
Architecture as Enabler of Open Source Project
Contributions1

Michael Weiss and Nadia Noori

Carleton University, Ottawa, Canada
weiss@sce.carleton.ca

Version 0.6

 1 Introduction
The patterns in this paper are part of a larger pattern language for open
source businesses. Other parts of the pattern language (Weiss, 2009; 2010;
2011) discuss the performance of open source projects and open source
business models. The focus of these patterns is on the role of architecture in
getting external developers to contribute to open source projects.

Architecture affects the ease with which open source components can be
integrated; how contributions to an open source project can be made; what
parts of the product are under the control of the project initiator or
champion, and how straightforward it is to create different configurations of
the product; and how collaboration among contributors is organized.

The audience of this paper includes companies starting open source
projects. It also includes potential contributors to open source projects, and
anyone interested in how open source projects work. The remainder of this
paper provides a narrative that connects the patterns and puts them into
perspective of earlier and future patterns; it outlines how the patterns were
discovered; and it presents two architecture patterns in detail.

 2 Patterns
To attract contributors to your open source project you need to create
conditions that are attractive to contribution. First, you need to create a
CREDIBLE PROMISE (Weiss, 2009). Contributors must find it worthwhile
contributing to your project. To that end, the project needs to offer them
something that they either could not create on their own, or only at higher
cost. You must also allow contributors to work on important tasks that
challenge contributors and allow them to create value for themselves, not
just peripheral ones of little complexity and value.

Second, you need to follow a development process that emphasizes
openness and sharing – see FREQUENT RELEASES and OPEN DIALOG in Weiss (2009).
However, even when a minimal codebase and development process are in
place, contributors might find it difficult to contribute to your project. The
third enabler of contribution is a MODULAR ARCHITECTURE (this paper). It allows
developers to contribute without requiring them to have deep knowledge of
the codebase. By breaking the code into largely independent modules, the
pieces of the code can be created independently, but will work together.

1 Licensed under a Creative Commons BY-SA license.

A-1

mailto:weiss@sce.carleton.ca

If you are starting with an existing system, you may need to RESTRUCTURE
(future paper) the codebase. This happens if the code is too monolithic and
hard to extend by developers who are not deeply familiar with it. You can
make the code more modular by reorganizing it into subsystems with
minimal interaction between them. Creating a modular architecture also
requires you to commit to INTERFACES (future paper) through which the
modules will interact. Contributors will write their code to match those
interfaces. This ensures architectural consistency of the contributions.

A modular architecture divides the codebase into a STABLE CORE (future) and
flexible complements. By keeping the components at the core of the
codebase stable, you allow the components that use this codebase to vary. A
guiding objective is to CREATE OPTIONS (future) for external contributors.
External contributions tend to be highly specific. They are often designed to
meet the needs of particular users, and it is not cost-effective to support
them in the core of your codebase, nor can you anticipate such specific uses.

A map of the patterns showing their relationships is shown in Figure 1.
Links between patterns X and Y should be interpreted as “after pattern X
you may also use pattern Y”. Patterns in italics will be described in future
papers. Thumbnails of these patterns can be found in the Appendix.

The patterns were mined from the literature, from case studies, and the
authors' own experience in contributing to open source projects. The salient
references on modularity in open source are Baldwin & Clark (2006) and
MacCormack et al. (2006). The case studies are described in Noori & Weiss
(2012; 2013). This research examined 12 open source platforms (including
OpenOffice, Eclipse, and Firefox), and identified three underlying
governance models, and a set of regulatory instruments (such as pricing and
processes) used by the platform owners to ensure the quality of the
complements. Both authors contributed to the BigBlueButton open source
web conferencing system as advisors and developers.

A-2

 2.1 Modular Architecture

“GNU/Linux is known for being a modular complex artifact and its
successful development, accomplished by a distributed community of
hackers, largely benefited from that. Therefore, it may be surprising that
its core component, the so called kernel, was initially conceived as a highly
integrated product and that eventually acquired a modular structure.”

Rossi et al., 2003

Context You started an open source project and want to open it up to
external contributors.

Problem You want to allow external contributors to add to the codebase
without requiring them to have deep knowledge of it.

Forces Architecture plays a crucial role on leveraging the contributions of
third-party developers and enabling them to add new code and
functions to a project. Also, the architecture enables project owners
to control project growth and helps them monitor development
activities in the project network (Weiss & Noori, 2012).

Developers in open source projects need to collaborate virtually and
work on the code in parallel. With a traditional monolithic
architecture, it would be impossible for these virtual teams to work
together because of interdependencies in the codebase that adds
complexity not only to the code but to the relationships between the
virtual teams that would be reflected on the community itself.

Performance is generally better, if you tightly integrate the
functionality of your system. However, such tight coupling makes it
more difficult to understand and extend the codebase.

Therefore,

Solution Partition the codebase so that different parts (or modules) can be
worked on and managed independently.

Manage the complexity of expanding the codebase by limiting the
scope of interaction between components. This requires you to
reduce the amount and range of dependencies in your code. Often
systems are not completely decomposable, however. Therefore,
your goal has to be to minimize dependencies.

To reduce interdependencies map the dependencies between
modules and then restructure the code. A module with a large
number of dependencies is a candidate for restructuring, as any
changes to such a module can impact many other modules.

Design uncertainty is also a good indicator of where you want to

A-3

create modules. If you do not know how to implement a certain
functionality or there are different alternatives to implement it, it is
often a good idea to to create a module for this functionality. If new
knowledge later reduces the uncertainty, then it will be relatively
simple to incorporate the new solution without needing to change
the rest of the system (Baldwin & Clark, 2000). A good example is
when you deal with a quickly changing technology base and you
want to make your system resilient to changes in technology.

Consequences A modular architecture defines how contributors can participate in
the open source project. In the words of MacCormack et al. (2006), it
creates an “architecture for participation”. The separate modules in
a modular architecture can be worked on independently.

A modular architecture makes the codebase extensible by dividing
it into a stable core and a set of flexible complements. Complements
are modules that extend the functionality of the core.2 They are
typically created by third parties. Not all complements are required
for the system to work, but they can be added as desired.

Separating a system into modules can also reduce performance.
Thus, new products often start with a tightly integrated architecture
that evolves into a more modular architecture over time, as the
ability to substitute components for one another and to distribute
work outweigh reduced performance.

Known uses Examples of systems using a modular architecture are OSGi (Open
Service Gateway initiative) based runtime frameworks like Apache
Felix and Equinox OSGi, as well as Eclipse, an integrated
development environment and rich client platform.

The Linux kernel provides stable interfaces that extensions that add
support for new hardware or file systems can plug into. The Linux
kernel is the core, and kernel extensions are the complements.

Many well-known open source projects such as Mozilla
(MacCormack, 2006) and Apache Tomcat (Milev et al., 2009) went
through rounds of restructuring, in which initial functionality was
delivered in the form of an integrated architecture, and the system
was was subsequently restructured to increase its modularity.

Related
patterns`

Creating a modular architecture also requires you to commit to
INTERFACES through which the modules will interact.

A modular architecture also lays the foundation for an extensible
codebase. As describe in STABLE CORE, a modular architecture divides
the codebase into a stable core and flexible complements.

A high degree of modularity enables the collaborative creation of a
common stack of open source components. The term “ecosystem” is
often used to describe this form of collaboration between
companies. These companies POOL THEIR RESOURCES (eg skills) to
create common assets, and then develop their individual products by
building on this common base (Weiss, 2010).

Sources Literature (Noori & Weiss, 2012; Baldwin & Clark, 2006;
MacCormack et al., 2006) and the authors' observation.

2 The term “complement” originates in the platform literature (Baldwin & Clark, 2006). It formally
refers to a product that adds value to the platform. A good example are smartphones (platform) and
its apps (complements). There would be little value in a smartphone player without apps.

A-4

2.2 Manage Complements

“One perceived risk of using open source software components in
commercial systems is open source project sustainability. It would be
expensive for the project supporting a critical open source component to
fail midway through the life cycle of a commercial product.”

Sethanandha et al., 2010

Context You created a modular architecture and have been successful
attracting third parties who provide complements.

Problem You need to ensure the quality of third-party complements.

Forces The quality of the complements is going to reflect on the quality of
the open source product. Consider OpenOffice. The core product
can be extended through extensions (eg dictionaries or themes). A
poorly implemented extension may give users the impression that
OpenOffice itself is of low quality (Noori & Weiss, 2012).

Managing complements come with trade-offs between the quality
of contributions and the level of innovation or novelty within the
open source project community (Noori & Weiss, 2013). A project
needs to balance between level of contributions and their quality.

Therefore,

Solution Establish a governance model and provide regulatory tools and
processes to manage complement development.

There can be different tiers (or circles) of complements. An inner
circle contains complements that are frequently shipped with the
STABLE CORE and that are highly visible to users. An outer circle
comprised of complements that are either more experimental or
specialized do not require the same degree of oversight.

Toolkits, development frameworks and coding conventions provide
developers with guidelines for developing quality complements.

Sandboxes play another role in managing complements. They
provide a controlled medium in which developers of complements
can test their modules or add-ons before publishing them as part of
the STABLE CORE (Venugopalan, 2005).

Consequences Some might argue that setting too many rules create obstacles and
can hinder the growth of the open source project, because they

A-5

might limit contributions that are more innovative and do not pass
the strict “quality gates” imposed by the platform rules.

Enforcing rules and restrictions on complements ensures that the
platform does not suffer damages to how it is perceived by users or
to its architectural integrity due to low-quality complements.

It is important to note that managing external contributors also
comes at some cost. Overseeing the contributions from external
contributors creates overhead that is not related to your work on
the core codebase, and it may also be difficult to convince other
internal parties to allow external contributors to participate.

Known uses Eclipse has created a three-tier community (core, internal, and
external), where external complements can be offered by anyone,
but new Eclipse core projects (internal complements) need to be
qualified. Core projects have to follow a thorough incubation
process with “gates” at which their quality is assessed. Apache,
OpenOffice, and SpringSource are set up similarly.

In the Apache project, if developers wish to contribute a module
that extends the core of the Apache HTTP server platform, then
they have to follow a well defined process. The Apache incubation
process covers the establishment of a candidate, acceptance (or
rejection) of a candidate leading to the potential establishment of a
“podling” and associated incubation process, which ultimately
leads to the establishment of a new Apache Top-Level-Project (TLP)
or sub-project within an existing Apache Project.3

Another example is OpenOffice.org, which has established a quality
assurance procedure for testing new feature components, where a
quality assurance engineer is assigned to oversee the development
and test processes of the new feature components.

The pattern is also used in the design of closed source software. Eg
the functionality of Adobe Photoshop can be extended by third-
party plugins, and there is an approval process for plugins, before
they are listed on the Adobe Photoshop Marketplace.

Related
paterns

A company can always RUN A TIGHT SHIP (Weiss, 2010). In this case, it
will maintain full control over the project. However, external
contributions will be minimal, and the bulk of the contributions
have to be made by the company itself.

Sources Literature (Noori & Weiss 2012; Noll 2007) and the authors'
observation.

3 http://incubator.apache.org/incubation/Incubation_Policy.html

A-6

Acknowledgements
I thank Michael John for providing many helpful comments during the
shepherding process. I would also like to acknowledge the members of the
writers' workshop. The lively discussion gave me valuable input.

In formatting these patterns I owe a tremendous amount to the format Allan
Kelly has used in his own papers, which I tried to emulate.

Appendix – Pattern thumbnails
Here are short forms of the patterns referenced in this paper.

CREATE OPTIONS

(future paper)

You want developers to contribute voluntarily. Therefore,
allow developers to create value for themselves that they
could not create if they did not contribute.

STABLE CORE

(future paper)

You want to support a variety of ways in which developers
can extend the code. Therefore, keep the components at the
core of the code stable, and allow the components at its
periphery to vary.

INTERFACES

(future paper)

You need to ensure that changes made by external
developers are consistent with the architecture of the code.
Therefore, document the interactions between the modules
through interfaces.

RESTRUCTURE

(future paper)

Your code is too monolithic and hard to extend by
developers who are not deeply familiar with it. Therefore,
reorganize the code to make it more modular.

References
Baldwin, C., & Clark, K. (2006), The architecture of participation: Does code
architecture mitigate free riding in the open source development model?,
Management Science, 52(7), 1116-1127.

MacCormack, A., Rusnak, J., & Baldwin, C. (2006), Exploring the structure of
complex software designs: an empirical study of open source and propritary
code, Management Science, 52(7), 1015-1030.

Milev, R., Muegge, S., & Weiss, M. (2009), Design evolution of an open
source project using an improved modularity metric, Open Source
Ecosysems: Diverse Communities Interacting, 20-33.

Noll, J. (2007). Innovation in open source software development: A tale of
two features. In J. Feller, B. Fitzgerald, W. Scacchi, A. Sillitti (Eds.), Open
source development, adoption and innovation (109-120), IFIP/Springer.

Noori, N., & Weiss, M. (2012), Managing the quality of platform
complements: The case of extensions in open source software platforms,
ISPIM.

Noori N, & Weiss, M. (2013), Going open, does it mean giving away control?
Technology Innovation Management. (http://timreview.ca/article/647)

A-7

Rossi, A. and Narduzzo, A., (2003), Modularity in Action. GNU/Linux and
free/Open source software development model unleashed, Quaderni DISA,
Vol 78, Department of Computer and Management Sciences, University of
Trento, http://EconPapers.repec.org/RePEc:trt:disatr:078.

Sethanandha, B.D.; Massey, B.; Jones, W., Managing open source
contribuions for software project sustainability, Technology Management for
Global Economic Growth (PICMET), 2010 Proceedings of PICMET '10:, vol.,
no., pp.1,9, 18-22 July 2010.

Venugopalan, V. (2005). Chapter 4: Developers sandbox. In CVS best
pracices. Retrieved on July16, 2009, from, http://tldp.org/REF/CVS-
BestPractces/html/section1-devsandbox.html.

Weiss, M. (2009), Performance of open source projects, EuroPLoP, CEUR,
566.

Weiss, M. (2010), Profiting from open source, EuroPLoP, ACM.

Weiss, M. (2011), Profiting even more from open source, EuroPLoP, ACM.

Photo credits
Puzzle pieces, shared under a CC-BY 2.0 license by Horia Varlan
https://www.flickr.com/photos/horiavarlan/4273913228

Juggler, shared under a CC-BY 2.0 license by Clan Tynker
https://www.flickr.com/photos/larry1732/6158766205

A-8

http://EconPapers.repec.org/RePEc:trt:disatr:078

	1 Introduction
	2 Patterns
	2.1 Modular Architecture
	2.2 Manage Complements

