Architecture Evaluation for Power-efficient FPGAs

Fei Li*, Deming Chen+, Lei He*, Jason Cong+

* EE Department, UCLA

⁺ CS Department, UCLA

Partially supported by NSF and SRC

Outline

- □ Introduction
- Evaluation Flow
- Architecture Model
- Description Power Model
- Architecture Evaluation Results
- Conclusions

Existing FPGAs are known to be power inefficient

◆ E.g. [Kusse, ISLPED'98]

Design Example	Vdd	Energy
Xilinx XC4003A	5v	4.2mW/MHz
Static CMOS	3.3v	5.5uW/MHz

Table1 8-bit adder

100X power overhead

Need to explore power efficient FPGAs

Evaluation Framework — *fpgaEva-LP*

□fpgaEva-flew [Cong, et al, ICCD'00]

□ Logic Block [Ahmed-Rose, FPGA2000]

Feb. 2002

FPGA Symposium 2003

□ Routing Structure [Betz-Rose, FPGA1999]

Parameters:

Wire segment length

Switch-box type

Buffer/Pass transistor distribution

Connection box configuration

BC-Netlist Generator

Capacitance Extraction and Delay Calculation

- Wires segmented by buffers and pass transistors
- Capacitance: lumped from all branches for wires, pass transistors and gates (buffers)
- Delay: Elmore Delay model

Mixed-level Power Model – Overview

Dynamic power

- Switching power
- Short-circuit power
- Related to signal transitions
 - Functional switch

Static Power

- Sub-threshold leakage
- Reverse biased leakage
- Depending on the input vector

Feb. 2002

Macromodeling – Dynamic Power

□ Pre-characterized average power per access

- Based SPICE simulation with random input vectors
- Both switching power and short-circuit power
- Applied to LUTs that have the regularity of connection

Verification

	SPICE simulation	Our Power Model	Error
Total Energy (Jourl)	1.42E-11	1.27E-11	10.56%

200 random input vectors

- Input pattern dependent
- Pre-characterized average static power
 - Input vectors are grouped into vector sets
 - Typical vectors are simulated in each set
 - Save SPICE simulation time

Applied to both LUTs and Interconnect buffs

Switch-level Model – Interconnect Switching Power

Switching power without glitches

$$P_{sw} = 0.5 f \cdot V_{dd}^2 \cdot \sum_{i=1}^n C_i \cdot E_i$$
$$= 0.5 f \cdot V_{dd}^2 \cdot \sum_{i=1}^n C_i \cdot (N_i / cycles)$$

Effective transition number

$$\hat{N}_{i}(\text{rising}) = \frac{(V_{1} - V_{2})(V_{1} + V_{2} - 2V_{dd})}{V_{dd}^{2}}N_{i}$$

Switching power with glitches

$$P_{SW} = 0.5 f \cdot V_{dd}^{2} \cdot \sum_{i=1}^{n} C_{i} \hat{E}_{i}$$
$$= 0.5 f \cdot V_{dd}^{2} \cdot \sum_{i=1}^{n} C_{i} (\hat{N}_{i} / cycles)$$

Feb. 2002

Switch-level Model – Interconnect Short-Circuit Power

Short-circuit power

- Fixed ratio between short-circuit and switching power
- The ratio is decided by SPICE simulation (13%)

FPGA Symposium 2003

Power Simulator

Experimental Settings

Technology	R_NMOS	R_wire	C_wire
0.1 µ	5300 Ohm	0.91667 MOhm/m	73.8 aF/um

Logic Block Architectures			
LUT Size <i>k</i>	3 – 7		
Cluster Size <i>N</i>	4, 8, 12, 16, 20		
Routing Architectures			
routing_default	wire length 4,		
	50% buffers and 50%		
	pass transistors		
routing_fullbuf1	wire length 4,		
	100% buffers		
routing fullbuf2	wire lengths 4 and 8,		
5_	100% buffers		

Experiments on Logic Block Architectures

- □ LUT Size = 4 is also optimal for power consumption
- □ Cluster Size = 12 is the optimal cluster size

Feb. 2002

FPGA Symposium 2003

Cluster Size = 4

FPGA Symposium 2003

Power Breakdown

Cluster Size = 12, LUT Size = 4

Cluster Size = 12, LUT Size = 6

□ Interconnect power is dominant

Feb. 2002

Power Breakdown

□ Leakage power becomes increasingly important

Feb. 2002

- Developed an architecture evaluation framework *fpgaEVA-LP* for power efficiency
- Performed quantitative analysis for parameterized FPGA architecture
- Identified future directions for FPGA power optimization
 - Interconnect power is dominant
 - Leakage power is becoming important