
onvey W
hite P

aper
C

Convey Wolverine® Application Accelerators
A r c h i t e c t u r a l O v e r v i e w

Convey Wolverine®
Application Accelerators
Architectural Overview
Introduction
Advanced computing architectures are in a continuous race with application performance
requirements. As soon as an architecture is developed that meets the needs of current
applications, the next generation of “grand challenge” requirements for more performance,
more memory and faster I/O leaves it behind. Today that race is driving data center
managers with “big data” problems to add ever-increasing numbers of servers to their
scalable architectures. But their data centers are running out of power, space, and cooling
capacity. In addition, many of today’s applications don’t scale well; adding more servers
leads to a point of diminishing returns. Hybrid (heterogeneous) architectures employing
custom logic, FPGAs, and GPGPUs present an alternative that dramatically increase
performance per watt, putting architectures back into the race.

The Wolverine accelerators are compact, general-purpose application accelerators based
on FPGA technology. They are implemented as PCI Express form factor cards that can be
installed in a variety of off-the-shelf servers (Figure 1).

Figure 1. A Dell R720 with two Wolverine accelerators.

Wolverine application accelerators provide a “drop-in” acceleration capability that can
dramatically increase the performance of conventional servers.

Convey White Paper

Contents

Introduction 1

Convey Wolverine Architecture 1
Coprocessor Hardware 3
Host Interface 3
Application Engine/
Memory Controller (AEMC) 3
Memory 4
Mezzanine Interface 4

Application Development 4
Developing Personalities 4
Personality Development Kit 5
Hybrid Threading Toolset 5

Summary 8

http://www.conveycomputer.com

Convey Wolverine Architecture
Convey Wolverine application accelerators are PCIe Express form factor coprocessors
that provide hardware acceleration of key algorithms. Based on Convey’s hybrid-core
technology, Wolverine coprocessors can be installed in off-the-shelf x86 servers, and are
perfect for accelerating applications in hyperscale, life sciences, big data, security, and
other industries requiring accelerated performance.

The coprocessor incorporates the latest high density Xilinx® FPGAs and is targeted at
applications requiring very high compute capability and large, high bandwidth memory.
FPGAs can provide substantially better performance per watt than conventional servers,
and can improve the performance of applications by orders of magnitude over traditional
off-the-shelf processors.

Hybrid-Core Architecture
Wolverine accelerators support the Convey Hybrid-Core Architecture, which tightly
integrates coprocessor resources in a Linux-based x86 server. The accelerators support
virtual-to-physical addressing, allowing the coprocessor and its onboard memory to be
mapped in a process’ virtual address space. The coprocessor has full access to memory
residing on the host platform, and the host processors have full access to memory on the
coprocessor via load-store operations. Memory is fully protected by the virtual memory
subsystem, ensuring that a “rogue” application running on the coprocessor cannot
corrupt system memory.

The coprocessor is dynamically reconfigurable, and can be reloaded with application
specific instruction sets called personalities. Personalities are a hardware implementation
of performance-critical regions of code that need acceleration beyond what can be
provided by a series of general-purpose instructions on a classic x86 system. An application
executable contains both x86 instructions and references to custom hardware instructions;
both of these execute in a common, coherent address space (Figure 2).

Figure 2.

Application-specific Personalities

DMI

Globally Shared Virtual Memory (GSVM)

Intel I/O
Subsystem

I/O
Controller
Hub (ICH)

Intel®
x86

Processor(s)

HCMI

Host Memory

Host Memory

Host Memory

CoProcessor Memory CoProcessor Memory

CoProcessor Memory CoProcessor Memory

while (*listA != NULL) {
idA = (*listA)->id_a;
indexA = idA + nodes;

if (previous[indexA] == nodeA) {
tmp = *listA;
*listA = (*listA)->next;

} else {
head = *listA;
*listA = (*listA)->next;
tail = head;

}
}

Logic for Accelerated Instructionsx86 Instruction Stream

Hybrid-core computing as it appears to an application.

Personalities provide acceleration via multiple mechanisms, including pipelining,
multithreading, and replication. Personalities contain one or more pipelined functions,
each of which may replace many instructions on the host processor. These functions are
then replicated to execute in parallel, providing a much higher degree of instruction level
and data parallelism than is possible on a conventional commodity processor.

For example, Convey’s memcached personality accelerates a widely used application that
implements a key-value store as a network service. The personality consists of compute
units that process incoming requests by parsing the commands and hashing the keys
contained within them—thus offloading the most compute intensive portion of the
application. Each of these units performs operations that could take tens of thousands of

Key Benefits of the Convey
System Architecture

• Breaks the current
power/ performance wall

• Significantly reduces
support, power, and
facilities costs

• Lowers system
management costs by
using industry-standard,
Linux-based system
management tools

• Reduces application
porting and development
efforts for high-
performance applications

Convey Wolverine
application accelerators
are PCIe Express form
factor coprocessors
that provide hardware
acceleration of key
algorithms.

2

instructions on an x86 core. The personality contains 16 of these units, processing
multiple streams of requests in parallel.

Coprocessor Hardware
Physically the Convey Wolverine Application Accelerator occupies a full-length, double-
height PCIe slot. Logically, it is a true coprocessor, and shares the virtual address space
of the host through Globally Shared Virtual Memory. GSVM greatly reduces the burden of
developers, and removes the programming complexities of treating the PCIe card as an
I/O device.

Figure 3.

Host Interface

Coprocessor
Control

Data
Mover

8 GB/sec

8 GB/sec

40 GB/sec40 GB/sec

Application Engines/
Memory Controllers (AEMCs)

O
pt

io
na

l e
xp

an
si

on
 m

ez
za

ni
ne

 c
ar

d

Host Interface (HIX)

PCI Express
Gen3 x8
8 GB/sec Application

Engine

Memory
Controllers

DDR3

Memory (SO-DIMMs)

Application
Engine

Memory
Controllers

DDR3

Memory (SO-DIMMs)

24 GB/sec

The Wolverine Application Accelerator.

The Wolverine coprocessor is available in multiple variants with FPGAs of different
densities, and multiple power and cooling solutions. The coprocessor choice is determined
by the logic and memory requirements of the application, and the power requirements of
the personalities executed.

Host Interface
The HIX is the host interface and control hub for the coprocessor. It implements the PCIe
interface to the host system, handles data movement between the coprocessor and host,
and controls coprocessor execution. HIX logic is loaded at system boot time and is
considered part of the fixed coprocessor infrastructure.

The HIX implements a PCIe 3.0 x8 electrical connection via a x16 physical slot. At boot
time the coprocessor requests Memory Mapped IO High (MMIOH) to map the onboard
coprocessor memory into the host’s physical address space. This allows host processors
to access coprocessor memory directly. Simililarly, the HIX routes requests from
processing elements in the AEMC to host memory as required. In addition to ordinary
loads and stores, a data mover is incorporated into the HIX to initialize coprocessor
memory or perform block copies between the host and coprocessor. The data mover can
be used by the operating system or user code, and transfers data at up to 3.7GB/sec.

The HIX receives and processes dispatches from the host and controls execution of the
personality in the AEMC. It routes commands and data to the AEMC via 8 high speed
serial links running at 8GT/sec (8GB/sec total bandwidth).

Application Engine/Memory Controller (AEMC)
The Application Engine is the heart of the coprocessor and is dynamically loaded with the
personalities that deliver accelerated application performance. Convey-provided logic
blocks implement the dispatch interface to the HIX, Translation Lookaside Buffers for
address translation, a memory crossbar, and DDR3 interfaces for the onboard coprocessor
memory. These are then incorporated with application specific kernels to implement a
loadable personality.

The Application Engines
(AEs) are the heart of
the coprocessor. The
Wolverine Application
Accelerator uses the latest
Xilinx® Virtex-7® FPGAs

3

The AEMC is loaded at boot time with a ‘default’ personality used to initialize the
coprocessor and verify operation. When a user runs an application that takes advantage
of the coprocessor, the coprocessor device driver will automatically load the personality
required for that application. If the next application run requires a different personality,
the driver will automatically swap the personalities. This allows the coprocessor to
support a unique processing architecture for each application, while retaining the cost
benefits of a common hardware platform.

Memory
Wolverine cards can be configured as “memory free” accelerators with no local storage,
or with local on-board memory provided by four error-correcting SO-DIMMs. Possible
on-board memory configurations are 16GB, 32GB, or 64GB . Each SO-DIMM is connected
to the AEMC via its own 1333MHz DDR3 channel, supporting an aggregate bandwidth of
40GB/sec.

Coprocessor memory is mapped in the host’s physical address space, supporting access
from the host processors via load/store instructions. Memory is mapped into a processes’
virtual address space by the device driver and accessed as normal memory.

Mezzanine Interface
Some Wolverine coprocessor configurations include a mezzanine card in addition to the
main coprocessor assembly. The mezzanine card has its own set of 8 high speed serial
links to the HIX for instructions and data, as well 24 links to the AEMC on the main card
for memory access. The mezzanine card can be used to provide an additional AEMC and
set of 4 SO-DIMMs, doubling the logic, memory capacity, and bandwidth of the
coprocessor. The connection can also support specialized mezzanine cards that provide
I/O connections or additional storage.

Application Development
Applications are accelerated on a Convey system by offloading compute or data intensive
kernels to the coprocessor. Applications therefore consist of one or more threads
executing on the host, and a hardware “personality” that implements the accelerated
kernels on the coprocessor. Unlike a conventional processor that executes a series of
general-purpose instructions, the hardware logic in a coprocessor personality can be
tailored to the particular requirements of the algorithm, achieving much higher levels of
parallelism and performance.

Personality development involves analyzing the algorithms and applications that are to be
accelerated, determining which portions of the application are suitable for implementation
on the coprocessor FPGAs, and creating the hardware description language (HDL) that will
ultimately execute on the coprocessor.

Developing Personalities
In general, hybrid-core computing is designed to increase application performance
through parallelism. But there are a variety of ways to express and implement parallelism,
and the blank slate presented by an FPGA can be used to implement virtually any of them.
Convey’s approach is to provide an open architecture that supports multiple development
toolchains optimized for different programming models.

Users with hardware design experience, or with existing hardware IP, can implement code
using a hardware description language such as VHDL or Verilog. The designer has complete
control over the design, and must define what happens in each module on each clock
cycle and how each module communicates to other modules.

An alternative is to use a higher-level toolset that translates some definition of the
application at a higher level of abstraction into gate-level definitions in an HDL. Third
party toolchains are available for the Convey architecture that are based on standard
languages such as C, accelerator extensions such as OpenCL, or other high level languages
designed to describe highly concurrent algorithms.

Custom personalities
allow users to create their
own application-specific
instructions to accelerate
performance-critical
applications.

4

Finally, Convey offers the Personality Development Toolset, which is based on a hardware
threading model called Hybrid Threading (HT). This toolset allows the programmer to
design logic using a threading model similar to software threading, maximizing
performance while maintaining developer productivity.

The system infrastructure supporting all of these toolchains is the Personality Development
Kit, or PDK. The PDK is analogous to the runtime libraries that provide support functions
and access to I/O and storage in a conventional program. On the coprocessor the PDK
provides logic libraries that implement the dispatch interface to the HIX, perform virtual-
to-physical address translation, and manage on-board coprocessor memory. These
components are then linked with the programmer’s application specific kernel to create a
personality that can be loaded and executed by the coprocessor.

Figure 4.

C/C++ OpenMP C/C++ OpenCL

User HT
Code

PDK - logic libraries, simulation, tools

Pr
og

ra
m

m
in

g
Ab

st
ra

ct
io

n

Convey Hybrid Threading Third-party
High Level Synthesis

User VHDL/
Verilog

HTC

HTL

HTV

Multiple personality development options.

Personality Development Kit
The PDK includes logic blocks that implement the interfaces between the AEMCs and the
other components of the coprocessor (Figure 5), tools to package bitfiles produced by the
Xilinx FPGA development tools into a personality, a simulator for debugging, and system
and compiler APIs to allow execution of user-defined instructions.

Figure 5.

Host Interface

• Host
Interface
Logic

• Instruction
decoding

•Scalar
instruction
processing

•Exception
Handling

Coprocessor
Management
•Personality

Loading
•Personality

Debug
•HW Monitor

(IPMI)
Memory
Management
•Interface
• Virtual Mem

Management
Memory Controllers

Globally Shared Virtual Memory

Custom Instruction Set Logic

Memory Interface

Instruction Dispatch

In
tra

 A
EM

C

M
gm

t/
D

eb
ug

 In
te

rf
ac

e

PDK pre-packaged logic blocks reduce development time.

The PDK is the foundation for the other components of the toolset, including Hybrid
Threading tools described in the next section.

The Convey Hybrid
Threading (HT) toolset
allows the programmer
to design logic using a
threading model similar
to software threading,
maximizing performance
while maintaining
developer productivity.

5

Hybrid Threading Toolset
The Convey Hybrid Threading Toolset (HT) has taken a different approach to programming
the FPGAs, based on a paradigm of parallel hardware threads running on the coprocessor.
It is implemented as a combination of higher level programming constructs, based on
C++, and a runtime library that supports communication between the host CPU and the
processing elements in the FPGA. The toolset manages the details of scheduling threads
on multiple hardware units, leaving the programmer free to concentrate on the kernel of
his algorithm. Its design:

• Decreases the time it takes to port an application to the Convey architecture.
Productivity is commonly cited as the primary roadblock to FPGAs being adopted for
mainstream High Performance Computing. The HT tools are designed to decrease the
time required to implement accelerated kernels on Convey coprocessors.

• Increases the number of people who can develop custom personalities: While some
hardware knowledge in the development team is still required, the HT tools make it
easier for a non-expert to be productive on the Convey system.

• Enables maximum kernel performance: The HT tools were designed with a bottom-up
approach, starting with the low-level hardware in the FPGA and layering functionality on
top to abstract away the details. The programming interface is greatly simplified, but
the user still maintains the flexibility required to achieve the maximum performance
from the FPGA using features such as pipelining and module replication.

• Focuses on overall application performance: Kernel performance alone doesn’t matter
to the end user. What matters is how much the application performance is improved.
Maximizing application performance means efficiently partitioning the problem to
use the best tool for the job (host or coprocessor), and making the best use of each
resource (i.e. multithreading on the host processor, overlapping processing and data
movement, etc.).

Hybrid Threading Architecture
At the heart of the HT architecture is the HT hardware thread. As a function is ported to
the coprocessor, the programmer defines the number of threads available to execute that
particular function. Each thread executes on the same hardware such that on each clock
cycle, one thread is executing one instruction (which may be many lines of C++ code).

The HT architecture is designed to provide familiar and easy to use constructs to the
programmer, while still maximizing the performance available from the reprogrammable
coprocessor hardware. It presents a hardware framework that includes the following
main components:

HT threads are hardware threads that process streams of data. As a function is ported to
the coprocessor, the programmer defines the number of threads available to execute that
particular function. The threads execute within the context of the process executing on
the host, and access data on the host or coprocessor using virtual addresses. HT threads
are analogous to software threads running on the x86 host, and communicate with each
other and with host threads through memory.

Processing Units execute HT threads. Processing units are made up of one or more
modules, and represent the instantiation in hardware of a set of functions or a kernel from
the application. Processing units are analogous to an x86 core, and can execute multiple
HT threads. Unlike a general purpose core, however, processing units are tailored to
specific functionality, and contain only the logic required for that function. The HT support
infrastructure schedules the threads for execution so that the programmer is free of the
details (i.e. spawn a thread if available, otherwise retry). The ability to pause and resume
a thread prevents the thread from polling for status and wasting compute cycles.

Modules implement specific functions within a processing unit. They are analogous to a
functional unit such as an ALU in an x86 core, except they typically implement the
equivalent of an entire software subroutine or function. The HT framework allows the

The Convey Hybrid
Threading Toolset (HT)
manages the details of
scheduling threads on
multiple hardware units,
leaving the programmer
free to concentrate on the
kernel of his algorithm.

6

programmer to control the number of copies of each module instantiated within a
processing unit, allowing greater parallelism for heavily used functions.

HT instructions are the basic unit of execution within the HT architecture. They are
analogous to x86 instructions, except they are defined by the user in C or C++ and can
implement many lines of source code as a single instruction.

The architecture presents a model that should be familiar to programmers—multiple
threads executing instructions within a shared address space. The instructions, however,
can be much richer than the fixed instructions on an x86. Moreover, the programmer is
given control over the parallelism implemented at different levels, allowing fine-grained
tuning of the implementation to match a particular application or workload.

Hybrid Threading Toolset
The Hybrid-Threading toolset is made up of two main components: the HT host API, and
the HT programming language for programming the coprocessor. The programmer starts
by profiling an application to determine which functions in the call graph are suitable to
be moved to the coprocessor. In the example described in Figure 6, the main function and
function fn5 remain on the host, while functions f1, fn2, fn3 and fn4 are moved to the
coprocessor. Each of these functions is effectively programmed as a single thread of
execution using the HT programming language, and the HT tools automatically thread
each function to achieve desired parallelism.

Figure 6. Hybrid Threading call graph example illustrating the HT architecture

HT compute units are programmed using the HT programming language, which is a subset
of C++ and includes a configurable runtime that provides commonly used functions. The
user writes C++ source for each module, as well as a hybrid threading description file
(HTD) which describes how the modules are called and connected, and which provides
declarations for module instructions and variables.

Because the programmer explicitly defines the interconnections and capabilities for the
module, the HT tools generate only the infrastructure needed by the module, and therefore
avoid wasting space on unneeded logic and ultimately increasing performance.

Debugging and Profiling
The majority of debugging of an HT design can be done in software simulation, which
enables the programmer to use familiar software debugging methods such as printf and
GDB. In addition to these standard debugging tools, HT provides an HtAssert() function.

7

In simulation, this acts as a normal assert() call, which aborts the program if the expression
fails. But when the Verilog is generated for the personality, logic is also generated for the
assertion such that it also exists in the actual hardware design. If an assertion fails, a
message with the instruction source file (*_src.cpp) and line number is sent to the host
and printed to standard error. Finding a problem at the source due to an assertion is
significantly easier than trying to trace back from a symptom such as a wrong answer, and
because the HtAssert() call is built in to the HT infrastructure, no special debugging tools
are required to use it. The user can choose to globally enable or disable asserts as the
design moves from the functional verification phase to production use.

HT also provides a profiler to provide instruction and memory tracing, program cycle
counts, and other information that is useful in optimizing performance of a design. This
helps the programmer to explore architectural changes and identify performance
bottlenecks before running on the actual hardware.

Summary
Convey Wolverine application accelerators leverage hybrid-core computing to multiply
the performance of x86 servers on compute- and data- intensive applications. The PCIe
form factor cards can be installed into standard servers, and the resulting platform looks
like a standard UNIX-based node to the rest of the nodes in a cluster.

The hybrid-core accelerated nodes provide the benefits of increased performance within
a single node: increased scalability, reduced power, cooling, and floor space, and reduced
total cost of ownership. Wolverine is available in multiple configurations to match the
appropriate hardware to the application performance requirements.

Convey Wolverine benefits include:

• Ease of integration—Standard PCIe interface for compatibility and high-bandwidth data
transfers; familiar Linux environment.

• Ease of development—With Globally Shared Virtual Memory, commodity host x86
processors and the on-board FPGAs share the same virtual address space, simplifying
software and hardware development efforts. The Convey Personality Development
Toolset facilitates development of applications that leverage the ease of programming
industry-standard processors with the performance of FPGAs.

• Maximum Performance—Powerful, state-of-the art Xilinx Virtex-7 FPGAs, with up to
1.9M logic cells and 46 Mbit of block RAM (3.9M logic cells and 93 Mbit of block RAM
with mezzanine card), provide logic resources for compute kernels. Four 1333MHz
SO-DIMMs (with ECC support) providing up to 64GB of memory and 40 GB/sec
of bandwidth (128GB and 80GB/sec with mezzanine card) provide capacity and
performance for real applications.

8

Convey Computer Corporation
1302 E. Collins Boulevard
Richardson, Texas 75081
Phone: 214.666.6024 Fax: 214.576.9848
Toll Free: 866.338.1768
www.conveycomputer.com

CONV-14-049.1 © 2011-2014 Convey Computer Corporation. Convey Computer, the Convey logo, HC-2 and Convey HC-2ex are trademarks of Convey Computer
Corporation in the U.S. and other countries. Printed in the U.S.A. Intel® is a registered trademark of Intel Corporation in the U.S. and other countries. Linux®
is the registered trademark of Linus Torvalds in the U.S. and other countries. Xilinx® is a registered trademark of Xilinx in the U.S. and other countries.

http://conveycomputer.com

	Introduction
	Convey Wolverine Architecture
	Coprocessor Hardware
	Host Interface
	Application Engine/Memory Controller (AEMC)
	Memory
	Mezzanine Interface

	Application Development
	Developing Personalities
	Personality Development Kit
	Hybrid Threading Toolset

	Summary

