.

• The priority of the VL.

Frames are written to the output FIFO in the order required for transmission.

X-Ref Target - Figure 14

Figure 14: AFDX Transmit Path

Host
Interface

Ethernet MAC Block

FPGA Logic

DCR
Bridge

EMAC0

EMAC1

X1130_14_013009

PHY

PHY

FIFO

Network A

Network B

Regulator

BAG/Jitter
Timer(s)PowerPC

IP Layer

UDP Layer

AFDX Ports

SNMP Agent

Avionics
Partitions

VL Database
MIB

Scheduler

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 19

The Regulator

After the frame ordering is determined, the regulator controls the exact timing of frame
transmission, respecting the VL’s bandwidth allocation gap limit and end system allowed jitter.
One possible solution for the regulator is a by-the-book approach that transmits frames as soon
as they are available, respecting the bandwidth allocation gap and jitter limits. This approach
can ship consecutive frames separated only by the IFG.

The by-the-book approach depends on the PowerPC processor-based scheduler to order the
frames properly. The regulator (Figure 15) reads a frame from the FIFO and reads the VL
identifier to determine the proper bandwidth allocation gap. The frame can be transmitted after
the bandwidth allocation gap has elapsed, and within the jitter window. If the jitter window
expires, the frame can still be transmitted; however, the bandwidth allocation gap timer is reset
(Figure 16). The frame is sent to one or both of the Ethernet MACs (depending on the
redundancy settings), and the next frame in the FIFO is fetched.

X-Ref Target - Figure 15

Figure 15: Regulator Flowchart (Per VL)

Reset

FLAGBAG
set?

No

Yes

Fetch Frame

FLAGJITTER
set?

X1130_15_030809

Set RESETCOUNTER
Yes

Reset FLAGBAG

Transmit Frame

No

http://www.xilinx.com

Building an End System

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 20

X-Ref Target - Figure 16

Figure 16: Bandwidth Allocation Gap/Jitter TImer Flowchart

Reset

Reset FLAGJITTER

Jitter time
reached?

No

Yes

RESETCOUNTER
set?

Yes

No

No

Reset FLAGBAG

Increment Timer

FLAGBAG
set?

BAG time
reached?

No

Yes

Increment Timer

X1130_16_012809

Set FLAGBAG Set FLAGJITTER

Yes

http://www.xilinx.com

Prototyping Solutions

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 21

For example, consider an end system with three VLs to transmit:

VLA – bandwidth allocation gap = 1 ms; LMAX = 1,518 bytes

VLB – bandwidth allocation gap = 2 ms; LMAX = 1,024 bytes

VLC – bandwidth allocation gap = 2 ms; LMAX = 512 bytes

For this end system, the allowed jitter is 289 μs (per Equation 2).

With the by-the-book approach, frames are transmitted as soon as they are available. The
stream shown in Figure 17 assumes that all three VLs send traffic at their maximum bandwidth
and all have data available at the start. Frames are only separated by the IFG, bandwidth
allocation gap, and allowed jitter.

The by-the-book approach:

• Requires a smart scheduler

• Individual bandwidth allocation gap/jitter timers for each VL

Ethernet MACs

Regardless of which approach is chosen for the regulator, output frames are transferred to one
or both of the Ethernet MACs (depending on the redundancy settings for the VL). The Ethernet
MACs transmit the frames on the networks via the external PHYs.

The Ethernet MACs, must be configured for:

• Full-duplex operation

• 100 Mb/s operation only (no auto-negotiation)

Prototyping
Solutions

Xilinx provides demonstration/evaluation kits for developing AFDX end system solutions.

ML410 Embedded Development Platform for Virtex-4 FX FPGAs

The ML410 series of embedded development platforms [Ref 11] offers designers a versatile
Virtex-4 FX device for rapid prototyping and system verification. In addition to the more than
30,000 logic cells, over 2,400 kb of block RAM, dual PPC405 processors, and RocketIO™
transceivers available in the FPGA, the ML410 provides two onboard Ethernet MAC PHYs,
DDR memory, multiple PCI bus slots, and standard front panel interface ports within an ATX
form-factor motherboard. An integrated System ACE™ tool CompactFlash controller is
deployed to perform board bring-up and to load applications from the CompactFlash card.

ML510 Embedded Development Platform for Virtex-5 FXT FPGAs

The ML510 series of embedded development platforms [Ref 12] offer designers a versatile
Virtex-5 FXT device for rapid prototyping and system verification. In addition to the more than
130,000 logic cells, over 10,700 kb of block RAM, dual PPC440 processors, and RocketIO
transceivers available in the FPGA, the ML510 provides two onboard Ethernet MAC PHYs,

X-Ref Target - Figure 17

Figure 17: By-the-Book VL Transmission

BAGB Jitter

A B C A B CA

0 ms 1 ms 2 ms

BAGA

BAGC Jitter

X1130_17_012809

Jitter

3 ms

http://www.xilinx.com

AFDX and DO-254

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 22

DDR2 memory, multiple PCI bus slots, and standard front panel interface ports within an ATX
form-factor motherboard. An integrated System ACE tool CompactFlash (CF) controller loads
applications from the CompactFlash card.

AFDX and
DO-254

RTCA/DO-254 and its counterpart in Europe, EUROCAE/ED-80, are the guidelines for the
design of complex electronic hardware (CEH) for use in avionics systems. FAA advisory
circular AC 20-152 made DO-254 an official requirement for suppliers of civil aviation avionics
systems. DO-254 is a collection of best industry practices for design assurance of airborne
electronic hardware. These guidelines advocate a top-down approach for design and
verification of safety critical electronics and other avionics systems and represent the
consensus of the aviation community.

System Failure Levels

The FAA has defined a number of levels regarding the safety and criticality of an avionic
system. For example, engineers designing to level A or B face a much more rigorous test,
verification, and documentation process than for levels C, D, or E. All flight hardware needs to
be classified as having one of these failure levels [Ref 13].

Within an AFDX network, not all end system applications carry the same level of criticality. Each end
system application carries the criticality level associated with the avionics partitions it supports. The
required level is set by the system integrator in consultation with the equipment supplier.

Network Safety versus Network Security

When discussing a network, the issue of network safety versus network security must be
discussed. DO-254 addresses the safety of the network, in other words, the reliability of the
network and its susceptibility to component failure.

Network security, or the network’s susceptibility to viruses, and hacking are separate issues
that are not addressed by DO-254.

A related issue, also not addressed by the standard, is bitstream security. While tampering with
the FPGA bitstream is a remote possibility, Xilinx does provide effective bitstream security and
encryption solutions to protect designs from malicious tampering [Ref 14].

Potential Methods for DO-254 with an ARINC 664 (AFDX) Solution
Using Xilinx Devices

Generally, designers have a range of potential methodologies available to mitigate errors when
designing solutions to meet DO-254 requirements [Ref 13]. Depending upon the design
assurance level, designers can employ several fault mitigation schemes when implementing
the design into an FPGA (in descending order of strength):

• Triple-FPGA redundancy with external voting circuits

• Dual-FPGA redundancy

• Triple-module redundancy (TMR) with voting circuits implemented in the FPGA

• Circuit redundancy with arbitration inside a single FPGA

• Bitstream scrubbing with error correction

• Periodic FPGA reconfiguration

AFDX presents a special case with respect to DO-254 — AFDX already includes redundancy
as well as error mitigation. Given the redundant nature of AFDX, the range of additional, viable
mitigation techniques is narrowed. Depending upon the design assurance level, possible
techniques to increase fault immunity for an AFDX application fall into two categories:

http://www.xilinx.com

Conclusion

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 23

• Multiple-device solutions: Networks A and B can be split between two FPGAs, placing
network integrity, redundancy management, and transmit regulator in a third FPGA.

• Single-device solutions: The entire end system is implemented in a single FPGA,
employing device-level mitigation techniques.

The strength of these solutions can be adjusted by implementing (in descending order of
strength):

• TMR in all FPGAs (for both solutions)

• TMR only in the third FPGA supporting network integrity, redundancy management, and
transmit regulator (for the multiple-device solution)

• Bitstream scrubbing with error correction

• Periodic FPGA reconfiguration

The exact technique employed should be determined in consultation with both the system
integrator and the Designated Engineering Representative.

Conclusion The increased complexity of today’s commercial aircraft requires an enhanced data
communication solution. By adapting commercial Ethernet technology, AFDX not only provides
much higher data rates compared to earlier solutions but allows the leveraging of existing IP
and silicon. The Virtex-5 FXT and Virtex-4 FX families, with their embedded Ethernet MACs
and PowerPC processors, plus abundant resources for user logic, represent ideal solutions for
AFDX end systems.

References 1. ARINC Specification 664, Part 7, Aircraft Data Network, Avionics Full Duplex Switched
Ethernet (AFDX) Network.

2. ARINC Specification 429, Mark 33 Digital Information Transfer System (DITS).

3. ARINC Specification 664, Part 1, Aircraft Data Network, Systems Concepts and Overview.

4. ARINC Specification 653, Avionics Application Software Standard Interface.

5. UG074, Virtex-4 FPGA Embedded Tri-Mode Ethernet MAC.

6. UG011, PowerPC Processor Reference Guide.

7. DS100, Virtex-5 Family Overview.

8. UG194, Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

9. UG200, Embedded Processor Block in Virtex-5 FPGAs Reference Guide.

10. First Portable AFDX Datasheet, SYSGO AG, 2007.

http://www.sysgo.com

11. UG085, ML410 Embedded Development Platform User Guide.

12. UG356, ML510 Embedded Development Platform User Guide.

13. WP332, Meeting DO-254 and ED-80 Guidelines when using Xilinx FPGAs.

14. Design Security Solutions
www.xilinx.com/products/design_resources/security/index.htm.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/boards_and_kits/ug085.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug356.pdf
http://www.xilinx.com/support/documentation/white_papers/wp332.pdf
http://www.xilinx.com/support/documentation/user_guides/ug074.pdf
http://www.xilinx.com/support/documentation/user_guides/ug011.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/user_guides/ug194.pdf
http://www.xilinx.com/support/documentation/user_guides/ug200.pdf
www.xilinx.com/products/design_resources/security/index.htm
http://www.xilinx.com/products/design_resources/security/index.htm
http://www.xilinx.com/products/design_resources/security/index.htm
www.xilinx.com/products/design_resources/security/index.htm
http://www.sysgo.com

Appendix A: Background

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 24

Appendix A:
Background

A modern commercial airframe has to connect thousands of sensors and actuators with a
plane’s control systems. Due to the critical nature of these systems, each of the sensors and
actuators must be connected directly to their control systems. Although the bandwidth required
for these connections is low (on the order of 100 kb/s or less), the connections must be robust,
providing guaranteed delivery of data and offering no bus connection or data collisions.

In many aspects the requirements for an aircraft data network (ADN) mirror that of the public
switched telephone network (PSTN), with its thousands of point-to-point, low-speed (64 kb/s)
connections and its requirement for quality of service (QoS) and robustness — an analogy not
lost on the architects of AFDX.

ARINC 429

For nearly 30 years, almost every commercial aircraft developed, starting with the Boeing 727
through to the 767 and Airbus A340, has made use of ARINC 429 data busing for connecting
onboard electronics. Electrically, ARINC 429 buses are composed of a single twisted wire pair
connecting one transmitter with up to 20 receivers (Figure 18). All communication is
unidirectional, sending 32-bit data words at either low (12.5 kb/s) or high (100 kb/s) speed.

Despite the robustness of ARINC 429, starting with the design of the first all-electronic, fly-by-
wire system on the Airbus A320, it was clear that a replacement standard was needed. With the
number of systems required by a modern airframe, the amount, size, and weight of wiring
required to connect all of the sensors, controllers, and actuators (also known as Line
Replaceable Units or LRUs) made ARINC 429 impractical for future design (already, the Boeing
747-400 aircraft has 171 miles of wiring). Designers of the A380 began looking for alternatives.

To avoid the expensive and lengthy development of a custom, aviation-only solution, A380
designers looked to leverage as much commercial-off-the-shelf (COTS) technology as
possible. While most avionic systems do not require high data rates, a higher bandwidth
solution was sought to support both newer technology but also allow for the multiplexing of
connections. IEEE 802.3 Ethernet was chosen as the basis for a new ADN solution,

Ethernet

IEEE 802.3 Ethernet has an even longer history than ARINC 429, and has the advantage of
being widely deployed and well understood. In addition, there are many commercial suppliers
supporting all aspects of the standard, allowing a solution based on Ethernet to be built largely
out of commercially available building blocks.

Despite the bandwidth and maturity, Ethernet, as typically deployed, has several drawbacks
when compared to the needs of an ADN:

• Broadband connection – the standard handles the transfer of bulk data on network with
many receivers and transmitters without central control. Any connection can use all of the
available bandwidth.

X-Ref Target - Figure 18

Figure 18: ARINC 429 Topology

BAGB Jitter

A B C A BA

0 ms 1 ms 2 ms

BAGA

BAGC Jitter

X1130_18_012909

Jitter

3 ms0.5 ms 1.5 ms 2.5 ms 3.5 ms

A C

http://www.xilinx.com

Revision History

XAPP1130 (v1.0.1) May 22, 2009 www.xilinx.com 25

• Data collisions are allowed – Ethernet does not prevent data collisions from occurring,
but rather employes a technique for handling collisions when they occur using carrier
sense multiple access with collision detection (CSMA/CD).

• Bandwidth is shared – there is no bandwidth guarantee for a single connection, the
effective bandwidth being a function of the size of the network, its topology, and traffic.

• Best-effort network – there is no QoS requirement with Ethernet. All data is delivered
based on current network traffic.

• Vulnerability – loss of a single wire severs the connection between data terminals;
however, other network connections might not be impacted.

Clearly, an effective ADN cannot be built solely from commercial Ethernet concepts.

ATM

Given the similarity of ADNs with the publicly switched telephone network (PSTN), concepts
from telephony can also be applied. The asynchronous transfer mode (ATM) is a cell-based
packet-switched network protocol. The protocol supports virtual point-to-point connections
(virtual circuits) with QoS guarantee (bandwidth, latency, and jitter). Within the PSTN, data for
multiple channels is time-division multiplexed (TDM) over the ATM connection.

Each 53-byte ATM cell contains five header bytes containing addresses specifying the virtual
circuit path and channel (the rest of the cell is data payload). The protocol allows each
connection to specify its required QoS (traffic contract).

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT
DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-
SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS
III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF
AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY,
“CRITICAL APPLICATIONS”). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR
INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR
AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT
INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A
WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY
TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX
PRODUCTS IN CRITICAL APPLICATIONS.

Date Version Revision

03/20/09 1.0 Xilinx initial release.

05/22/09 1.0.1 Revised authors.

http://www.xilinx.com

	Architecting ARINC 664, Part 7 (AFDX) Solutions
	Summary
	ARINC 664 Overview
	AFDX - The Details
	Network Topology
	Redundancy
	Frame Format
	Addressing

	Virtual Links
	End Systems
	Virtual Link Management
	Bandwidth Control
	Jitter
	Latency
	Determining End System Capacity
	Redundancy Management

	Switches
	Frame Filtering
	Traffic Policing
	Switch End System

	Network Management
	Application Level

	Solutions for Building End Systems
	The Virtex-4 FX Family
	The Virtex-5 FXT Family

	Building an End System
	Processor-Centric Solution
	Hardware-Centric Solution
	Receive Path
	Transmit Path

	Prototyping Solutions
	ML410 Embedded Development Platform for Virtex-4 FX FPGAs
	ML510 Embedded Development Platform for Virtex-5 FXT FPGAs

	AFDX and DO-254
	System Failure Levels
	Network Safety versus Network Security
	Potential Methods for DO-254 with an ARINC 664 (AFDX) Solution Using Xilinx Devices

	Conclusion
	References
	Appendix A: Background
	ARINC 429
	Ethernet
	ATM

	Revision History
	Notice of Disclaimer

