
Architectural Design

Chapter 6

1

Architectural Design
in the textbook

• Introduction

• 6.1 Architectural Design Decisions

• 6.2 Architectural Views

• 6.3 Architectural patterns

• 6.4 Application architectures

2

Architectural Design

• Architectural Design
- the desig
- the sub-systems making up a system and
- the relationships between the sub-systems

• Software Architecture
- a description of how a software system is organized
- an architectural model that is the output of architectural

design

3

the design process for identifying:

The Design Process
• Architectural Design is the first stage of the

software design process

4

Interface
design

Component
design

System
architecture

Database
specification

Interface
specification

Requirements
specification

Architectural
design

Component
specification

Platform
information

Data
description

Design inputs

Design activities

Design outputs

Database design

Architectural Design

• Critical link between requirements engineering
and design processes.
- Use to discuss requirements

with stakeholders
- Can help structure the

requirements document
- [First stage of the software

design process.]

• In iterative development, overall architecture is
designed and implemented in the first iteration
- Refactoring the overall structure is costly.

5

Architectural Design

• Architecture in the small is concerned with:
- the architecture of individual programs
- how an individual program is decomposed into

components.

• Architecture in the large is concerned with:
- the architecture of complex enterprise systems that

include other systems and programs.

- how it is distributed over different computers

6

Box and line diagrams

• Box is a component of the system

• Boxes within boxes are sub-components

• Arrows indicate data and/or messages are
passed between components

• Simple diagram, lacking in details

7

Architecture of a
packing robot control system

8

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller

The robot uses the vision
system to pick out
objects on a conveyor,
identify the type of object,
and select the right kind
of packaging. It packs the
object, and places it on
another conveyor.

Use of Architectural Models

• Facilitating discussion about the system design
- For communication with stakeholders and project

planners.
- Simple, high-level architectural view of a system

• Documenting the design of an architecture
- Used as a basis for implementation
- Requires complete system model showing different

components in a system, their interfaces and their
connections.

9

6.1 Architectural
Design Decisions

• Architectural Design is a creative process:
- It is a series of decisions to be made.

• Is there a generic application architecture that
can be (re-)used?
- Systems in the same domain often have similar

architectures that reflect domain concepts.
- See Section 6.4

10

Some issues to be considered:

Architectural
Design Decisions

• What architectural patterns are appropriate?
- Architectural pattern: abstract description of system

organization that has been successful in previous
projects (in various contexts).

- See section 6.3

• How will the system be distributed?
- if it’s large enough to be run on more than one

processor.
- This decision affects performance and reliability.

11

Nonfunctional requirements
affected by architecture

• To maximize Performance
- Localize critical operations (few components on one

processor)
- Minimize communications.
- Use large rather than fine-grain components.

• To maximize security
- Use a layered architecture with critical assets in the

innermost layers (must be authorized to access layer).

• To maximize safety
- Localize safety-critical features in a small number of

sub-systems.

12

Nonfunctional requirements
affected by architecture

• See book for Availability, Maintainability

• There may be conflicts between architectures
that support different non-functional
requirements

• Designer may need to compromise or prioritize
non-functional requirements.

13

6.2 Architectural Views

• Regarding using models to fully document the
architectural design:
- Recommend to use various models showing different

perspectives of the system (logical, process,
development, etc.)

- For most systems, this documentation is largely unused
(so unnecessary)

- Might be helpful for critical systems, to prove it will meet
regulations.

14

6.3 Architectural Patterns

• An architectural pattern is an abstract description
of system organization that has been successful
in previous projects (in various contexts)

• Patterns are a means of representing, sharing
and reusing knowledge.

• Pattern descriptions should include information
about when they are and are not useful.

• Architectural designer can browse pattern
descriptions to identify potential candidates

15

Model-View-Controller (MVC)
Pattern

• Commonly used in desktop applications and web
applications.

• Used to separate the data (the model) from the
way it is presented to the user (the views)

• Model objects encapsulate the data.

• View objects present data to and receive actions
from the user.

• Controller manages communication between
Model and View (responds to user actions).

16

Model-View-Controller (MVC)
Pattern Description

17

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is
structured into three logical components that interact with each other.
•Model component manages the system data and associated operations on

that data.
•View component defines and manages how the data is presented to the

user.
•Controller component manages user interaction (e.g., key presses, mouse

clicks, etc.) and passes these interactions to the View and the Model.
Example Most web-based application systems, most desktop apps.

When used When there are multiple ways to view and interact with data. Also used when
the future requirements for interaction and presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice versa.
Supports presentation of the same data in different ways with changes made in
one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and
interactions are simple.

Model-View-Controller (MVC)
Pattern Diagram

18

Controller View

Model

View
selection

State
change

Change
notification

State query

User events

Maps user actions
to model updates
Selects view

Renders model
Requests model updates
Sends user events to
controller

Encapsulates application
state
Notifies view of state
changes

Layered Architecture Pattern

19

• System functionality is organized into separate
layers.

• Each layer relies only on facilities and services of
layer immediately beneath it.

Layered Architecture Pattern
Diagram

20

User interface

Core business logic/application functionality
System utilities

System support (OS, database etc.)

User interface management
Authentication and authorization

Layered Architecture Pattern
Advantages

21

• Separation/independence: allows changes to be
localized.

• Supports incremental development: as services
are added to layers, expose them to the user.

• Changeability:
- Easily replace one layer by another equivalent one (with

same interface).
- If interface changes, affects only layer above.

• Portability: need to change only bottom layer to
port to different machine(s).

Layered Architecture Pattern
Description

22

Name Layered architecture

Description Organizes the system into layers with related functionality associated
with each layer. A layer provides services to the layer above it so the
lowest-level layers represent core services that are likely to be used
throughout the system.

Example A layered model of a system for sharing copyright documents held in
different libraries: LIBSYS

When used Used when
•building new facilities on top of existing systems
• the development is spread across several teams with each team

responsibility for a layer of functionality
• there is a requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is
maintained. Redundant facilities (e.g., authentication) can be provided in
each layer to increase the dependability of the system.

Disadvantages In practice, providing a clean separation between layers is often difficult
and a high-level layer may have to interact directly with lower-level layers
rather than through the layer immediately below it. Performance can be a
problem because of multiple levels of interpretation of a service request
as it is processed at each layer.

Layered Architecture Pattern
Example: LIBSYS

23

Web browser interface

Library index

LIBSYS
login

Distributed
search

Document
retrieval

Rights
manager Accounting

Forms and
query manager

Print
manager

DB1 DB2 DB3 DB4 DBn

Databases from
different libraries

Allows controlled electronic
access to copyrighted
material from a group of
university libraries

Repository Architecture

24

• Data is stored in a central shared repository.

• Components interact through the repository only.

• Suited to applications whose data is generated by
one component and used by another.

• Advantages:
- Components are independent/separate.
- Changes to data are automatically available to other

components.

• Communication between components may be
inefficient.

Repository Architecture
Description

25

Name Repository

Description All data in a system is managed in a central repository that is accessible to all
system components. Components do not interact directly, only through the
repository.

Example An IDE where the components use a repository of system design information.
Each software component generates information which is then available for use
by other tools.

When used •when large volumes of information are generated that has to be stored for a
long time.

•in data-driven systems where the inclusion of data in the repository triggers an
action or tool.

Advantages Components can be independent—they do not need to know of the existence
of other components. Changes made by one component can be propagated to
all components. All data can be managed consistently (e.g., backups done at
the same time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the repository affect the
whole system. May be inefficiencies in organizing all communication through
the repository. Distributing the repository across several computers may be
difficult.

Repository Architecture
Example: IDE

26

Project
repository

Design
translator

Java
editor

UML
editors

Code
generators

Design
analyzer

Report
generator

Python
editor

Different “tools” supporting
model-driven development

Client-Server Architecture

27

• Commonly used organization for distributed systems.
• Composed of:

- A set of servers that offer specific (unique) services to other
components.

- A set of clients that call on services offered by the servers
- A network that allows the clients to access the services.

• Could run on a single computer: separation/
independence.

• Clients make remote procedure calls to servers using
a protocol like http, waits for reply.

• Several instances of client on different machines.

Client-Server Architecture
Description

28

Name Client-server

Description In a client–server architecture, the functionality of the system is organized
into services, with each service delivered from a separate server. Clients
are users of these services and access servers to make use of them.

Example The film and video/DVD library organized as a client–server system.

When used Used when data in a shared database has to be accessed from a range of
locations. Because servers can be replicated, may also be used when the
load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed
across a network. General functionality (e.g., a printing service) can be
available to all clients and does not need to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service
attacks or server failure. Performance may be unpredictable because it
depends on the network as well as the system. May be management
problems if servers are owned by different organizations.

Client-Server Architecture
Example: Film Library

29

Catalog
server

Library
catalogue

Video
server

Film store

Picture
server

Photo store

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

Serves information,
videos, still photos.
Catalog server
handles searching.
Clients are multiple
instances of a user
interface (in a web
browser).

Pipe and Filter Architecture

30

• A series of transformations on data
• Composed of:

- A set of “filters”, each one transforming some input stream into
an output stream.

- Pipes connecting the filters.

• Data is transformed as it moves through the system.
• Transformations can be run concurrently.
• Commonly used in batch processing systems and

embedded control systems.
• Difficult to use for interactive systems.

Pipe and Filter Architecture
Description

31

Name Pipe and filter

Description The processing of the data in a system is organized so that each
processing component (filter) is discrete and carries out one type
of data transformation. The data flows (as in a pipe) from one
component to another for processing.

Example The pipe and filter system used for processing invoices.

When used Commonly used in data processing applications (both batch- and
transaction-based) where inputs are processed in separate
stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow
style matches the structure of many business processes.
Evolution by adding transformations is straightforward. Can be
implemented as either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between
communicating transformations. Each transformation must parse
its input and unparse its output to the agreed form. This increases
system overhead and may mean that it is impossible to reuse
functional transformations that use incompatible data structures.

Pipe and Filter Architecture
Example: Processing invoices

32

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

Once a week, payments are reconciled against invoices (issued
at the beginning of the month). For paid invoices, it issues a
recipt. For unpaid, it issues a reminder.

6.4 Application Architectures

• Systems in the same domain often have similar
architectures that reflect domain concepts.
- data collection systems
- monitoring systems
- billing systems
- supply chain management
- compilers
- etc.

• If application reuse (COTS) is not possible, it
may be possible to re-use the architecture.

33

Transaction Processing
Systems

• Database centered applications that
‣ process user requests for information and
‣ update information in a system database.

- Prevent users actions from interfering with each other.
- Preserve integrity of the database
- Examples:
‣ E-commerce systems
‣ Reservation systems.

34

Transaction Processing
Systems

35

• Process user requests for information from a
database or requests to update the database.

• Transaction: sequence of operations treated as a
single unit.
- when all operations are done, they are made permanent
- failure does not put database in inconsistent state.

• Example: ATM withdrawal
- check balance, if higher than requested amount then modify

balance, dispense cash.
- Transaction is not complete until all steps are.

Transaction Processing
Systems: Architecture

36

I/O
processing

Application
logic

Transaction
manager Database

A simple layered architecture (sideways)

•User makes request through I/O processing
•Request is processed by application logic, creates a transaction.
•Transaction manager communicates with Database, makes sure
transaction is completed as a unit.

•Result is passed back through to the user.

Information Systems

37

• Transaction processing system that provides
controlled access to large base of information.
- library catalog, flight schedule, patient records in a hospital.

• Often built using layered architecture.

• Often implemented as a web-based systems:
- User Interface is in a web browser
- Browser communicates over internet with web server.
- Web server communicates with application server, which

handles application-specific logic.
- Database server handles transactions, database access.

Information Systems:
Example: MHC-PMS

38

Web browser

Report
generation

Transaction management

Patient database

Login Form and menu
manager

Data
validationRole checking

Security
management

Patient info.
manager

Data import
and export

some operations
require user to
have certain role

Form+menu mgr:
presents info to
user

import and
export to/from
other databases

Data validation:
checks info for
consistency

Notes:

Language Processing Systems

39

• Process instructions in a given language.
- natural or artificial language

• Translators
- convert instructions in one language to another language

• Interpreters
- execute instructions in a given language

• Examples
- compilers: g++, javac
- interpreters: sql evaluation, JVM (java)
- browser: html, xml
- simulator: iphone

Language Processing Systems
Simple architectures

40

Source
language

instructions

Data Results

Translator

Interpreter

Abstract m/c
instructions

Check syntax
Check semantics
Generate

Fetch
Execute

Target

input language

Language Processing Systems
components

41

• Lexical analyzer (scanner), groups characters into
tokens (identifiers, words, operators, numbers, etc.)

• Syntax analyzer (parser), groups tokens into
phrases, sentences, etc. (produces syntax tree)

• Syntax tree, an internal structure representing the
parsed input stream.

• Symbol table, holds info about the names of entities
(variables, functions, objects,...) used in the text.

• Semantic analyzer: checks the semantic
correctness of the input text (type checking)

• Code generator: ‘walks’ (traverses) the syntax tree
and generates text in target language.

Language Processing Systems
Pipe and Filter

42

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol table

Syntax tree

lexical analysis
produces stream
of tokens

source
code

target
code

Syntax tree is output of Syntactic
analysis, which is transformed by
Semantic analysis

Good for batch processing,
run from the command line.

Language Processing Systems
Repository

43

Syntax
analyzer

Lexical
analyzer

Semantic
analyzer

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimizer

Code
generator

Repository

Good for interactive,
combined system, IDE

Grammar definition:
syntax rules for
input language

Output definition:
syntax rules for
output language

