
Architecting .NET Solutions

for the Enterprise

Dino Esposito

JetBrains

dino.esposito@jetbrains.com

@despos

facebook.com/naa4e

WARNING
This is NOT simply a shameless plug

but a truly helpful reference

“I will say that in a number of cases, a page

from this book erased a mass of confusion I'd

acquired from Vaughn Vernon's Implementing

Domain-Driven Design. This was written in a

much more concise, clear, practical manner

than that book.”

—(non anonymous) Amazon reviewer

http://naa4e.codeplex.com

Line-of-business

Soft Skills

Communication

Problem solving

DevOps

Tooling

Productivity

Doc and code in sync

Numbers

Line-of-business

Analysis

Ubiquitous Language

Event Storming

UX-driven design

Development

CQRS

Message-based logic

Polyglot persistence

Conducting Domain Analysis

Different way of

building business

logic

Domain modeling

is the focus of

development

Organizes them

into a set of

principles

Captures known

elements of the

design process

Why Is DDD So Intriguing?

DDD Key Misconception
It’s all about using objects and hardcode

business behavior in objects.

• Persistence?

• External services

• Cross-objects business logic?

• Business events?

An all-encompassing object model describing the entire domain

The Secret Dream of Any Developer

Give me enough time

and enough specs

and I’ll build the world

for you.

Domain-driven

design patterns

Data-centric

design patterns

Complexity

Time

NOTE: Adapted from Martin Fowler’s PoEAA

Crunch knowledge about the domain1

Recognize subdomains2

Design a rich domain model3

Code by telling objects in the

domain model what do to
4

DDD Is Still About Business Logic

At Work Defining the

Ubiquitous Language

Cancel the booking

Checkout

Extend the job order

Register/Accept the invoice

Delete the booking

Submit the order

Update the job order

Create the invoice

Set state of the game Start/Pause the game

Event Storming

Developers and domain experts

together in a meeting room

Exploring a business domain starting from observable domain events

The two-pizza rule sets the right

number of invited people

Exploring a business domain starting from observable domain events

Necessary equipment

• Use a sticky note of a given color to put events on the wall

Identify relevant domain events

• User action? Add a sticky note of a different color

• Asynchronous event? Add a sticky note of a different color

• Another event? Add another sticky of same color on top

Find what causes the event

• Add notes with markers

Look at the modeling surface as a timeline

How It Works

Note

Leads the
meeting

Starts the
meeting asking

questions

Sticks first
notes on the

wall to show the
way

Guides the
modeling

effort

Asks question
to better

understand the
emerging model

Ensures ideas
are represented

accurately

Keep focused
and moves

ahead

Facilitator

Comprehensive
vision of the

business domain

Bounded contexts
and aggregates in

each context

Aggregate handles
commands and

controls
persistence

Types of users in
the system

Personas who
runs commands

and why

Where UX is critical

Sketches of
relevant screens

Benefits

UX-driven Design

Two distinct architect roles acting together

UX

Architect

Interviews to collect usability requirements data

and build the ideal UX for the presentation layer

Software

Architect

Interviews to collect requirements and

business information to build the domain layer

Responsibilities of a UX Expert

 Information architecture

• UI and UX

• Interaction and visual design

 Usability reviews

• Observing users live in action (even filming users)

• Listening to their feedback

 Catch design/process bottlenecks soon

• Focus is data flow, NOT graphics

UX-first in 3 Steps

Build up UI
forms as users

love them

Define
workflows from

there

Connect
workflows to

existing biz logic

Sign-off

here

Top-down

Sign off on what
users really want

• Sketches/wireframes

• In some cases, mockups

Build prototypes
from requirements

• Not data models

• Do not start on billable
hours until signed off

• (Waterfall like)

Top down

Presentation

Black box

Tools Do It Better

• Renaming

• Adjusting namespaces

• Refactoring

Development

Presentation layer

Application layer

Infrastructure layer

Canonical layered architecture

Domain layer

Presentation layer

Application layer

Infrastructure layer

CQRS

Commands Queries

Domain layer

Data

access

+

DTO

DEMO

Context map is the diagram that provides a

comprehensive view of the system being designed

Backoffice

Core

DomainU

D

U

D

Weather

Forecasts
(external)

Club

Site

U

D

ACL

Layered

Architecture

Model for the

Domain

Presentation

Application

Domain

Infrastructure

UX

Use-cases

Business

Persistence

Polyglot
persistence

Relational

NoSQL

Memory
Persistence

Business

Patterns

TX Script

Table Module

Domain Model

CQRS

Event Sourcing

Logic invariant
to use-cases

• Domain model

• Domain services

Domain
Layer

Not necessarily
an implementation of the

Domain Model pattern

Takes care
of persistence tasks

DEMOs

At the end of the day …

The key lesson today is being aware of emerging new ways of doing
old things.

Not because you can no longer do the same old things in the same known way, but
because newer implementation may let the system evolve in a much smoother way saving
you a BBM and some maintenance costs.

FOLLOW

Thank You!

facebook.com/naa4e

software2cents.wordpress.com

dino.esposito@jetbrains.com

@despos

http://naa4e.codeplex.com/ Project MERP

