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About This Manual

This manual describes analysis and mathematical concepts in LabVIEW. 
The information in this manual directly relates to how you can use 
LabVIEW to perform analysis and measurement operations.

Conventions
This manual uses the following conventions:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. This font also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames, and extensions.

Related Documentation
The following documents contain information that you might find helpful 
as you read this manual:

• LabVIEW Measurements Manual

• The Fundamentals of FFT-Based Signal Analysis and Measurement in 
LabVIEW and LabWindows™/CVI™ Application Note, available on 
the National Instruments Web site at ni.com/info, where you enter 
the info code rdlv04
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• LabVIEW Help, available by selecting Help»VI, Function, 
& How-To Help

• LabVIEW User Manual

• Getting Started with LabVIEW

• On the Use of Windows for Harmonic Analysis with the Discrete 
Fourier Transform (Proceedings of the IEEE, Volume 66, No. 1, 
January 1978)
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Part I

Signal Processing and Signal Analysis

This part describes signal processing and signal analysis concepts.

• Chapter 1, Introduction to Digital Signal Processing and Analysis in 
LabVIEW, provides a background in basic digital signal processing 
and an introduction to signal processing and measurement VIs in 
LabVIEW.

• Chapter 2, Signal Generation, describes the fundamentals of signal 
generation.

• Chapter 3, Digital Filtering, introduces the concept of filtering, 
compares analog and digital filters, describes finite infinite response 
(FIR) and infinite impulse response (IIR) filters, and describes how to 
choose the appropriate digital filter for a particular application.

• Chapter 4, Frequency Analysis, describes the fundamentals of the 
discrete Fourier transform (DFT), the fast Fourier transform (FFT), 
basic signal analysis computations, computations performed on the 
power spectrum, and how to use FFT-based functions for network 
measurement.

• Chapter 5, Smoothing Windows, describes spectral leakage, how to use 
smoothing windows to decrease spectral leakage, the different types of 
smoothing windows, how to choose the correct type of smoothing 
window, the differences between smoothing windows used for spectral 
analysis and smoothing windows used for filter coefficient design, and 
the importance of scaling smoothing windows.
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• Chapter 6, Distortion Measurements, describes harmonic distortion, 
total harmonic distortion (THD), signal noise and distortion (SINAD), 
and when to use distortion measurements.

• Chapter 7, DC/RMS Measurements, introduces measurement analysis 
techniques for making DC and RMS measurements of a signal.

• Chapter 8, Limit Testing, provides information about setting up an 
automated system for performing limit testing, specifying limits, 
and applications for limit testing.
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1
Introduction to Digital Signal 
Processing and Analysis in 
LabVIEW

Digital signals are everywhere in the world around us. Telephone 
companies use digital signals to represent the human voice. Radio, 
television, and hi-fi sound systems are all gradually converting to the 
digital domain because of its superior fidelity, noise reduction, and signal 
processing flexibility. Data is transmitted from satellites to earth ground 
stations in digital form. NASA pictures of distant planets and outer space 
are often processed digitally to remove noise and extract useful 
information. Economic data, census results, and stock market prices are all 
available in digital form. Because of the many advantages of digital signal 
processing, analog signals also are converted to digital form before they are 
processed with a computer. 

This chapter provides a background in basic digital signal processing and 
an introduction to signal processing and measurement VIs in LabVIEW.

The Importance of Data Analysis
The importance of integrating analysis libraries into engineering stations is 
that the raw data, as shown in Figure 1-1, does not always immediately 
convey useful information. Often, you must transform the signal, remove 
noise disturbances, correct for data corrupted by faulty equipment, or 
compensate for environmental effects, such as temperature and humidity.

Figure 1-1.  Raw Data
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By analyzing and processing the digital data, you can extract the useful 
information from the noise and present it in a form more comprehensible 
than the raw data, as shown in Figure 1-2.

Figure 1-2.  Processed Data

The LabVIEW block diagram programming approach and the extensive 
set of LabVIEW signal processing and measurement VIs simplify the 
development of analysis applications.

Sampling Signals
Measuring the frequency content of a signal requires digitalization of a 
continuous signal. To use digital signal processing techniques, you must 
first convert an analog signal into its digital representation. In practice, the 
conversion is implemented by using an analog-to-digital (A/D) converter. 
Consider an analog signal x(t) that is sampled every ∆t seconds. The time 
interval ∆t is the sampling interval or sampling period. Its reciprocal, 1/∆t, 
is the sampling frequency, with units of samples/second. Each of the 
discrete values of x(t) at t = 0, ∆t, 2∆t, 3∆t, and so on, is a sample. 
Thus, x(0), x(∆t), x(2∆t), …, are all samples. The signal x(t) thus can be 
represented by the following discrete set of samples.

{x(0), x(∆t), x(2∆t), x(3∆t), …, x(k∆t), …}

Figure 1-3 shows an analog signal and its corresponding sampled version. 
The sampling interval is ∆t. The samples are defined at discrete points in 
time.
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Figure 1-3.  Analog Signal and Corresponding Sampled Version

The following notation represents the individual samples.

x[i] = x(i∆t)

for

i = 0, 1, 2, …

If N samples are obtained from the signal x(t), then you can represent x(t) 
by the following sequence.

X = {x[0], x[1], x[2], x[3], …, x[N–1]}

The preceding sequence representing x(t) is the digital representation, or 
the sampled version, of x(t). The sequence X = {x[i]} is indexed on the 
integer variable i and does not contain any information about the sampling 
rate. So knowing only the values of the samples contained in X gives you 
no information about the sampling frequency.

One of the most important parameters of an analog input system is 
the frequency at which the DAQ device samples an incoming signal. 
The sampling frequency determines how often an A/D conversion takes 
place. Sampling a signal too slowly can result in an aliased signal. 
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Aliasing
An aliased signal provides a poor representation of the analog signal. 
Aliasing causes a false lower frequency component to appear in the 
sampled data of a signal. Figure 1-4 shows an adequately sampled signal 
and an undersampled signal.

Figure 1-4.  Aliasing Effects of an Improper Sampling Rate

In Figure 1-4, the undersampled signal appears to have a lower frequency 
than the actual signal—three cycles instead of ten cycles.

Increasing the sampling frequency increases the number of data points 
acquired in a given time period. Often, a fast sampling frequency provides 
a better representation of the original signal than a slower sampling rate.

For a given sampling frequency, the maximum frequency you can 
accurately represent without aliasing is the Nyquist frequency. The Nyquist 
frequency equals one-half the sampling frequency, as shown by the 
following equation.

,

where fN is the Nyquist frequency and fs is the sampling frequency.

Signals with frequency components above the Nyquist frequency appear 
aliased between DC and the Nyquist frequency. In an aliased signal, 
frequency components actually above the Nyquist frequency appear as 

Adequately Sampled Signal

Aliased Signal Due to Undersampling

fN
fs
2
---=
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frequency components below the Nyquist frequency. For example, a 
component at frequency fN < f0 < fs appears as the frequency fs – f0.

Figures 1-5 and 1-6 illustrate the aliasing phenomenon. Figure 1-5 shows 
the frequencies contained in an input signal acquired at a sampling 
frequency, fs, of 100 Hz.

Figure 1-5.  Actual Signal Frequency Components

Figure 1-6 shows the frequency components and the aliases for the input 
signal from Figure 1-5.

Figure 1-6.  Signal Frequency Components and Aliases

In Figure 1-6, frequencies below the Nyquist frequency of fs/2 = 50 Hz are 
sampled correctly. For example, F1 appears at the correct frequency. 
Frequencies above the Nyquist frequency appear as aliases. For example, 
aliases for F2, F3, and F4 appear at 30 Hz, 40 Hz, and 10 Hz, respectively. 
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The alias frequency equals the absolute value of the difference between the 
closest integer multiple of the sampling frequency and the input frequency, 
as shown in the following equation.

where AF is the alias frequency, CIMSF is the closest integer multiple of 
the sampling frequency, and IF is the input frequency. For example, you 
can compute the alias frequencies for F2, F3, and F4 from Figure 1-6 with 
the following equations.

Increasing Sampling Frequency to Avoid Aliasing
According to the Shannon Sampling Theorem, use a sampling frequency 
at least twice the maximum frequency component in the sampled signal 
to avoid aliasing. Figure 1-7 shows the effects of various sampling 
frequencies.

Figure 1-7.  Effects of Sampling at Different Rates

AF CIMSF IF–=

Alias F2 100 70– 30 Hz= =

Alias F3 2( )100 160– 40 Hz= =

Alias F4 5( )100 510– 10 Hz= =

A. 1 sample/1 cycle

B. 7 samples/4 cycles

C. 2 samples/cycle

D. 10 samples/cycle
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In case A of Figure 1-7, the sampling frequency fs equals the frequency f 
of the sine wave. fs is measured in samples/second. f is measured in 
cycles/second. Therefore, in case A, one sample per cycle is acquired. The 
reconstructed waveform appears as an alias at DC.

In case B of Figure 1-7, fs = 7/4f, or 7 samples/4 cycles. In case B, 
increasing the sampling rate increases the frequency of the waveform. 
However, the signal aliases to a frequency less than the original 
signal—three cycles instead of four.

In case C of Figure 1-7, increasing the sampling rate to fs = 2f results in the 
digitized waveform having the correct frequency or the same number of 
cycles as the original signal. In case C, the reconstructed waveform more 
accurately represents the original sinusoidal wave than case A or case B. 
By increasing the sampling rate to well above f, for example, 
fs = 10f = 10 samples/cycle, you can accurately reproduce the waveform. 
Case D of Figure 1-7 shows the result of increasing the sampling rate to 
fs = 10f.

Anti-Aliasing Filters
In the digital domain, you cannot distinguish alias frequencies from the 
frequencies that actually lie between 0 and the Nyquist frequency. Even 
with a sampling frequency equal to twice the Nyquist frequency, pickup 
from stray signals, such as signals from power lines or local radio stations, 
can contain frequencies higher than the Nyquist frequency. Frequency 
components of stray signals above the Nyquist frequency might alias into 
the desired frequency range of a test signal and cause erroneous results. 
Therefore, you need to remove alias frequencies from an analog signal 
before the signal reaches the A/D converter.

Use an anti-aliasing analog lowpass filter before the A/D converter to 
remove alias frequencies higher than the Nyquist frequency. A lowpass 
filter allows low frequencies to pass but attenuates high frequencies. 
By attenuating the frequencies higher than the Nyquist frequency, the 
anti-aliasing analog lowpass filter prevents the sampling of aliasing 
components. An anti-aliasing analog lowpass filter should exhibit a flat 
passband frequency response with a good high-frequency alias rejection 
and a fast roll-off in the transition band. Because you apply the anti-aliasing 
filter to the analog signal before it is converted to a digital signal, the 
anti-aliasing filter is an analog filter.
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Figure 1-8 shows both an ideal anti-alias filter and a practical anti-alias 
filter. The following information applies to Figure 1-8:

• f1 is the maximum input frequency.

• Frequencies less than f1 are desired frequencies.

• Frequencies greater than f1 are undesired frequencies.

Figure 1-8.  Ideal versus Practical Anti-Alias Filter

An ideal anti-alias filter, shown in Figure 1-8a, passes all the desired input 
frequencies and cuts off all the undesired frequencies. However, an ideal 
anti-alias filter is not physically realizable.

Figure 1-8b illustrates actual anti-alias filter behavior. Practical anti-alias 
filters pass all frequencies < f1 and cut off all frequencies >f2. The region 
between f1 and f2 is the transition band, which contains a gradual 
attenuation of the input frequencies. Although you want to pass only 
signals with frequencies < f1, the signals in the transition band might cause 
aliasing. Therefore, in practice, use a sampling frequency greater than two 
times the highest frequency in the transition band. Using a sampling 
frequency greater than two times the highest frequency in the transition 
band means fs might be more than 2f1.

Converting to Logarithmic Units
On some instruments, you can display amplitude on either a linear scale or 
a decibel (dB) scale. The linear scale shows the amplitudes as they are. The 
decibel is a unit of ratio. The decibel scale is a transformation of the linear 
scale into a logarithmic scale.
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The following equations define the decibel. Equation 1-1 defines the 
decibel in terms of power. Equation 1-2 defines the decibel in terms of 
amplitude.

, (1-1)

where P is the measured power, Pr is the reference power, and  is the 
power ratio.

, (1-2)

where A is the measured amplitude, Ar is the reference amplitude, and  
is the voltage ratio.

Equations 1-1 and 1-2 require a reference value to measure power and 
amplitude in decibels. The reference value serves as the 0 dB level. Several 
conventions exist for specifying a reference value. You can use the 
following common conventions to specify a reference value for calculating 
decibels:

• Use the reference one volt-rms squared  for power, which 
yields the unit of measure dBVrms.

• Use the reference one volt-rms (1 Vrms) for amplitude, which yields the 
unit of measure dBV.

• Use the reference 1 mW into a load of 50 Ω for radio frequencies 
where 0 dB is 0.22 Vrms, which yields the unit of measure dBm.

• Use the reference 1 mW into a load of 600 Ω for audio frequencies 
where 0 dB is 0.78 Vrms, which yields the unit of measure dBm.

When using amplitude or power as the amplitude-squared of the same 
signal, the resulting decibel level is exactly the same. Multiplying the 
decibel ratio by two is equivalent to having a squared ratio. Therefore, 
you obtain the same decibel level and display regardless of whether you 
use the amplitude or power spectrum.

Displaying Results on a Decibel Scale
Amplitude or power spectra usually are displayed on a decibel scale. 
Displaying amplitude or power spectra on a decibel scale allows you to 
view wide dynamic ranges and to see small signal components in the 
presence of large ones. For example, suppose you want to display a signal 
containing amplitudes from a minimum of 0.1 V to a maximum of 100 V 
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on a device with a display height of 10 cm. Using a linear scale, if the 
device requires the entire display height to display the 100 V amplitude, the 
device displays 10 V of amplitude per centimeter of height. If the device 
displays 10 V/cm, displaying the 0.1 V amplitude of the signal requires a 
height of only 0.1 mm. Because a height of 0.1 mm is barely visible on the 
display screen, you might overlook the 0.1 V amplitude component of the 
signal. Using a logarithmic scale in decibels allows you to see the 0.1 V 
amplitude component of the signal.

Table 1-1 shows the relationship between the decibel and the power and 
voltage ratios. 

Table 1-1 shows how you can compress a wide range of amplitudes into a 
small set of numbers by using the logarithmic decibel scale.

Table 1-1.  Decibels and Power and Voltage Ratio Relationship

dB Power Ratio Amplitude Ratio

+40 10,000 100

+20 100 10

+6 4 2

+3 2 1.4

0 1 1

–3 1/2 1/1.4

–6 1/4 1/2

–20 1/100 1/10

–40 1/10,000 1/100
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2
Signal Generation

The generation of signals is an important part of any test or measurement 
system. The following applications are examples of uses for signal 
generation:

• Simulate signals to test your algorithm when real-world signals are 
not available, for example, when you do not have a DAQ device for 
obtaining real-world signals or when access to real-world signals is not 
possible.

• Generate signals to apply to a digital-to-analog (D/A) converter.

This chapter describes the fundamentals of signal generation.

Common Test Signals
Common test signals include the sine wave, the square wave, the triangle 
wave, the sawtooth wave, several types of noise waveforms, and multitone 
signals consisting of a superposition of sine waves.

The most common signal for audio testing is the sine wave. A single sine 
wave is often used to determine the amount of harmonic distortion 
introduced by a system. Multiple sine waves are widely used to measure 
the intermodulation distortion or to determine the frequency response. 
Table 2-1 lists the signals used for some typical measurements.

Table 2-1.  Typical Measurements and Signals

Measurement Signal

Total harmonic distortion Sine wave

Intermodulation distortion Multitone (two sine waves)

Frequency response Multitone (many sine waves, 
impulse, chirp), broadband noise

Interpolation Sinc
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These signals form the basis for many tests and are used to measure the 
response of a system to a particular stimulus. Some of the common test 
signals available in most signal generators are shown in Figure 2-1 and 
Figure 2-2.

Rise time, fall time, 
overshoot, undershoot

Pulse

Jitter Square wave

Table 2-1.  Typical Measurements and Signals (Continued)

Measurement Signal
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Figure 2-1.  Common Test Signals
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Figure 2-2.  More Common Test Signals

The most useful way to view the common test signals is in terms of their 
frequency content. The common test signals have the following frequency 
content characteristics:

• Sine waves have a single frequency component.

• Square waves consist of the superposition of many sine waves at odd 
harmonics of the fundamental frequency. The amplitude of each 
harmonic is inversely proportional to its frequency.

• Triangle and sawtooth waves have harmonic components that are 
multiples of the fundamental frequency.

• An impulse contains all frequencies that can be represented for a given 
sampling rate and number of samples.

• Chirp signals are sinusoids swept from a start frequency to a stop 
frequency, thus generating energy across a given frequency range. 
Chirp patterns have discrete frequencies that lie within a certain range. 
The discrete frequencies of chirp patterns depend on the sampling rate, 
the start and end frequencies, and the number of samples. 
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Frequency Response Measurements
To achieve a good frequency response measurement, the frequency range 
of interest must contain a significant amount of stimulus energy. Two 
common signals used for frequency response measurements are the chirp 
signal and a broadband noise signal, such as white noise. Refer to the 
Common Test Signals section of this chapter for information about chirp 
signals. Refer to the Noise Generation section of this chapter for 
information about white noise.

It is best not to use windows when analyzing frequency response signals. 
If you generate a chirp stimulus signal at the same rate you acquire the 
response, you can match the acquisition frame size to the length of the 
chirp. No window is generally the best choice for a broadband signal 
source. Because some stimulus signals are not constant in frequency across 
the time record, applying a window might obscure important portions of the 
transient response.

Multitone Generation
Except for the sine wave, the common test signals do not allow full control 
over their spectral content. For example, the harmonic components of a 
square wave are fixed in frequency, phase, and amplitude relative to the 
fundamental. However, you can generate multitone signals with a specific 
amplitude and phase for each individual frequency component.

A multitone signal is the superposition of several sine waves or tones, each 
with a distinct amplitude, phase, and frequency. A multitone signal is 
typically created so that an integer number of cycles of each individual tone 
are contained in the signal. If an FFT of the entire multitone signal is 
computed, each of the tones falls exactly onto a single frequency bin, which 
means no spectral spread or leakage occurs.

Multitone signals are a part of many test specifications and allow the fast 
and efficient stimulus of a system across an arbitrary band of frequencies. 
Multitone test signals are used to determine the frequency response of a 
device and with appropriate selection of frequencies, also can be used to 
measure such quantities as intermodulation distortion.
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Crest Factor
The relative phases of the constituent tones with respect to each other 
determine the crest factor of a multitone signal with specified amplitude. 
The crest factor is defined as the ratio of the peak magnitude to the RMS 
value of the signal. For example, a sine wave has a crest factor of 1.414:1. 

For the same maximum amplitude, a multitone signal with a large crest 
factor contains less energy than one with a smaller crest factor. In other 
words, a large crest factor means that the amplitude of a given component 
sine tone is lower than the same sine tone in a multitone signal with a 
smaller crest factor. A higher crest factor results in individual sine tones 
with lower signal-to-noise ratios. Therefore, proper selection of phases is 
critical to generating a useful multitone signal. 

To avoid clipping, the maximum value of the multitone signal should not 
exceed the maximum capability of the hardware that generates the signal, 
which means a limit is placed on the maximum amplitude of the signal. 
You can generate a multitone signal with a specific amplitude by using 
different combinations of the phase relationships and amplitudes of the 
constituent sine tones. A good approach to generating a signal is to choose 
amplitudes and phases that result in a lower crest factor. 

Phase Generation
The following schemes are used to generate tone phases of multitone 
signals:

• Varying the phase difference between adjacent frequency tones 
linearly from 0 to 360 degrees

• Varying the tone phases randomly

Varying the phase difference between adjacent frequency tones linearly 
from 0 to 360 degrees allows the creation of multitone signals with very low 
crest factors. However, the resulting multitone signals have the following 
potentially undesirable characteristics:

• The multitone signal is very sensitive to phase distortion. If in the 
course of generating the multitone signal the hardware or signal path 
induces non-linear phase distortion, the crest factor might vary 
considerably.

• The multitone signal might display some repetitive time-domain 
characteristics, as shown in the multitone signal in Figure 2-3. 
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Figure 2-3.  Multitone Signal with Linearly Varying Phase Difference
between Adjacent Tones

The signal in Figure 2-3 resembles a chirp signal in that its frequency 
appears to decrease from left to right. The apparent decrease in frequency 
from left to right is characteristic of multitone signals generated by linearly 
varying the phase difference between adjacent frequency tones. Having a 
signal that is more noise-like than the signal in Figure 2-3 often is more 
desirable.

Varying the tone phases randomly results in a multitone signal whose 
amplitudes are nearly Gaussian in distribution as the number of tones 
increases. Figure 2-4 illustrates a signal created by varying the tone phases 
randomly.
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Figure 2-4.  Multitone Signal with Random Phase Difference between Adjacent Tones

In addition to being more noise-like, the signal in Figure 2-4 also is much 
less sensitive to phase distortion. Multitone signals with the sort of phase 
relationship shown in Figure 2-4 generally achieve a crest factor between 
10 dB and 11 dB.

Swept Sine versus Multitone
To characterize a system, you often must measure the response of the 
system at many different frequencies. You can use the following methods 
to measure the response of a system at many different frequencies:

• Swept sine continuously and smoothly changes the frequency of a sine 
wave across a range of frequencies.

• Stepped sine provides a single sine tone of fixed frequency as the 
stimulus for a certain time and then increments the frequency by a 
discrete amount. The process continues until all the frequencies 
of interest have been reached.

• Multitone provides a signal composed of multiple sine tones.

A multitone signal has significant advantages over the swept sine and 
stepped sine approaches. For a given range of frequencies, the multitone 
approach can be much faster than the equivalent swept sine measurement, 
due mainly to settling time issues. For each sine tone in a stepped sine 
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measurement, you must wait for the settling time of the system to end 
before starting the measurement.

The settling time issue for a swept sine can be even more complex. If the 
system has low-frequency poles and/or zeroes or high Q-resonances, the 
system might take a relatively long time to settle. For a multitone signal, 
you must wait only once for the settling time. A multitone signal containing 
one period of the lowest frequency—actually one period of the highest 
frequency resolution—is enough for the settling time. After the response to 
the multitone signal is acquired, the processing can be very fast. You can 
use a single fast Fourier transform (FFT) to measure many frequency 
points, amplitude and phase, simultaneously.

The swept sine approach is more appropriate than the multitone approach 
in certain situations. Each measured tone within a multitone signal is more 
sensitive to noise because the energy of each tone is lower than that in a 
single pure tone. For example, consider a single sine tone of amplitude 
10 V peak and frequency 100 Hz. A multitone signal containing 10 tones, 
including the 100 Hz tone, might have a maximum amplitude of 10 V. 
However, the 100 Hz tone component has an amplitude somewhat less than 
10 V. The lower amplitude of the 100 Hz tone component is due to the way 
that all the sine tones sum. Assuming the same level of noise, the 
signal-to-noise ratio (SNR) of the 100 Hz component is better for the case 
of the swept sine approach. In the multitone approach, you can mitigate the 
reduced SNR by adjusting the amplitudes and phases of the tones, applying 
higher energy where needed, and applying lower energy at less critical 
frequencies.

When viewing the response of a system to a multitone stimulus, any energy 
between FFT bins is due to noise or unit-under-test (UUT) induced 
distortion. The frequency resolution of the FFT is limited by your 
measurement time. If you want to measure your system at 1.000 kHz and 
1.001 kHz, using two independent sine tones is the best approach. Using 
two independent sine tones, you can perform the measurement in a few 
milliseconds, while a multitone measurement requires at least one second. 
The difference in measurement speed is because you must wait long 
enough to obtain the required number of samples to achieve a frequency 
resolution of 1 Hz. Some applications, such as finding the resonant 
frequency of a crystal, combine a multitone measurement for coarse 
measurement and a narrow-range sweep for fine measurement.
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Noise Generation
You can use noise signals to perform frequency response measurements 
or to simulate certain processes. Several types of noise are typically used, 
namely uniform white noise, Gaussian white noise, and periodic random 
noise. 

The term white in the definition of noise refers to the frequency domain 
characteristic of noise. Ideal white noise has equal power per unit 
bandwidth, resulting in a flat power spectral density across the frequency 
range of interest. Thus, the power in the frequency range from 100 Hz to 
110 Hz is the same as the power in the frequency range from 1,000 Hz to 
1,010 Hz. In practical measurements, achieving the flat power spectral 
density requires an infinite number of samples. Thus, when making 
measurements of white noise, the power spectra are usually averaged, with 
more number of averages resulting in a flatter power spectrum. 

The terms uniform and Gaussian refer to the probability density function 
(PDF) of the amplitudes of the time-domain samples of the noise. For 
uniform white noise, the PDF of the amplitudes of the time domain samples 
is uniform within the specified maximum and minimum levels. In other 
words, all amplitude values between some limits are equally likely or 
probable. Thermal noise produced in active components tends to be 
uniform white in distribution. Figure 2-5 shows the distribution of the 
samples of uniform white noise.

Figure 2-5.  Uniform White Noise
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For Gaussian white noise, the PDF of the amplitudes of the time domain 
samples is Gaussian. If uniform white noise is passed through a linear 
system, the resulting output is Gaussian white noise. Figure 2-6 shows the 
distribution of the samples of Gaussian white noise.

Figure 2-6.  Gaussian White Noise

Periodic random noise (PRN) is a summation of sinusoidal signals with 
the same amplitudes but with random phases. PRN consists of all sine 
waves with frequencies that can be represented with an integral number 
of cycles in the requested number of samples. Because PRN contains only 
integral-cycle sinusoids, you do not need to window PRN before 
performing spectral analysis. PRN is self-windowing and therefore has no 
spectral leakage. 

PRN does not have energy at all frequencies as white noise does but has 
energy only at discrete frequencies that correspond to harmonics of a 
fundamental frequency. The fundamental frequency is equal to the 
sampling frequency divided by the number of samples. However, the level 
of noise at each of the discrete frequencies is the same.

You can use PRN to compute the frequency response of a linear system 
with one time record instead of averaging the frequency response over 
several time records, as you must for nonperiodic random noise sources. 
Figure 2-7 shows the spectrum of PRN and the averaged spectra of white 
noise.
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Figure 2-7.  Spectral Representation of Periodic Random Noise and 
Averaged White Noise

Normalized Frequency
In the analog world, a signal frequency is measured in hertz (Hz), or cycles 
per second. But the digital system often uses a digital frequency, which is 
the ratio between the analog frequency and the sampling frequency, as 
shown by the following equation.

The digital frequency is known as the normalized frequency and is 
measured in cycles per sample.

digital frequency analog frequency
sampling frequency
-----------------------------------------------=
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Some of the Signal Generation VIs use a frequency input f that is assumed 
to use normalized frequency units of cycles per sample. The normalized 
frequency ranges from 0.0 to 1.0, which corresponds to a real frequency 
range of 0 to the sampling frequency fs. The normalized frequency also 
wraps around 1.0 so a normalized frequency of 1.1 is equivalent to 0.1. For 
example, a signal sampled at the Nyquist rate of fs/2 means it is sampled 
twice per cycle, that is, two samples/cycle. This sampling rate corresponds 
to a normalized frequency of 1/2 cycles/sample = 0.5 cycles/sample. 
The reciprocal of the normalized frequency, 1/f, gives you the number of 
times the signal is sampled in one cycle, that is, the number of samples per 
cycle.

When you use a VI that requires the normalized frequency as an input, you 
must convert your frequency units to the normalized units of cycles per 
sample. You must use normalized units of cycles per sample with the 
following Signal Generation VIs:

• Sine Wave

• Square Wave

• Sawtooth Wave

• Triangle Wave

• Arbitrary Wave

• Chirp Pattern

If you are used to working in frequency units of cycles, you can convert 
cycles to cycles per sample by dividing cycles by the number of samples 
generated.

You need only divide the frequency in cycles by the number of samples. For 
example, a frequency of two cycles is divided by 50 samples, resulting in a 
normalized frequency of f = 1/25 cycles/sample. This means that it takes 25, 
the reciprocal of f, samples to generate one cycle of the sine wave.

However, you might need to use frequency units of Hz, cycles per second. 
If you need to convert from Hz to cycles per sample, divide your frequency 
in Hz by the sampling rate given in samples per second, as shown in the 
following equation.

For example, you divide a frequency of 60 Hz by a sampling rate of 
1,000 Hz to get the normalized frequency of f = 0.06 cycles/sample. 

cycles per second
samples per second
----------------------------------------------- cycles

sample
-----------------=
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Therefore, it takes almost 17, or 1/0.06, samples to generate one cycle of 
the sine wave.

The Signal Generation VIs create many common signals required for 
network analysis and simulation. You also can use the Signal Generation 
VIs in conjunction with National Instruments hardware to generate analog 
output signals.

Wave and Pattern VIs
The names of most of the Signal Generation VIs contain the word wave or 
pattern. A basic difference exists between the operation of the two different 
types of VIs. The difference has to do with whether the VI can keep track 
of the phase of the signal it generates each time the VI is called.

Phase Control
The wave VIs have a phase in input that specifies the initial phase in 
degrees of the first sample of the generated waveform. The wave VIs also 
have a phase out output that indicates the phase of the next sample of the 
generated waveform. In addition, a reset phase input specifies whether the 
phase of the first sample generated when the wave VI is called is the phase 
specified in the phase in input or the phase available in the phase out 
output when the VI last executed. A TRUE value for reset phase sets the 
initial phase to phase in. A FALSE value for reset phase sets the initial 
phase to the value of phase out when the VI last executed.

All the wave VIs are reentrant, which means they can keep track of phase 
internally. The wave VIs accept frequency in normalized units of cycles per 
sample. The only pattern VI that uses normalized units is the Chirp Pattern 
VI. Wire FALSE to the reset phase input to allow for continuous sampling 
simulation.
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3
Digital Filtering

This chapter introduces the concept of filtering, compares analog and 
digital filters, describes finite impulse response (FIR) and infinite impulse 
response (IIR) filters, and describes how to choose the appropriate digital 
filter for a particular application.

Introduction to Filtering
The filtering process alters the frequency content of a signal. For example, 
the bass control on a stereo system alters the low-frequency content of a 
signal, while the treble control alters the high-frequency content. Changing 
the bass and treble controls filters the audio signal. Two common filtering 
applications are removing noise and decimation. Decimation consists of 
lowpass filtering and reducing the sample rate.

The filtering process assumes that you can separate the signal content of 
interest from the raw signal. Classical linear filtering assumes that the 
signal content of interest is distinct from the remainder of the signal in the 
frequency domain.

Advantages of Digital Filtering Compared to Analog Filtering
An analog filter has an analog signal at both its input x(t) and its output y(t). 
Both x(t) and y(t) are functions of a continuous variable t and can have an 
infinite number of values. Analog filter design requires advanced 
mathematical knowledge and an understanding of the processes involved 
in the system affecting the filter.

Because of modern sampling and digital signal processing tools, you 
can replace analog filters with digital filters in applications that require 
flexibility and programmability, such as audio, telecommunications, 
geophysics, and medical monitoring applications.
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Digital filters have the following advantages compared to analog filters:

• Digital filters are software programmable, which makes them easy to 
build and test.

• Digital filters require only the arithmetic operations of multiplication 
and addition/subtraction.

• Digital filters do not drift with temperature or humidity or require 
precision components.

• Digital filters have a superior performance-to-cost ratio.

• Digital filters do not suffer from manufacturing variations or aging.

Common Digital Filters
You can classify a digital filter as one of the following types:

• Finite impulse response (FIR) filter, also known as moving average 
(MA) filter

• Infinite impulse response (IIR) filter, also known as autoregressive 
moving-average (ARMA) filter

• Nonlinear filter

Traditional filter classification begins with classifying a filter according to 
its impulse response.

Impulse Response
An impulse is a short duration signal that goes from zero to a maximum 
value and back to zero again in a short time. Equation 3-1 provides the 
mathematical definition of an impulse.

(3-1)

The impulse response of a filter is the response of the filter to an impulse 
and depends on the values upon which the filter operates. Figure 3-1 
illustrates impulse response.

x0 1=

xi 0= for all i 0≠
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Figure 3-1.  Impulse Response

The Fourier transform of the impulse response is the frequency response of 
the filter. The frequency response of a filter provides information about the 
output of the filter at different frequencies. In other words, the frequency 
response of a filter reflects the gain of the filter at different frequencies. For 
an ideal filter, the gain is one in the passband and zero in the stopband. An 
ideal filter passes all frequencies in the passband to the output unchanged 
but passes none of the frequencies in the stopband to the output.

Classifying Filters by Impulse Response
The impulse response of a filter determines whether the filter is an FIR or 
IIR filter. The output of an FIR filter depends only on the current and past 
input values. The output of an IIR filter depends on the current and past 
input values and the current and past output values.

The operation of a cash register can serve as an example to illustrate the 
difference between FIR and IIR filter operations. For this example, the 
following conditions are true:

• x[k] is the cost of the current item entered into the cash register.

• x[k – 1] is the price of the past item entered into the cash register.

•  

• N is the total number of items entered into the cash register.

The following statements describe the operation of the cash register:

• The cash register adds the cost of each item to produce the running 
total y[k].

• The following equation computes y[k] up to the kth item.

y[k] = x[k] + x[k – 1] + x[k – 2] + x[k – 3] + … + x[1] (3-2)

Therefore, the total for N items is y[N].
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• y[k] equals the total up to the kth item.

y[k – 1] equals the total up to the (k – 1) item.

Therefore, Equation 3-2 can be rewritten as the following equation.

y[k] = y[k – 1] + x[k] (3-3)

• Add a tax of 8.25% and rewrite Equations 3-2 and 3-3 as the following 
equations.

y[k] = 1.0825x[k] + 1.0825x[k – 1] + 1.0825x[k – 2] + 
1.0825x[k – 3] + … + 1.0825x[1] (3-4)

y[k] = y[k – 1] + 1.0825x[k] (3-5)

Equations 3-4 and 3-5 identically describe the behavior of the cash register. 
However, Equation 3-4 describes the behavior of the cash register only in 
terms of the input, while Equation 3-5 describes the behavior in terms of 
both the input and the output. Equation 3-4 represents a nonrecursive, or 
FIR, operation. Equation 3-5 represents a recursive, or IIR, operation.

Equations that describe the operation of a filter and have the same form as 
Equations 3-2, 3-3, 3-4, and 3-5 are difference equations.

FIR filters are the simplest filters to design. If a single impulse is present at 
the input of an FIR filter and all subsequent inputs are zero, the output of 
an FIR filter becomes zero after a finite time. Therefore, FIR filters are 
finite. The time required for the filter output to reach zero equals the 
number of filter coefficients. Refer to the FIR Filters section of this chapter 
for more information about FIR filters.

Because IIR filters operate on current and past input values and current and 
past output values, the impulse response of an IIR filter never reaches zero 
and is an infinite response. Refer to the IIR Filters section of this chapter 
for more information about IIR filters.

Filter Coefficients
In Equation 3-4, the multiplying constant for each term is 1.0825. In 
Equation 3-5, the multiplying constants are 1 for y[k – 1] and 1.0825 for 
x[k]. The multiplying constants are the coefficients of the filter. For an IIR 
filter, the coefficients multiplying the inputs are the forward coefficients. 
The coefficients multiplying the outputs are the reverse coefficients.
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Characteristics of an Ideal Filter
In practical applications, ideal filters are not realizable.

Ideal filters allow a specified frequency range of interest to pass through 
while attenuating a specified unwanted frequency range. The following 
filter classifications are based on the frequency range a filter passes or 
blocks:

• Lowpass filters pass low frequencies and attenuate high frequencies.

• Highpass filters pass high frequencies and attenuate low frequencies.

• Bandpass filters pass a certain band of frequencies.

• Bandstop filters attenuate a certain band of frequencies.

Figure 3-2 shows the ideal frequency response of each of the preceding 
filter types.

Figure 3-2.  Ideal Frequency Response

In Figure 3-2, the filters exhibit the following behavior:

• The lowpass filter passes all frequencies below fc.

• The highpass filter passes all frequencies above fc.

• The bandpass filter passes all frequencies between fc1 and fc2.

• The bandstop filter attenuates all frequencies between fc1 and fc2.

The frequency points fc, fc1, and fc2 specify the cut-off frequencies for the 
different filters. When designing filters, you must specify the cut-off 
frequencies.

The passband of the filter is the frequency range that passes through the 
filter. An ideal filter has a gain of one (0 dB) in the passband so the 
amplitude of the signal neither increases nor decreases. The stopband of the 
filter is the range of frequencies that the filter attenuates. Figure 3-3 shows 
the passband (PB) and the stopband (SB) for each filter type.
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Figure 3-3.  Passband and Stopband

The filters in Figure 3-3 have the following passband and stopband 
characteristics:

• The lowpass and highpass filters have one passband and one stopband.

• The bandpass filter has one passband and two stopbands.

• The bandstop filter has two passbands and one stopband.

Practical (Nonideal) Filters
Ideally, a filter has a unit gain (0 dB) in the passband and a gain of 
zero (–∞ dB) in the stopband. However, real filters cannot fulfill all the 
criteria of an ideal filter. In practice, a finite transition band always exists 
between the passband and the stopband. In the transition band, the gain 
of the filter changes gradually from one (0 dB) in the passband to 
zero (–∞ dB) in the stopband.

Transition Band
Figure 3-4 shows the passband, the stopband, and the transition band for 
each type of practical filter.
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Figure 3-4.  Nonideal Filters

In each plot in Figure 3-4, the x-axis represents frequency, and the y-axis 
represents the magnitude of the filter in dB. The passband is the region 
within which the gain of the filter varies from 0 dB to –3 dB.

Passband Ripple and Stopband Attenuation
In many applications, you can allow the gain in the passband to vary 
slightly from unity. This variation in the passband is the passband ripple, 
or the difference between the actual gain and the desired gain of unity. 
In practice, the stopband attenuation cannot be infinite, and you must 
specify a value with which you are satisfied. Measure both the passband 
ripple and the stopband attenuation in decibels (dB). Equation 3-6 defines 
a decibel.

(3-6)

where log denotes the base 10 logarithm, Ai(f) is the amplitude at a 
particular frequency f before filtering, and Ao(f) is the amplitude at a 
particular frequency f after filtering.

When you know the passband ripple or stopband attenuation, you can 
use Equation 3-6 to determine the ratio of input and output amplitudes. 

Passband

Stopband Stopband

Stopband

Passband Passband
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The ratio of the amplitudes shows how close the passband or stopband is to 
the ideal. For example, for a passband ripple of –0.02 dB, Equation 3-6 
yields the following set of equations.

(3-7)

(3-8)

Equations 3-7 and 3-8 show that the ratio of input and output amplitudes is 
close to unity, which is the ideal for the passband.

Practical filter design attempts to approximate the ideal desired magnitude 
response, subject to certain constraints. Table 3-1 compares the 
characteristics of ideal filters and practical filters.

Practical filter design involves compromise, allowing you to emphasize 
a desirable filter characteristic at the expense of a less desirable 
characteristic. The compromises you can make depend on whether the 
filter is an FIR or IIR filter and the design algorithm.

Sampling Rate
The sampling rate is important to the success of a filtering operation. The 
maximum frequency component of the signal of interest usually determines 
the sampling rate. In general, choose a sampling rate 10 times higher than 
the highest frequency component of the signal of interest.

Make exceptions to the previous sampling rate guideline when filter cut-off 
frequencies must be very close to either DC or the Nyquist frequency. 
Filters with cut-off frequencies close to DC or the Nyquist frequency might 

Table 3-1.  Characteristics of Ideal and Practical Filters

Characteristic Ideal Filters Practical Filters

Passband Flat and constant Might contain ripples

Stopband Flat and constant Might contain ripples

Transition band None Have transition regions

0.02– 20
Ao f( )
Ai f( )
------------ 
 log=

Ao f( )
Ai f( )
------------ 10 0.001– 0.9977= =
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have a slow rate of convergence. You can take the following actions to 
overcome the slow convergence:

• If the cut-off is too close to the Nyquist frequency, increase the 
sampling rate.

• If the cut-off is too close to DC, reduce the sampling rate.

In general, adjust the sampling rate only if you encounter problems.

FIR Filters
Finite impulse response (FIR) filters are digital filters that have a finite 
impulse response. FIR filters operate only on current and past input values 
and are the simplest filters to design. FIR filters also are known as 
nonrecursive filters, convolution filters, and moving average (MA) filters. 
FIR filters perform a convolution of the filter coefficients with a sequence 
of input values and produce an equally numbered sequence of output 
values. Equation 3-9 defines the finite convolution an FIR filter performs.

(3-9)

where x is the input sequence to filter, y is the filtered sequence, and h is the 
FIR filter coefficients.

FIR filters have the following characteristics:

• FIR filters can achieve linear phase because of filter coefficient 
symmetry in the realization.

• FIR filters are always stable.

• FIR filters allow you to filter signals using the convolution. Therefore, 
you generally can associate a delay with the output sequence, as shown 
in the following equation.

where n is the number of FIR filter coefficients.

yi hk xi k–

k 0=

n 1–

∑=

delay n 1–
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Figure 3-5 shows a typical magnitude and phase response of an FIR filter 
compared to normalized frequency.

Figure 3-5.  FIR Filter Magnitude and Phase Response 
Compared to Normalized Frequency

In Figure 3-5, the discontinuities in the phase response result from the 
discontinuities introduced when you use the absolute value to compute the 
magnitude response. The discontinuities in phase are on the order of pi. 
However, the phase is clearly linear.
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Taps
The terms tap and taps frequently appear in descriptions of FIR filters, FIR 
filter design, and FIR filtering operations. Figure 3-6 illustrates the process 
of tapping.

Figure 3-6.  Tapping

Figure 3-6 represents an n-sample shift register containing the input 
samples [xi, xi – 1, …]. The term tap comes from the process of tapping off 
of the shift register to form each hkxi – k term in Equation 3-9. Taps usually 
refers to the number of filter coefficients for an FIR filter.

Designing FIR Filters
You design FIR filters by approximating the desired frequency response of 
a discrete-time system. The most common techniques approximate the 
desired magnitude response while maintaining a linear-phase response. 
Linear-phase response implies that all frequencies in the system have the 
same propagation delay.

Figure 3-7 shows the block diagram of a VI that returns the frequency 
response of a bandpass equiripple FIR filter.

Tapping

Input Sequence x

h0

h0xn

xn xn–1 xn–2 …

x
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Figure 3-7.  Frequency Response of a Bandpass Equiripple FIR Filter

The VI in Figure 3-7 completes the following steps to compute the 
frequency response of the filter.

1. Pass an impulse signal through the filter.

2. Pass the filtered signal out of the Case structure to the FFT VI. The 
Case structure specifies the filter type—lowpass, highpass, bandpass, 
or bandstop. The signal passed out of the Case structure is the impulse 
response of the filter.

3. Use the FFT VI to perform a Fourier transform on the impulse 
response and to compute the frequency response of the filter, such that 
the impulse response and the frequency response comprise the Fourier 
transform pair h(t) is the impulse response. H(f) is the 
frequency response.

4. Use the Array Subset function to reduce the data returned by the 
FFT VI. Half of the real FFT result is redundant so the VI needs to 
process only half of the data returned by the FFT VI.

5. Use the Complex To Polar function to obtain the magnitude-and-phase 
form of the data returned by the FFT VI. The magnitude-and-phase 
form of the complex output from the FFT VI is easier to interpret than 
the rectangular component of the FFT.

6. Unwrap the phase and convert it to degrees.

7. Convert the magnitude to decibels.

h t( ) H f( ).⇔
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Figure 3-8 shows the magnitude and phase responses returned by the VI in 
Figure 3-7.

Figure 3-8.  Magnitude and Phase Response of a Bandpass Equiripple FIR Filter

In Figure 3-8, the discontinuities in the phase response result from the 
discontinuities introduced when you use the absolute value to compute the 
magnitude response. However, the phase response is a linear response 
because all frequencies in the system have the same propagation delay.

Because FIR filters have ripple in the magnitude response, designing FIR 
filters has the following design challenges:

• Designing a filter with a magnitude response as close to the ideal as 
possible

• Designing a filter that distributes the ripple in a desired fashion

For example, a lowpass filter has an ideal characteristic magnitude 
response. A particular application might allow some ripple in the passband 
and more ripple in the stopband. The filter design algorithm must balance 
the relative ripple requirements while producing the sharpest transition 
band.

The most common techniques for designing FIR filters are windowing and 
the Parks-McClellan algorithm, also known as Remez Exchange.
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Designing FIR Filters by Windowing
Windowing is the simplest technique for designing FIR filters because of 
its conceptual simplicity and ease of implementation. Designing FIR filters 
by windowing takes the inverse FFT of the desired magnitude response and 
applies a smoothing window to the result. The smoothing window is a time 
domain window.

Complete the following steps to design a FIR filter by windowing.

1. Decide on an ideal frequency response.

2. Calculate the impulse response of the ideal frequency response.

3. Truncate the impulse response to produce a finite number of 
coefficients. To meet the linear-phase constraint, maintain symmetry 
about the center point of the coefficients.

4. Apply a symmetric smoothing window.

Truncating the ideal impulse response results in the Gibbs phenomenon. 
The Gibbs phenomenon appears as oscillatory behavior near cut-off 
frequencies in the FIR filter frequency response. You can reduce the effects 
of the Gibbs phenomenon by using a smoothing window to smooth the 
truncation of the ideal impulse response. By tapering the FIR coefficients 
at each end, you can decrease the height of the side lobes in the frequency 
response. However, decreasing the side lobe heights causes the main lobe 
to widen, resulting in a wider transition band at the cut-off frequencies.

Selecting a smoothing window requires a trade-off between the height of 
the side lobes near the cut-off frequencies and the width of the transition 
band. Decreasing the height of the side lobes near the cut-off frequencies 
increases the width of the transition band. Decreasing the width of the 
transition band increases the height of the side lobes near the cut-off 
frequencies.

Designing FIR filters by windowing has the following disadvantages:

• Inefficiency

– Windowing results in unequal distribution of ripple.

– Windowing results in a wider transition band than other design 
techniques.
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• Difficulty in specification

– Windowing increases the difficulty of specifying a cut-off 
frequency that has a specific attenuation.

– Filter designers must specify the ideal cut-off frequency.

– Filter designers must specify the sampling frequency.

– Filter designers must specify the number of taps.

– Filter designers must specify the window type.

Designing FIR filters by windowing does not require a large amount of 
computational resources. Therefore, windowing is the fastest technique for 
designing FIR filters. However, windowing is not necessarily the best 
technique for designing FIR filters.

Designing Optimum FIR Filters Using the 
Parks-McClellan Algorithm
The Parks-McClellan algorithm, or Remez Exchange, uses an iterative 
technique based on an error criterion to design FIR filter coefficients. You 
can use the Parks-McClellan algorithm to design optimum, linear-phase, 
FIR filter coefficients. Filters you design with the Parks-McClellan 
algorithm are optimal because they minimize the maximum error between 
the actual magnitude response of the filter and the ideal magnitude 
response of the filter.

Designing optimum FIR filters reduces adverse effects at the cut-off 
frequencies. Designing optimum FIR filters also offers more control over 
the approximation errors in different frequency bands than other FIR filter 
design techniques, such as designing FIR filters by windowing, which 
provides no control over the approximation errors in different frequency 
bands.

Optimum FIR filters you design using the Parks-McClellan algorithm have 
the following characteristics:

• A magnitude response with the weighted ripple evenly distributed over 
the passband and stopband

• A sharp transition band

FIR filters you design using the Parks-McClellan algorithm have an 
optimal response. However, the design process is complex, requires a large 
amount of computational resources, and is much longer than designing FIR 
filters by windowing.
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Designing Equiripple FIR Filters Using the 
Parks-McClellan Algorithm
You can use the Parks-McClellan algorithm to design equiripple FIR 
filters. Equiripple design equally weights the passband and stopband ripple 
and produces filters with a linear phase characteristic.

You must specify the following filter characteristics to design an equiripple 
FIR filter:

• Cut-off frequency

• Number of taps

• Filter type, such as lowpass, highpass, bandpass, or bandstop

• Pass frequency

• Stop frequency

The cut-off frequency for equiripple filters specifies the edge of the 
passband, the stopband, or both. The ripple in the passband and stopband 
of equiripple filters causes the following magnitude responses:

• Passband—a magnitude response greater than or equal to 1

• Stopband—a magnitude response less than or equal to the stopband 
attenuation

For example, if you specify a lowpass filter, the passband cut-off frequency 
is the highest frequency for which the passband conditions are true. 
Similarly, the stopband cut-off frequency is the lowest frequency for which 
the stopband conditions are true. 

Designing Narrowband FIR Filters
Using conventional techniques to design FIR filters with especially narrow 
bandwidths can result in long filter lengths. FIR filters with long filter 
lengths often require long design and implementation times and are 
susceptible to numerical inaccuracy. In some cases, conventional filter 
design techniques, such as the Parks-McClellan algorithm, might not 
produce an acceptable narrow bandwidth FIR filter.

The interpolated finite impulse response (IFIR) filter design technique 
offers an efficient algorithm for designing narrowband FIR filters. Using 
the IFIR technique produces narrowband filters that require fewer 
coefficients and computations than filters you design by directly applying 
the Parks-McClellan algorithm. The FIR Narrowband Coefficients VI uses 
the IFIR technique to generate narrowband FIR filter coefficients.
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You must specify the following parameters when developing narrowband 
filter specifications:

• Filter type, such as lowpass, highpass, bandpass, or bandstop

• Passband ripple on a linear scale

• Sampling frequency

• Passband frequency, which refers to passband width for bandpass and 
bandstop filters

• Stopband frequency, which refers to stopband width for bandpass and 
bandstop filters

• Center frequency for bandpass and bandstop filters

• Stopband attenuation in decibels

Figure 3-9 shows the block diagram of a VI that estimates the frequency 
response of a narrowband FIR bandpass filter by transforming the impulse 
response into the frequency domain.

Figure 3-9.  Estimating the Frequency Response of a Narrowband FIR Bandpass Filter

Figure 3-10 shows the filter response from zero to the Nyquist frequency 
that the VI in Figure 3-9 returns.
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Figure 3-10.  Estimated Frequency Response of a Narrowband FIR Bandpass Filter 
from Zero to Nyquist

In Figure 3-10, the narrow passband centers around 1 kHz. The narrow 
passband center at 1 kHz is the response of the filter specified by the front 
panel controls in Figure 3-10.

Figure 3-11 shows the filter response in detail.

Figure 3-11.  Detail of the Estimated Frequency Response of a Narrowband 
FIR Bandpass Filter 

In Figure 3-11, the narrow passband clearly centers around 1 kHz and the 
attenuation of the signal at 60 dB below the passband.
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Refer to the works of Vaidyanathan, P. P. and Neuvo, Y. et al. in 
Appendix A, References, for more information about designing IFIR 
filters.

Designing Wideband FIR Filters
You also can use the IFIR technique to produce wideband FIR lowpass 
filters and wideband FIR highpass filters. A wideband FIR lowpass filter 
has a cut-off frequency near the Nyquist frequency. A wideband FIR 
highpass filter has a cut-off frequency near zero. You can use the FIR 
Narrowband Coefficients VI to design wideband FIR lowpass filters and 
wideband FIR highpass filters. Figure 3-12 shows the frequency response 
that the VI in Figure 3-9 returns when you use it to estimate the frequency 
response of a wideband FIR lowpass filter.

Figure 3-12.  Frequency Response of a Wideband FIR Lowpass Filter 
from Zero to Nyquist

In Figure 3-12, the front panel controls define a narrow bandwidth between 
the stopband at 23.9 kHz and the Nyquist frequency at 24 kHz. However, 
the frequency response of the filter runs from zero to 23.9 kHz, which 
makes the filter a wideband filter.

IIR Filters
Infinite impulse response (IIR) filters, also known as recursive filters and 
autoregressive moving-average (ARMA) filters, operate on current and 
past input values and current and past output values. The impulse response 
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of an IIR filter is the response of the general IIR filter to an impulse, as 
Equation 3-1 defines impulse. Theoretically, the impulse response of an 
IIR filter never reaches zero and is an infinite response.

The following general difference equation characterizes IIR filters.

(3-10)

where bj is the set of forward coefficients, Nb is the number of forward 
coefficients, ak is the set of reverse coefficients, and Na is the number of 
reverse coefficients.

Equation 3-10 describes a filter with an impulse response of theoretically 
infinite length for nonzero coefficients. However, in practical filter 
applications, the impulse response of a stable IIR filter decays to near zero 
in a finite number of samples.

In most IIR filter designs and all of the LabVIEW IIR filters, coefficient a0 
is 1. The output sample at the current sample index i is the sum of scaled 
current and past inputs and scaled past outputs, as shown by Equation 3-11.

, (3-11)

where xi is the current input, xi – j is the past inputs, and yi – k is the past 
outputs.

IIR filters might have ripple in the passband, the stopband, or both. IIR 
filters have a nonlinear-phase response.

Cascade Form IIR Filtering
Equation 3-12 defines the direct-form transfer function of an IIR filter.

(3-12)

A filter implemented by directly using the structure defined by 
Equation 3-12 after converting it to the difference equation in 
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Equation 3-11 is a direct-form IIR filter. A direct-form IIR filter often 
is sensitive to errors introduced by coefficient quantization and by 
computational precision limits. Also, a filter with an initially stable design 
can become unstable with increasing coefficient length. The filter order is 
proportional to the coefficient length. As the coefficient length increases, 
the filter order increases. As filter order increases, the filter becomes more 
unstable.

You can lessen the sensitivity of a filter to error by writing Equation 3-12 
as a ratio of z transforms, which divides the direct-form transfer function 
into lower order sections, or filter stages.

By factoring Equation 3-12 into second-order sections, the transfer 
function of the filter becomes a product of second-order filter functions, 
as shown in Equation 3-13.

(3-13)

where Ns is the number of stages, , 
and Na ≥ Nb. 

You can describe the filter structure defined by Equation 3-13 as a cascade 
of second-order filters. Figure 3-13 illustrates cascade filtering.

Figure 3-13.  Stages of Cascade Filtering

You implement each individual filter stage in Figure 3-13 with the 
direct-form II filter structure. You use the direct-form II filter structure 
to implement each filter stage for the following reasons:

• The direct-form II filter structure requires a minimum number of 
arithmetic operations.

• The direct-form II filter structure requires a minimum number of delay 
elements, or internal filter states.

• Each kth stage has one input, one output, and two past internal states, 
sk[i – 1] and sk[i – 2].
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If n is the number of samples in the input sequence, the filtering operation 
proceeds as shown in the following equations.

for each sample i = 0, 1, 2, …, n – 1.

Second-Order Filtering
For lowpass and highpass filters, which have a single cut-off frequency, 
you can design second-order filter stages directly. The resulting IIR 
lowpass or highpass filter contains cascaded second-order filters.

Each second-order filter stage has the following characteristics:

• k = 1, 2, …, Ns, where k is the second-order filter stage number and Ns 
is the total number of second-order filter stages.

• Each second-order filter stage has two reverse coefficients, (a1k, a2k).

• The total number of reverse coefficients equals 2Ns.

• Each second-order filter stage has three forward coefficients, 
(b0k, b1k, b2k).

• The total number of forward coefficients equals 3Ns.

In Signal Processing VIs with Reverse Coefficients and Forward 
Coefficients parameters, the Reverse Coefficients and the Forward 
Coefficients arrays contain the coefficients for one second-order filter 
stage, followed by the coefficients for the next second-order filter stage, and 
so on. For example, an IIR filter with two second-order filter stages must 
have a total of four reverse coefficients and six forward coefficients, as 
shown in the following equations.

Total number of reverse coefficients = 2Ns = 
Reverse Coefficients = {a11, a21, a12, a22}

Total number of forward coefficients = 3Ns = 
Forward Coefficients = {b01, b11, b21, b02, b12, b22}

y0 i[ ] x i[ ]=

sk i[ ] yk 1–
i 1–[ ] a1ksk i 1–[ ]– a2ksk i 2–[ ]–= k 1 2 … Ns, , ,=

yk i[ ] b0ksk i[ ] b1ksk i 1–[ ] b2ksk i 2–[ ]+ += k 1 2 … Ns, , ,=

2 2× 4=

3 2× 6=
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Fourth-Order Filtering
For bandpass and bandstop filters, which have two cut-off frequencies, 
fourth-order filter stages are a more direct form of filter design than 
second-order filter stages. IIR bandpass or bandstop filters resulting from 
fourth-order filter design contain cascaded fourth-order filters.

Each fourth-order filter stage has the following characteristics:

• k = 1, 2, …, Ns, where k is the fourth-order filter stage number and Ns 
is the total number of fourth-order filter stages.

• .

• Each fourth-order filter stage has four reverse coefficients, 
(a1k, a2k, a3k, a4k).

• The total number of reverse coefficients equals 4Ns.

• Each fourth-order filter stage has five forward coefficients, 
(b0k, b1k, b2k, b3k, b4k).

• The total number of forward coefficients equals 5Ns.

You implement cascade stages in fourth-order filtering in the same manner 
as in second-order filtering. The following equations show how the filtering 
operation for fourth-order stages proceeds.

where k = 1, 2, …, Ns.

IIR Filter Types
Digital IIR filter designs come from the classical analog designs and 
include the following filter types:

• Butterworth filters

• Chebyshev filters

• Chebyshev II filters, also known as inverse Chebyshev and Type II 
Chebyshev filters

• Elliptic filters, also known as Cauer filters

• Bessel filters

Ns
Na 1+

4
---------------=

y0 i[ ] x i[ ]=

sk i[ ] y
k 1–

i 1–[ ] a1ksk i 1–[ ]– a2ksk i 2–[ ]– a3ksk i 3–[ ] a4ksk i 4–[ ]––=

yk i[ ] b0ksk i[ ] b1ksk i 1–[ ] b2ksk i 2–[ ] b3ksk i 3–[ ] b4ksk i 4–[ ]––+ +=
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The IIR filter designs differ in the sharpness of the transition between 
the passband and the stopband and where they exhibit their various 
characteristics—in the passband or the stopband.

Minimizing Peak Error
The Chebyshev, Chebyshev II, and elliptic filters minimize peak error by 
accounting for the maximum tolerable error in their frequency response. 
The maximum tolerable error is the maximum absolute value of the 
difference between the ideal filter frequency response and the actual filter 
frequency response. The amount of ripple, in dB, allowed in the frequency 
response of the filter determines the maximum tolerable error. Depending 
on the type, the filter minimizes peak error in the passband, stopband, or 
both.

Butterworth Filters
Butterworth filters have the following characteristics:

• Smooth response at all frequencies

• Monotonic decrease from the specified cut-off frequencies

• Maximal flatness, with the ideal response of unity in the passband and 
zero in the stopband

• Half-power frequency, or 3 dB down frequency, that corresponds to the 
specified cut-off frequencies

The advantage of Butterworth filters is their smooth, monotonically 
decreasing frequency response. Figure 3-14 shows the frequency response 
of a lowpass Butterworth filter.
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Figure 3-14.  Frequency Response of a Lowpass Butterworth Filter

As shown in Figure 3-14, after you specify the cut-off frequency of 
a Butterworth filter, LabVIEW sets the steepness of the transition 
proportional to the filter order. Higher order Butterworth filters approach 
the ideal lowpass filter response.

Butterworth filters do not always provide a good approximation of the 
ideal filter response because of the slow rolloff between the passband and 
the stopband.

Chebyshev Filters
Chebyshev filters have the following characteristics:

• Minimization of peak error in the passband

• Equiripple magnitude response in the passband

• Monotonically decreasing magnitude response in the stopband

• Sharper rolloff than Butterworth filters

Compared to a Butterworth filter, a Chebyshev filter can achieve a sharper 
transition between the passband and the stopband with a lower order filter. 
The sharp transition between the passband and the stopband of a 
Chebyshev filter produces smaller absolute errors and faster execution 
speeds than a Butterworth filter.
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Figure 3-15 shows the frequency response of a lowpass Chebyshev filter.

Figure 3-15.  Frequency Response of a Lowpass Chebyshev Filter

In Figure 3-15, the maximum tolerable error constrains the equiripple 
response in the passband. Also, the sharp rolloff appears in the stopband.

Chebyshev II Filters
Chebyshev II filters have the following characteristics:

• Minimization of peak error in the stopband

• Equiripple magnitude response in the stopband

• Monotonically decreasing magnitude response in the passband

• Sharper rolloff than Butterworth filters

Chebyshev II filters are similar to Chebyshev filters. However, 
Chebyshev II filters differ from Chebyshev filters in the following ways:

• Chebyshev II filters minimize peak error in the stopband instead of the 
passband. Minimizing peak error in the stopband instead of the 
passband is an advantage of Chebyshev II filters over Chebyshev 
filters.

• Chebyshev II filters have an equiripple magnitude response in the 
stopband instead of the passband.

• Chebyshev II filters have a monotonically decreasing magnitude 
response in the passband instead of the stopband.
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Figure 3-16 shows the frequency response of a lowpass Chebyshev II filter. 

Figure 3-16.  Frequency Response of a Lowpass Chebyshev II Filter

In Figure 3-16, the maximum tolerable error constrains the equiripple 
response in the stopband. Also, the smooth monotonic rolloff appears in the 
stopband.

Chebyshev II filters have the same advantage over Butterworth filters that 
Chebyshev filters have—a sharper transition between the passband and the 
stopband with a lower order filter, resulting in a smaller absolute error and 
faster execution speed.

Elliptic Filters
Elliptic filters have the following characteristics:

• Minimization of peak error in the passband and the stopband

• Equiripples in the passband and the stopband

Compared with the same order Butterworth or Chebyshev filters, the 
elliptic filters provide the sharpest transition between the passband and 
the stopband, which accounts for their widespread use.
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Figure 3-17 shows the frequency response of a lowpass elliptic filter. 

Figure 3-17.  Frequency Response of a Lowpass Elliptic Filter

In Figure 3-17, the same maximum tolerable error constrains the ripple in 
both the passband and the stopband. Also, even low-order elliptic filters 
have a sharp transition edge.

Bessel Filters
Bessel filters have the following characteristics:

• Maximally flat response in both magnitude and phase

• Nearly linear-phase response in the passband

You can use Bessel filters to reduce nonlinear-phase distortion inherent in 
all IIR filters. High-order IIR filters and IIR filters with a steep rolloff have 
a pronounced nonlinear-phase distortion, especially in the transition 
regions of the filters. You also can obtain linear-phase response with FIR 
filters.

Figure 3-18 shows the magnitude and phase responses of a lowpass Bessel 
filter. 
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Figure 3-18.  Magnitude Response of a Lowpass Bessel Filter

In Figure 3-18, the magnitude is smooth and monotonically decreasing at 
all frequencies.

Figure 3-19 shows the phase response of a lowpass Bessel filter. 

Figure 3-19.  Phase Response of a Lowpass Bessel Filter

Figure 3-19 shows the nearly linear phase in the passband. Also, the phase 
monotonically decreases at all frequencies.

Like Butterworth filters, Bessel filters require high-order filters to 
minimize peak error, which accounts for their limited use.
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Designing IIR Filters
When choosing an IIR filter for an application, you must know the response 
of the filter. Figure 3-20 shows the block diagram of a VI that returns the 
frequency response of an IIR filter.

Figure 3-20.  Frequency Response of an IIR Filter

Because the same mathematical theory applies to designing IIR and FIR 
filters, the block diagram in Figure 3-20 of a VI that returns the frequency 
response of an IIR filter and the block diagram in Figure 3-7 of a VI that 
returns the frequency response of an FIR filter share common design 
elements. The main difference between the two VIs is that the Case 
structure on the left side of Figure 3-20 specifies the IIR filter design and 
filter type instead of specifying only the filter type. The VI in Figure 3-20 
computes the frequency response of an IIR filter by following the same 
steps outlined in the Designing FIR Filters section of this chapter.

Figure 3-21 shows the magnitude and the phase responses of a bandpass 
elliptic IIR filter.
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Figure 3-21.  Magnitude and Phase Responses of a Bandpass Elliptic IIR Filter

In Figure 3-21, the phase information is clearly nonlinear. When deciding 
whether to use an IIR or FIR filter to process data, remember that IIR filters 
provide nonlinear phase information. Refer to the Comparing FIR and IIR 
Filters section and the Selecting a Digital Filter Design section of this 
chapter for information about differences between FIR and IIR filters and 
selecting an appropriate filter design.

IIR Filter Characteristics in LabVIEW
IIR filters in LabVIEW have the following characteristics:

• IIR filter VIs interpret values at negative indexes in Equation 3-10 as 
zero the first time you call the VI.

• A transient response, or delay, proportional to the filter order occurs 
before the filter reaches a steady state. Refer to the Transient Response 
section of this chapter for information about the transient response.

• The number of elements in the filtered sequence equals the number of 
elements in the input sequence.

• The filter retains the internal filter state values when the filtering 
process finishes.



Chapter 3 Digital Filtering

LabVIEW Analysis Concepts 3-32 ni.com

Transient Response
The transient response occurs because the initial filter state is zero or has 
values at negative indexes. The duration of the transient response depends 
on the filter type.

The duration of the transient response for lowpass and highpass filters 
equals the filter order.

delay = order

The duration of the transient response for bandpass and bandstop filters 
equals twice the filter order.

delay = 2 × order

You can eliminate the transient response on successive calls to an IIR filter 
VI by enabling state memory. To enable state memory for continuous 
filtering, wire a value of TRUE to the init/cont input of the IIR filter VI.

Figure 3-22 shows the transient response and the steady state for an IIR 
filter.

Figure 3-22.  Transient Response and Steady State for an IIR Filter

Original Signal
Filtered Signal

Transient Steady State
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Comparing FIR and IIR Filters
Because designing digital filters involves making compromises to 
emphasize a desirable filter characteristic over a less desirable 
characteristic, comparing FIR and IIR filters can help guide you in 
selecting the appropriate filter design for a particular application.

IIR filters can achieve the same level of attenuation as FIR filters but with 
far fewer coefficients. Therefore, an IIR filter can provide a significantly 
faster and more efficient filtering operation than an FIR filter.

You can design FIR filters to provide a linear-phase response. IIR filters 
provide a nonlinear-phase response. Use FIR filters for applications that 
require linear-phase responses. Use IIR filters for applications that do not 
require phase information, such as signal monitoring applications.

Refer to the Selecting a Digital Filter Design section of this chapter for 
more information about selecting a digital filter type.

Nonlinear Filters
Smoothing windows, IIR filters, and FIR filters are linear because they 
satisfy the superposition and proportionality principles, as shown in 
Equation 3-14.

L {ax(t) + by(t)} = aL {x(t)} + bL {y(t)} (3-14)

where a and b are constants, x(t) and y(t) are signals, L{•} is a linear 
filtering operation, and inputs and outputs are related through the 
convolution operation, as shown in Equations 3-9 and 3-11.

A nonlinear filter does not satisfy Equation 3-14. Also, you cannot obtain 
the output signals of a nonlinear filter through the convolution operation 
because a set of coefficients cannot characterize the impulse response of the 
filter. Nonlinear filters provide specific filtering characteristics that are 
difficult to obtain using linear techniques.

The median filter, a nonlinear filter, combines lowpass filter characteristics 
and high-frequency characteristics. The lowpass filter characteristics allow 
the median filter to remove high-frequency noise. The high-frequency 
characteristics allow the median filter to detect edges, which preserves edge 
information.
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Example: Analyzing Noisy Pulse with a Median Filter
The Pulse Parameters VI analyzes an input sequence for a pulse pattern and 
determines the best set of pulse parameters that describes the pulse. After 
the VI completes modal analysis to determine the baseline and the top of 
the input sequence, discriminating between noise and signal becomes 
difficult without more information. Therefore, to accurately determine the 
pulse parameters, the peak amplitude of the noise portion of the input 
sequence must be less than or equal to 50% of the expected pulse 
amplitude. In some practical applications, a 50% pulse-to-noise ratio is 
difficult to achieve. Achieving the necessary pulse-to-noise ratio requires 
a preprocessing operation to extract pulse information.

If the pulse is buried in noise whose expected peak amplitude exceeds 50% 
of the expected pulse amplitude, you can use a lowpass filter to remove 
some of the unwanted noise. However, the filter also shifts the signal in 
time and smears the edges of the pulse because the transition edges contain 
high-frequency information. A median filter can extract the pulse more 
effectively than a lowpass filter because the median filter removes 
high-frequency noise while preserving edge information.

Figure 3-23 shows the block diagram of a VI that generates and analyzes a 
noisy pulse. 

Figure 3-23.  Using a Median Filter to Extract Pulse Information

The VI in Figure 3-23 generates a noisy pulse with an expected peak noise 
amplitude greater than 100% of the expected pulse amplitude. The signal 
the VI in Figure 3-23 generates has the following ideal pulse values:

• Amplitude of 5.0 V

• Delay of 64 samples

• Width of 32 samples
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Figure 3-24 shows the noisy pulse, the filtered pulse, and the estimated 
pulse parameters returned by the VI in Figure 3-23.

Figure 3-24.  Noisy Pulse and Pulse Filtered with Median Filter

In Figure 3-24, you can track the pulse signal produced by the median filter, 
even though noise obscures the pulse.

You can remove the high-frequency noise with the Median Filter VI to 
achieve the 50% pulse-to-noise ratio the Pulse Parameters VI needs to 
complete the analysis accurately.

Selecting a Digital Filter Design
Answer the following questions to select a filter for an application:

• Does the analysis require a linear-phase response?

• Can the analysis tolerate ripples?

• Does the analysis require a narrow transition band?

Use Figure 3-25 as a guideline for selecting the appropriate filter for an 
analysis application.
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Figure 3-25.  Filter Flowchart

Figure 3-25 can provide guidance for selecting an appropriate filter type. 
However, you might need to experiment with several filter types to find the 
best type.
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4
Frequency Analysis

This chapter describes the fundamentals of the discrete Fourier transform 
(DFT), the fast Fourier transform (FFT), basic signal analysis 
computations, computations performed on the power spectrum, and how to 
use FFT-based functions for network measurement. Use the NI Example 
Finder to find examples of using the digital signal processing VIs and the 
measurement analysis VIs to perform FFT and frequency analysis.

Differences between Frequency Domain and 
Time Domain

The time-domain representation gives the amplitudes of the signal at the 
instants of time during which it was sampled. However, in many cases you 
need to know the frequency content of a signal rather than the amplitudes 
of the individual samples. 

Fourier’s theorem states that any waveform in the time domain can be 
represented by the weighted sum of sines and cosines. The same waveform 
then can be represented in the frequency domain as a pair of amplitude and 
phase values at each component frequency.

You can generate any waveform by adding sine waves, each with a 
particular amplitude and phase. Figure 4-1 shows the original waveform, 
labeled sum, and its component frequencies. The fundamental frequency is 
shown at the frequency f0, the second harmonic at frequency 2f0, and the 
third harmonic at frequency 3f0.
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Figure 4-1.  Signal Formed by Adding Three Frequency Components

In the frequency domain, you can separate conceptually the sine waves that 
add to form the complex time-domain signal. Figure 4-1 shows single 
frequency components, which spread out in the time domain, as distinct 
impulses in the frequency domain. The amplitude of each frequency line 
is the amplitude of the time waveform for that frequency component. 
The representation of a signal in terms of its individual frequency 
components is the frequency-domain representation of the signal. The 
frequency-domain representation might provide more insight about the 
signal and the system from which it was generated.

The samples of a signal obtained from a DAQ device constitute the 
time-domain representation of the signal. Some measurements, such 
as harmonic distortion, are difficult to quantify by inspecting the time 
waveform on an oscilloscope. When the same signal is displayed in 
the frequency domain by an FFT Analyzer, also known as a Dynamic 
Signal Analyzer, you easily can measure the harmonic frequencies and 
amplitudes.
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Parseval’s Relationship
Parseval’s Theorem states that the total energy computed in the time 
domain must equal the total energy computed in the frequency domain. 
It is a statement of conservation of energy. The following equation defines 
the continuous form of Parseval’s relationship.

The following equation defines the discrete form of Parseval’s relationship.

(4-1)

where  is a discrete FFT pair and n is the number of elements in the 
sequence.

Figure 4-2 shows the block diagram of a VI that demonstrates Parseval’s 
relationship.

Figure 4-2.  VI Demonstrating Parseval’s Theorem

The VI in Figure 4-2 produces a real input sequence. The upper branch on 
the block diagram computes the energy of the time-domain signal using the 
left side of Equation 4-1. The lower branch on the block diagram converts 
the time-domain signal to the frequency domain and computes the energy 
of the frequency-domain signal using the right side of Equation 4-1.
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Figure 4-3 shows the results returned by the VI in Figure 4-2.

Figure 4-3.  Results from Parseval VI

In Figure 4-3, the total computed energy in the time domain equals the total 
computed energy in the frequency domain.

Fourier Transform
The Fourier transform provides a method for examining a relationship in 
terms of the frequency domain. The most common applications of the 
Fourier transform are the analysis of linear time-invariant systems and 
spectral analysis.

The following equation defines the two-sided Fourier transform.

The following equation defines the two-sided inverse Fourier transform.

Two-sided means that the mathematical implementation of the forward and 
inverse Fourier transform considers all negative and positive frequencies 
and time of the signal. Single-sided means that the mathematical 
implementation of the transforms considers only the positive frequencies 
and time history of the signal.

A Fourier transform pair consists of the signal representation in both the 
time and frequency domain. The following relationship commonly denotes 
a Fourier transform pair.

X f( ) F x t( ){ } x t( )e j2πft– td
∞–

∞

∫= =

x t( ) F 1– X f( ){ } X f( )e j2πft fd
∞–

∞

∫= =

x t( ) X f( )⇔
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Discrete Fourier Transform (DFT)
The algorithm used to transform samples of the data from the time domain 
into the frequency domain is the discrete Fourier transform (DFT). The 
DFT establishes the relationship between the samples of a signal in the 
time domain and their representation in the frequency domain. The DFT 
is widely used in the fields of spectral analysis, applied mechanics, 
acoustics, medical imaging, numerical analysis, instrumentation, and 
telecommunications. Figure 4-4 illustrates using the DFT to transform 
data from the time domain into the frequency domain.

 

Figure 4-4.  Discrete Fourier Transform

Suppose you obtained N samples of a signal from a DAQ device. If you 
apply the DFT to N samples of this time-domain representation of the 
signal, the result also is of length N samples, but the information it contains 
is of the frequency-domain representation. 

Relationship between N Samples in the Frequency and Time Domains
If a signal is sampled at a given sampling rate, Equation 4-2 defines the 
time interval between the samples, or the sampling interval.

(4-2)

where ∆t is the sampling interval and fs is the sampling rate in samples per 
second (S/s).

The sampling interval is the smallest frequency that the system can resolve 
through the DFT or related routines.

Time Domain Representation of x[n] Frequency Domain Representation

DFT

t∆ 1
fs
---=
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Equation 4-3 defines the DFT. The equation results in X[k], the 
frequency-domain representation of the sample signal.

, (4-3)

where x[i] is the time-domain representation of the sample signal and N is 
the total number of samples. Both the time domain x and the frequency 
domain X have a total of N samples. 

Similar to the time spacing of ∆t between the samples of x in the time 
domain, you have a frequency spacing, or frequency resolution, between 
the components of X in the frequency domain, which Equation 4-4 defines.

(4-4)

where ∆f is the frequency resolution, fs is the sampling rate, N is the number 
of samples, ∆t is the sampling interval, and N∆t is the total acquisition time.

To improve the frequency resolution, that is, to decrease ∆f, you must 
increase N and keep fs constant or decrease fs and keep N constant. Both 
approaches are equivalent to increasing N∆t, which is the time duration of 
the acquired samples.

Example of Calculating DFT
This section provides an example of using Equation 4-3 to calculate the 
DFT for a DC signal. This example uses the following assumptions:

• X[0] corresponds to the DC component, or the average value, of the 
signal.

• The DC signal has a constant amplitude of +1 V. 

• The number of samples is four samples.

• Each of the samples has a value +1, as shown in Figure 4-5.

• The resulting time sequence for the four samples is given by the 
following equation.

x[0] = x[1] = x[3] = x[4] = 1

X k[ ] x i[ ]e j2πik N⁄–

i 0=

N 1–

∑= for k 0,1,2, … ,N 1–=

f∆
fs

N
---- 1

N∆t
----------= =
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Figure 4-5.  Time Sequence for DFT Samples

The DFT calculation makes use of Euler’s identity, which is given by the 
following equation.

exp (–iθ) = cos(θ) – jsin(θ)

If you use Equation 4-3 to calculate the DFT of the sequence shown in 
Figure 4-5 and use Euler’s identity, you get the following equations.

where X[0] is the DC component and N is the number of samples.

x[0] x[1] x[2] x[3]

Time
0 1 2 3

+1 V

A
m

pl
itu

de

X 0[ ] xie
j2πi0 N⁄–

i 0=

N 1–

∑ x 0[ ] x 1[ ] x 2[ ] x 3[ ] 4=+ + += =

X 1[ ] x 0[ ] x 1[ ] π
2
--- 
 cos j π

2
--- 
 sin– 

  x 2[ ] π( )cos j π( )sin–( )

x 3[ ] 3π
2

------ 
 cos j 3π

2
------ 
 sin– 

  1 j– 1– j+( ) 0==

+ + +=

X 2[ ] x 0[ ] x 1[ ] π( )cos j π( )sin–( ) x 2[ ] 2π( )cos j 2π( )sin–( )

x 3[ ] 3π( )cos j 3π( )sin–( ) 1 1– 1 1–+( ) 0==

+ + +=

X 3[ ] x 0[ ] x 1[ ] 3π
2

------ 
 cos j 3π

2
------ 
 sin– 

  x 2[ ] 3π( )cos j 3π( )sin–( )

x 3[ ] 9π
2

------ 
 cos j 9π

2
------ 
 sin– 

  1 j– 1– j–( ) 0==

+ + +=
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Therefore, except for the DC component, all other values for the sequence 
shown in Figure 4-5 are zero, which is as expected. However, the calculated 
value of X[0] depends on the value of N. Because in this example N = 4, 
X[0] = 4. If N = 10, the calculation results in X[0] = 10. This dependency of 
X[ ] on N also occurs for the other frequency components. Therefore, you 
usually divide the DFT output by N to obtain the correct magnitude of the 
frequency component.

Magnitude and Phase Information
N samples of the input signal result in N samples of the DFT. That is, the 
number of samples in both the time and frequency representations is the 
same. Equation 4-3 shows that regardless of whether the input signal x[i] is 
real or complex, X[k] is always complex, although the imaginary part may 
be zero. In other words, every frequency component has a magnitude and 
phase.

Normally the magnitude of the spectrum is displayed. The magnitude is the 
square root of the sum of the squares of the real and imaginary parts.

The phase is relative to the start of the time record or relative to a 
single-cycle cosine wave starting at the beginning of the time record. 
Single-channel phase measurements are stable only if the input signal is 
triggered. Dual-channel phase measurements compute phase differences 
between channels so if the channels are sampled simultaneously, triggering 
usually is not necessary.

The phase is the arctangent of the ratio of the imaginary and real parts and 
is usually between π and –π radians, or 180 and –180 degrees.

For real signals (x[i] real), such as those you obtain from the output of one 
channel of a DAQ device, the DFT is symmetric with properties given by 
the following equations.

|X[k]| = |X[N – k]|

phase(X[k]) = –phase(X[N – k])

The magnitude of X[k] is even symmetric, and phase(X[k]) is odd 
symmetric. An even symmetric signal is symmetric about the y-axis, and an 
odd symmetric signal is symmetric about the origin. Figure 4-6 illustrates 
even and odd symmetry.
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Figure 4-6.  Signal Symmetry

Because of this symmetry, the N samples of the DFT contain repetition of 
information. Because of this repetition of information, only half of the 
samples of the DFT actually need to be computed or displayed because you 
can obtain the other half from this repetition. If the input signal is complex, 
the DFT is asymmetrical, and you cannot use only half of the samples to 
obtain the other half.

Frequency Spacing between DFT Samples
If the sampling interval is ∆t seconds and the first data sample (k = 0) 
is at 0 seconds, the kth data sample, where k > 0 and is an integer, is at 
k∆t seconds. Similarly, if the frequency resolution is ∆f Hz, the kth sample 
of the DFT occurs at a frequency of k∆f Hz. However, this is valid for only 
up to the first half of the frequency components. The other half represent 
negative frequency components.

Depending on whether the number of samples N is even or odd, you can 
have a different interpretation of the frequency corresponding to the 
kth sample of the DFT. For example, let N = 8 and p represent the index of 
the Nyquist frequency p = N/2 = 4. Table 4-1 shows the ∆f to which each 
format element of the complex output sequence X corresponds.

y

x

y

x

Odd SymmetryEven Symmetry
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The negative entries in the second column beyond the Nyquist frequency 
represent negative frequencies, that is, those elements with an index 
value >p.

For N = 8, X[1] and X[7] have the same magnitude; X[2] and X[6] have 
the same magnitude; and X[3] and X[5] have the same magnitude. The 
difference is that X[1], X[2], and X[3] correspond to positive frequency 
components, while X[5], X[6], and X[7] correspond to negative frequency 
components. X[4] is at the Nyquist frequency.

Figure 4-7 illustrates the complex output sequence X for N = 8.

Table 4-1.  X[p] for N = 8

X[p] ∆f

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] 4∆f (Nyquist frequency)

X[5] –3∆f

X[6] –2∆f

X[7] –∆f
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Figure 4-7.  Complex Output Sequence X for N = 8

A representation where you see the positive and negative frequencies is the 
two-sided transform.

When N is odd, there is no component at the Nyquist frequency. Table 4-2 
lists the values of ∆f for X[p] when N = 7 and p = (N–1)/2 = (7–1)/2 = 3.

For N = 7, X[1] and X[6] have the same magnitude; X[2] and X[5] have the 
same magnitude; and X[3] and X[4] have the same magnitude. However, 
X[1], X[2], and X[3] correspond to positive frequencies, while X[4], X[5], 
and X[6] correspond to negative frequencies. Because N is odd, there is no 
component at the Nyquist frequency.

Table 4-2.  X[p] for N = 7

X[p] ∆f

X[0] DC

X[1] ∆f

X[2] 2∆f

X[3] 3∆f

X[4] –3∆f

X[5] –2∆f

X[6] –∆f

Positive
Frequencies

Negative
Frequencies

Nyquist
Component

DC



Chapter 4 Frequency Analysis

LabVIEW Analysis Concepts 4-12 ni.com

Figure 4-8 illustrates the complex output sequence X[p] for N = 7.
 

Figure 4-8.  Complex Output Sequence X[p] for N = 7

Figure 4-8 also shows a two-sided transform because it represents the 
positive and negative frequencies.

FFT Fundamentals
Directly implementing the DFT on N data samples requires approximately 
N2 complex operations and is a time-consuming process. The FFT is a 
fast algorithm for calculating the DFT. The following equation defines 
the DFT.

The following measurements comprise the basic functions for FFT-based 
signal analysis:

• FFT

• Power spectrum

• Cross power spectrum

You can use the basic functions as the building blocks for creating 
additional measurement functions, such as the frequency response, 
impulse response, coherence, amplitude spectrum, and phase spectrum.

Positive
Frequencies

Negative
Frequencies

DC

X k( ) x n( )e
j 2πnk

N
------------- 
 –

n 0=

N 1–

∑=
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The FFT and the power spectrum are useful for measuring the frequency 
content of stationary or transient signals. The FFT produces the average 
frequency content of a signal over the total acquisition. Therefore, use the 
FFT for stationary signal analysis or in cases where you need only the 
average energy at each frequency line.

An FFT is equivalent to a set of parallel filters of bandwidth ∆f centered at 
each frequency increment from DC to (Fs/2) – (Fs/N). Therefore, frequency 
lines also are known as frequency bins or FFT bins.

Refer to the Power Spectrum section of this chapter for more information 
about the power spectrum.

Computing Frequency Components
Each frequency component is the result of a dot product of the time-domain 
signal with the complex exponential at that frequency and is given by the 
following equation.

The DC component is the dot product of x(n) with [cos(0) – jsin(0)], or 
with 1.0.

The first bin, or frequency component, is the dot product of x(n) with 
cos(2πn/N) – jsin(2πn/N). Here, cos(2πn/N) is a single cycle of the cosine 
wave, and sin(2πn/N) is a single cycle of a sine wave.

In general, bin k is the dot product of x(n) with k cycles of the cosine wave 
for the real part of X(k) and the sine wave for the imaginary part of X(k).

The use of the FFT for frequency analysis implies two important 
relationships.

The first relationship links the highest frequency that can be analyzed to the 
sampling frequency and is given by the following equation.

,

where Fmax is the highest frequency that can be analyzed and fs is the 
sampling frequency. Refer to the Windowing section of this chapter for 
more information about Fmax.

X k( ) x n( )e
j 2πnk

N
------------- 
 –

n 0=

N 1–

∑ x n( ) 2πnk
N

------------- 
 cos j 2πnk

N
------------- 
 sin–

n 0=

N 1–

∑= =

Fmax
fs

2
---=
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The second relationship links the frequency resolution to the total 
acquisition time, which is related to the sampling frequency and the 
block size of the FFT and is given by the following equation.

,

where ∆f is the frequency resolution, T is the acquisition time, fs is the 
sampling frequency, and N is the block size of the FFT.

Fast FFT Sizes
When the size of the input sequence is a power of two, N = 2m, you can 
implement the computation of the DFT with approximately N log2(N) 
operations, which makes the calculation of the DFT much faster. 
DSP literature refers to the algorithms for faster DFT calculation as 
fast Fourier transforms (FFTs). Common input sequence sizes that are 
a power of two include 512, 1,024, and 2,048. 

When the size of the input sequence is not a power of two but is factorable 
as the product of small prime numbers, the FFT-based VIs use a mixed 
radix Cooley-Tukey algorithm to efficiently compute the DFT of the input 
sequence. For example, Equation 4-5 defines an input sequence size N as 
the product of small prime numbers.

(4-5)

For the input sequence size defined by Equation 4-5, the FFT-based VIs can 
compute the DFT with speeds comparable to an FFT whose input sequence 
size is a power of two. Common input sequence sizes that are factorable as 
the product of small prime numbers include 480, 640, 1,000, and 2,000.

Zero Padding
Zero padding is a technique typically employed to make the size of the 
input sequence equal to a power of two. In zero padding, you add zeros to 
the end of the input sequence so that the total number of samples is equal 
to the next higher power of two. For example, if you have 10 samples of 
a signal, you can add six zeros to make the total number of samples equal 
to 16, or 24, which is a power of two. Figure 4-9 illustrates padding 
10 samples of a signal with zeros to make the total number of samples 
equal 16.

f∆ 1
T
---

fs

N
----= =

N 2m3k5j= for m k j, , 0 1 2 3 …, , , ,=
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Figure 4-9.  Zero Padding

The addition of zeros to the end of the time-domain waveform does 
not improve the underlying frequency resolution associated with the 
time-domain signal. The only way to improve the frequency resolution of 
the time-domain signal is to increase the acquisition time and acquire 
longer time records.

In addition to making the total number of samples a power of two so that 
faster computation is made possible by using the FFT, zero padding can 
lead to an interpolated FFT result, which can produce a higher display 
resolution.

FFT VI
The polymorphic FFT VI computes the FFT of a signal and has two 
instances—Real FFT and Complex FFT.

The difference between the two instances is that the Real FFT instance 
computes the FFT of a real-valued signal, whereas the Complex FFT 
instance computes the FFT of a complex-valued signal. However, the 
outputs of both instances are complex.

Most real-world signals are real valued. Therefore, you can use the 
Real FFT instance for most applications. You also can use the Complex 
FFT instance by setting the imaginary part of the signal to zero. 
An example of an application where you use the Complex FFT instance 
is when the signal consists of both a real and an imaginary component. 
A signal consisting of a real and an imaginary component occurs frequently 
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in the field of telecommunications, where you modulate a waveform by a 
complex exponential. The process of modulation by a complex exponential 
results in a complex signal, as shown in Figure 4-10.

 

Figure 4-10.  Modulation by a Complex Exponential

Displaying Frequency Information from Transforms
The discrete implementation of the Fourier transform maps a digital signal 
into its Fourier series coefficients, or harmonics. Unfortunately, neither a 
time nor a frequency stamp is directly associated with the FFT operation. 
Therefore, you must specify the sampling interval ∆t.

Because an acquired array of samples represents a progression of equally 
spaced samples in time, you can determine the corresponding frequency in 
hertz. The following equation gives the sampling frequency fs for ∆t.

Figure 4-11 shows the block diagram of a VI that properly displays 
frequency information given the sampling interval 1.000E – 3 and returns 
the value for the frequency interval ∆f.

Figure 4-11.  Correctly Displaying Frequency Information

Modulation by
exp(–j   t)

ωx(t) ωωy(t) = x(t)cos(  t) – jx(t)sin(  t)

fs
1
∆ t
-----=
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Figure 4-12 shows the display and ∆f that the VI in Figure 4-11 returns.

Figure 4-12.  Properly Displayed Frequency Information

Two other common ways of presenting frequency information are 
displaying the DC component in the center and displaying one-sided 
spectrums. Refer to the Two-Sided, DC-Centered FFT section of this 
chapter for information about displaying the DC component in the center. 
Refer to the Power Spectrum section of this chapter for information about 
displaying one-sided spectrums.

Two-Sided, DC-Centered FFT
The two-sided, DC-centered FFT provides a method for displaying a 
spectrum with both positive and negative frequencies. Most introductory 
textbooks that discuss the Fourier transform and its properties present a 
table of two-sided Fourier transform pairs. You can use the frequency 
shifting property of the Fourier transform to obtain a two-sided, 
DC-centered representation. In a two-sided, DC-centered FFT, the 
DC component is in the middle of the buffer.
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Mathematical Representation of a Two-Sided, DC-Centered FFT
If  is a Fourier transform pair, then

Let

where fs is the sampling frequency in the discrete representation of the time 
signal.

Set f0 to the index corresponding to the Nyquist component fN, as shown in 
the following equation.

f0 is set to the index corresponding to fN because causing the DC component 
to appear in the location of the Nyquist component requires a frequency 
shift equal to fN.

Setting f0 to the index corresponding to fN results in the discrete Fourier 
transform pair shown in the following relationship.

where n is the number of elements in the discrete sequence, xi is the 
time-domain sequence, and Xk is the frequency-domain representation of xi.

Expanding the exponential term in the time-domain sequence produces the 
following equation.

(4-6)

Equation 4-6 represents a sequence of alternating +1 and –1. Equation 4-6 
means that negating the odd elements of the original time-domain sequence 
and performing an FFT on the new sequence produces a spectrum whose 
DC component appears in the center of the sequence.

x t( ) X f( )⇔

x t( )e
j2π f0 t

X f f0–( )⇔

∆ t 1
fs
---=

f
0

f
N

fs
2
--- 1

2∆ t
---------= = =

xi e
jiπ Xk n

2
---–⇔

ejiπ iπ( )cos j iπ( )sin+
1 if i is even
1– if i is odd




= =
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Therefore, if the original input sequence is 

X = {x0, x1, x2, x3, …, xn – 1}

then the sequence

Y = {x0, –x1, x2, –x3, …, xn – 1} (4-7)

generates a DC-centered spectrum.

Creating a Two-Sided, DC-Centered FFT
You can modulate a signal by the Nyquist frequency in place without extra 
buffers. Figure 4-13 shows the block diagram of the Nyquist Shift VI 
located in the labview\examples\analysis\dspxmpl.llb, which 
generates the sequence shown in Equation 4-7.

Figure 4-13.  Block Diagram of the Nyquist Shift VI

In Figure 4-13, the For Loop iterates through the input sequence, 
alternately multiplying array elements by 1.0 and –1.0, until it processes 
the entire input array.

Figure 4-14 shows the block diagram of a VI that generates a time-domain 
sequence and uses the Nyquist Shift and Power Spectrum VIs to produce a 
DC-centered spectrum.
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Figure 4-14.  Generating Time-Domain Sequence and DC-Centered Spectrum

In the VI in Figure 4-14, the Nyquist Shift VI preprocesses the 
time-domain sequence by negating every other element in the sequence. 
The Power Spectrum VI transforms the data into the frequency domain. To 
display the frequency axis of the processed data correctly, you must supply 
x0, which is the x-axis value of the initial frequency bin. For a DC-centered 
spectrum, the following equation computes x0.

Figure 4-15 shows the time-domain sequence and DC-centered spectrum 
the VI in Figure 4-14 returns.

x0
n
2
---–=
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Figure 4-15.  Raw Time-Domain Sequence and DC-Centered Spectrum

In the DC-centered spectrum display in Figure 4-15, the DC component 
appears in the center of the display at f = 0. The overall format resembles 
that commonly found in tables of Fourier transform pairs.

You can create DC-centered spectra for even-sized input sequences by 
negating the odd elements of the input sequence.

You cannot create DC-centered spectra by directly negating the odd 
elements of an input time-domain sequence containing an odd number of 
elements because the Nyquist frequency appears between two frequency 
bins. To create DC-centered spectra for odd-sized input sequences, you 
must rotate the FFT arrays by the amount given in the following 
relationship.

n 1–
2

------------
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For a DC-centered spectrum created from an odd-sized input sequence, the 
following equation computes x0.

Power Spectrum
As described in the Magnitude and Phase Information section of this 
chapter, the DFT or FFT of a real signal is a complex number, having a real 
and an imaginary part. You can obtain the power in each frequency 
component represented by the DFT or FFT by squaring the magnitude 
of that frequency component. Thus, the power in the kth frequency 
component—that is, the kth element of the DFT or FFT—is given by the 
following equation.

power = |X[k]|2,

where |X[k]| is the magnitude of the frequency component. Refer to the 
Magnitude and Phase Information section of this chapter for information 
about computing the magnitude of the frequency components.

The power spectrum returns an array that contains the two-sided power 
spectrum of a time-domain signal and that shows the power in each of the 
frequency components. You can use Equation 4-8 to compute the two-sided 
power spectrum from the FFT.

(4-8)

where FFT*(A) denotes the complex conjugate of FFT(A). The complex 
conjugate of FFT(A) results from negating the imaginary part of FFT(A).

The values of the elements in the power spectrum array are proportional 
to the magnitude squared of each frequency component making up the 
time-domain signal. Because the DFT or FFT of a real signal is symmetric, 
the power at a positive frequency of k∆f is the same as the power at the 
corresponding negative frequency of –k∆f, excluding DC and Nyquist 
components. The total power in the DC component is |X[0]|2. The total 
power in the Nyquist component is |X[N/2]|2.

x0
n 1–

2
------------–=

Power Spectrum SAA f( ) FFT A( ) FFT∗ A( )×
N

-------------------------------------------------=
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A plot of the two-sided power spectrum shows negative and positive 
frequency components at a height given by the following relationship.

where Ak is the peak amplitude of the sinusoidal component at frequency k. 
The DC component has a height of where A0 is the amplitude of the DC 
component in the signal.

Figure 4-16 shows the power spectrum result from a time-domain signal 
that consists of a 3 Vrms sine wave at 128 Hz, a 3 Vrms sine wave at 256 Hz, 
and a DC component of 2 VDC. A 3 Vrms sine wave has a peak voltage 
of 3.0 •  or about 4.2426 V. The power spectrum is computed from the 
basic FFT function, as shown in Equation 4-8.

Figure 4-16.  Two-Sided Power Spectrum of Signal

Converting a Two-Sided Power Spectrum to a Single-Sided Power 
Spectrum

Most frequency analysis instruments display only the positive half of 
the frequency spectrum because the spectrum of a real-world signal is 
symmetrical around DC. Thus, the negative frequency information is 
redundant. The two-sided results from the analysis functions include the 
positive half of the spectrum followed by the negative half of the spectrum, 
as shown in Figure 4-16.

A two-sided power spectrum displays half the energy at the positive 
frequency and half the energy at the negative frequency. Therefore, to 
convert a two-sided spectrum to a single-sided spectrum, you discard the 

Ak
2

4
------

A0
2

2
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second half of the array and multiply every point except for DC by two, as 
shown in the following equations.

where SAA(i) is the two-sided power spectrum, GAA(i) is the single-sided 
power spectrum, and N is the length of the two-sided power spectrum. You 
discard the remainder of the two-sided power spectrum SAA, N/2 through 
N – 1.

The non-DC values in the single-sided spectrum have a height given by the 
following relationship.

(4-9)

Equation 4-9 is equivalent to the following relationship.

where  is the root mean square (rms) amplitude of the sinusoidal 

component at frequency k.

The units of a power spectrum are often quantity squared rms, where 
quantity is the unit of the time-domain signal. For example, the single-sided 
power spectrum of a voltage waveform is in volts rms squared, .

Figure 4-17 shows the single-sided spectrum of the signal whose two-sided 
spectrum Figure 4-16 shows.

GAA i( ) SAA i( ), i 0 (DC)==

GAA i( ) 2SAA i( )( ), i 1 to = N
2
---- 1–=

Ak
2

2
------

Ak

2
------- 
 

2

Ak

2
-------

Vrms
2
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Figure 4-17.  Single-Sided Power Spectrum

In Figure 4-17, the height of the non-DC frequency components is twice the 
height of the non-DC frequency component in Figure 4-16. Also, the 
spectrum in Figure 4-17 stops at half the frequency of that in Figure 4-16.

Loss of Phase Information
Because the power is obtained by squaring the magnitude of the DFT or 
FFT, the power spectrum is always real. The disadvantage of obtaining the 
power by squaring the magnitude of the DFT or FFT is that the phase 
information is lost. If you want phase information, you must use the DFT 
or FFT, which gives you a complex output.

You can use the power spectrum in applications where phase information is 
not necessary, such as calculating the harmonic power in a signal. You can 
apply a sinusoidal input to a nonlinear system and see the power in the 
harmonics at the system output.

Computations on the Spectrum
When you have the amplitude or power spectrum, you can compute several 
useful characteristics of the input signal, such as power and frequency, 
noise level, and power spectral density.

Estimating Power and Frequency
If a frequency component is between two frequency lines, the frequency 
component appears as energy spread among adjacent frequency lines with 
reduced amplitude. The actual peak is between the two frequency lines. 
You can estimate the actual frequency of a discrete frequency component 
to a greater resolution than the ∆f given by the FFT by performing a 
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weighted average of the frequencies around a detected peak in the power 
spectrum, as shown in the following equation.

where j is the array index of the apparent peak of the frequency of interest.

The span j ± 3 is reasonable because it represents a spread wider than the 
main lobes of the smoothing windows listed in Table 5-3, Correction 
Factors and Worst-Case Amplitude Errors for Smoothing Windows, of 
Chapter 5, Smoothing Windows.

You can estimate the power in  of a discrete peak frequency 
component by summing the power in the bins around the peak. In other 
words, you compute the area under the peak. You can use the following 
equation to estimate the power of a discrete peak frequency component.

(4-10)

Equation 4-10 is valid only for a spectrum made up of discrete frequency 
components. It is not valid for a continuous spectrum. Also, if two or more 
frequency peaks are within six lines of each other, they contribute to 
inflating the estimated powers and skewing the actual frequencies. You 
can reduce this effect by decreasing the number of lines spanned by 
Equation 4-10. If two peaks are within six lines of each other, it is likely 
that they are already interfering with one another because of spectral 
leakage.

If you want the total power in a given frequency range, sum the power in 
each bin included in the frequency range and divide by the noise power 
bandwidth of the smoothing window. Refer to Chapter 5, Smoothing 
Windows, for information about the noise power bandwidth of smoothing 
windows.

Estimated Frequency

Power i( ) i∆f( )( )
i j 3–=

j 3+

∑

Power i( )
i j 3–=

j 3+

∑

------------------------------------------------------=

Vrms
2

Estimated Power

Power i( )
i j 3–=

j 3+

∑
noise power bandwidth of window
-----------------------------------------------------------------------------------=



Chapter 4 Frequency Analysis

© National Instruments Corporation 4-27 LabVIEW Analysis Concepts

Computing Noise Level and Power Spectral Density
The measurement of noise levels depends on the bandwidth of the 
measurement. When looking at the noise floor of a power spectrum, you are 
looking at the narrowband noise level in each FFT bin. Therefore, the noise 
floor of a given power spectrum depends on the ∆f of the spectrum, which 
is in turn controlled by the sampling rate and the number of points in the 
data set. In other words, the noise level at each frequency line is equivalent 
to the noise level obtained using a ∆f Hz filter centered at that frequency 
line. Therefore, for a given sampling rate, doubling the number of data 
points acquired reduces the noise power that appears in each bin by 3 dB. 
Theoretically, discrete frequency components have zero bandwidth and 
therefore do not scale with the number of points or frequency range of 
the FFT.

To compute the signal-to-noise ratio (SNR), compare the peak power in 
the frequencies of interest to the broadband noise level. Compute the 
broadband noise level in  by summing all the power spectrum bins, 
excluding any peaks and the DC component, and dividing the sum by the 
equivalent noise bandwidth of the window.

Because of noise-level scaling with ∆f, spectra for noise measurement often 
are displayed in a normalized format called power or amplitude spectral 
density. The power or amplitude spectral density normalizes the power or 
amplitude spectrum to the spectrum measured by a 1 Hz-wide square filter, 
a convention for noise-level measurements. The level at each frequency line 
is equivalent to the level obtained using a 1 Hz filter centered at that 
frequency line.

You can use the following equation to compute the power spectral density.

You can use the following equation to compute the amplitude spectral 
density.

The spectral density format is appropriate for random or noise signals. 
The spectral density format is not appropriate for discrete frequency 
components because discrete frequency components theoretically have 
zero bandwidth.

Vrms
2

Power Spectral Density
Power Spectrum in Vrms

2

∆ f Noise Power Bandwidth of Window×
---------------------------------------------------------------------------------------------------=

Amplitude Spectral Density
Amplitude Spectrum in Vrms

∆ f Noise Power Bandwidth of Window×
-------------------------------------------------------------------------------------------------------=
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Computing the Amplitude and Phase Spectrums
The power spectrum shows power as the mean squared amplitude at each 
frequency line but includes no phase information. Because the power 
spectrum loses phase information, you might want to use the FFT to view 
both the frequency and the phase information of a signal.

The phase information the FFT provides is the phase relative to the start of 
the time-domain signal. Therefore, you must trigger from the same point in 
the signal to obtain consistent phase readings. A sine wave shows a phase 
of –90° at the sine wave frequency. A cosine wave shows a 0° phase. 
Usually, the primary area of interest for analysis applications is either the 
relative phases between components or the phase difference between two 
signals acquired simultaneously. You can view the phase difference 
between two signals by using some of the advanced FFT functions. Refer 
to the Frequency Response and Network Analysis section of this chapter for 
information about the advanced FFT functions.

The FFT produces a two-sided spectrum in complex form with real and 
imaginary parts. You must scale and convert the two-sided spectrum to 
polar form to obtain magnitude and phase. The frequency axis of the polar 
form is identical to the frequency axis of the two-sided power spectrum. 
The amplitude of the FFT is related to the number of points in the 
time-domain signal. Use the following equations to compute the amplitude 
and phase versus frequency from the FFT.

(4-11)

(4-12)

where the arctangent function returns values of phase between –π and +π, 
a full range of 2π radians.

The following relationship defines the rectangular-to-polar conversion 
function.

(4-13)

Amplitude spectrum in quantity peak Magnitude FFT A( )[ ]
N

--------------------------------------------------=

real FFT A( )[ ][ ]2 imag FFT A( )[ ][ ]2+
N

----------------------------------------------------------------------------------------------=

Phase spectrum in radians Phase FFT A( )[ ]=

arctangent imag FFT A( )[ ]
real FFT A( )[ ]
------------------------------------ 
 =

FFT A( )
N

-------------------
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Using the rectangular-to-polar conversion function to convert the complex 
spectrum to its magnitude (r) and phase (φ) is equivalent to using 
Equations 4-11 and 4-12.

The two-sided amplitude spectrum actually shows half the peak amplitude 
at the positive and negative frequencies. To convert to the single-sided 
form, multiply each frequency, other than DC, by two and discard the 
second half of the array. The units of the single-sided amplitude spectrum 
are then in quantity peak and give the peak amplitude of each sinusoidal 
component making up the time-domain signal.

To obtain the single-sided phase spectrum, discard the second half of the 
array.

Calculating Amplitude in Vrms and Phase in Degrees
To view the amplitude spectrum in volts rms (Vrms), divide the non-DC 
components by the square root of two after converting the spectrum to the 
single-sided form. Because you multiply the non-DC components by two 
to convert from the two-sided amplitude spectrum to the single-sided 
amplitude spectrum, you can calculate the rms amplitude spectrum directly 
from the two-sided amplitude spectrum by multiplying the non-DC 
components by the square root of two and discarding the second half of 
the array. The following equations show the entire computation from a 
two-sided FFT to a single-sided amplitude spectrum.

where i is the frequency line number, or array index, of the FFT of A.

The magnitude in Vrms gives the rms voltage of each sinusoidal component 
of the time-domain signal.

The amplitude spectrum is closely related to the power spectrum. You can 
compute the single-sided power spectrum by squaring the single-sided rms 
amplitude spectrum. Conversely, you can compute the amplitude spectrum 
by taking the square root of the power spectrum. Refer to the Power 
Spectrum section of this chapter for information about computing the 
power spectrum.

Amplitude Spectrum Vrms 2 Magnitude FFT A( )[ ]
N

--------------------------------------------------= for i 1 to N
2
---- 1–=

Amplitude Spectrum Vrms
Magnitude FFT A( )[ ]

N
--------------------------------------------------= for i 0 (DC)=
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Use the following equation to view the phase spectrum in degrees.

Frequency Response Function
When analyzing two simultaneously sampled channels, you usually want 
to know the differences between the two channels rather than the properties 
of each.

In a typical dual-channel analyzer, as shown in Figure 4-18, the 
instantaneous spectrum is computed using a window function and the FFT 
for each channel. The averaged FFT spectrum, auto power spectrum, and 
cross power spectrum are computed and used in estimating the frequency 
response function. You also can use the coherence function to check the 
validity of the frequency response function.

Figure 4-18.  Dual-Channel Frequency Analysis

The frequency response of a system is described by the magnitude, |H|, and 
phase, ∠H, at each frequency. The gain of the system is the same as its 
magnitude and is the ratio of the output magnitude to the input magnitude 
at each frequency. The phase of the system is the difference of the output 
phase and input phase at each frequency.

Phase Spectrum in Degrees 180
π
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Cross Power Spectrum
The cross power spectrum is not typically used as a direct measurement but 
is an important building block for other measurements.

Use the following equation to compute the two-sided cross power spectrum 
of two time-domain signals A and B.

The cross power spectrum is a two-sided complex form, having real and 
imaginary parts. To convert the cross power spectrum to magnitude and 
phase, use the rectangular-to-polar conversion function from 
Equation 4-13.

To convert the cross power spectrum to a single-sided form, use the 
methods and equations from the Converting a Two-Sided Power Spectrum 
to a Single-Sided Power Spectrum section of this chapter. The single-sided 
cross power spectrum yields the product of the rms amplitudes and the 
phase difference between the two signals A and B. The units of the 
single-sided cross power spectrum are in quantity rms squared, for 
example, .

The power spectrum is equivalent to the cross power spectrum when signals 
A and B are the same signal. Therefore, the power spectrum is often referred 
to as the auto power spectrum or the auto spectrum.

Frequency Response and Network Analysis
You can use the following functions to characterize the frequency response 
of a network:

• Frequency response function

• Impulse response function

• Coherence function

Cross Power Spectrum SAB f( ) FFT B( ) FFT∗ A( )×
N2

-----------------------------------------------=

Vrms
2
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Frequency Response Function
Figure 4-19 illustrates the method for measuring the frequency response of 
a network.

Figure 4-19.  Configuration for Network Analysis

In Figure 4-19, you apply a stimulus to the network under test and measure 
the stimulus and response signals. From the measured stimulus and 
response signals, you compute the frequency response function. The 
frequency response function gives the gain and phase versus frequency 
of a network. You use Equation 4-14 to compute the response function.

(4-14)

where H( f) is the response function, A is the stimulus signal, B is the 
response signal, SAB( f) is the cross power spectrum of A and B, and SAA( f) 
is the power spectrum of A.

The frequency response function is a two-sided complex form, having real 
and imaginary parts. To convert to the frequency response gain and the 
frequency response phase, use the rectangular-to-polar conversion function 
from Equation 4-13. To convert to single-sided form, discard the second 
half of the response function array.

You might want to take several frequency response function readings and 
compute the average. Complete the following steps to compute the average 
frequency response function.

1. Compute the average SAB( f) by finding the sum in the complex form 
and dividing the sum by the number of measurements.

2. Compute the average SAA( f) by finding the sum and dividing the sum 
by the number of measurements.

3. Substitute the average SAB( f) and the average SAA( f) in Equation 4-14.

Measured Response(B)Applied Stimulus

Measured Stimulus (A)

Network 
Under
Test

H f( )
SAB f( )
SAA f( )
---------------=
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Impulse Response Function
The impulse response function of a network is the time-domain 
representation of the frequency response function of the network. 
The impulse response function is the output time-domain signal 
generated by applying an impulse to the network at time t = 0.

To compute the impulse response of the network, perform an inverse 
FFT on the two-sided complex frequency response function from 
Equation 4-14. To compute the average impulse response, perform an 
inverse FFT on the average frequency response function.

Coherence Function
The coherence function provides an indication of the quality of the 
frequency response function measurement and of how much of the 
response energy is correlated to the stimulus energy. If there is another 
signal present in the response, either from excessive noise or from another 
signal, the quality of the network response measurement is poor. You can 
use the coherence function to identify both excessive noise and which of 
the multiple signal sources are contributing to the response signal. Use 
Equation 4-15 to compute the coherence function.

(4-15)

where SAB is the cross power spectrum, SAA is the power spectrum of A, and 
SBB is the power spectrum of B.

Equation 4-15 yields a coherence factor with a value between zero and one 
versus frequency. A value of zero for a given frequency line indicates no 
correlation between the response and the stimulus signal. A value of one for 
a given frequency line indicates that 100% of the response energy is due to 
the stimulus signal and that no interference is occurring at that frequency.

For a valid result, the coherence function requires an average of two or 
more readings of the stimulus and response signals. For only one reading, 
the coherence function registers unity at all frequencies.

γ2 f( )
Magnitude of the Average SAB f( )( )2

Average SAA f( )( ) Average SBB f( )( )
---------------------------------------------------------------------------------------=
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Windowing
In practical applications, you obtain only a finite number of samples of the 
signal. The FFT assumes that this time record repeats. If you have an 
integral number of cycles in your time record, the repetition is smooth at 
the boundaries. However, in practical applications, you usually have a 
nonintegral number of cycles. In the case of a nonintegral number of cycles, 
the repetition results in discontinuities at the boundaries. These artificial 
discontinuities were not originally present in your signal and result in a 
smearing or leakage of energy from your actual frequency to all other 
frequencies. This phenomenon is spectral leakage. The amount of leakage 
depends on the amplitude of the discontinuity, with a larger amplitude 
causing more leakage.

A signal that is exactly periodic in the time record is composed of sine 
waves with exact integral cycles within the time record. Such a perfectly 
periodic signal has a spectrum with energy contained in exact frequency 
bins.

A signal that is not periodic in the time record has a spectrum with energy 
split or spread across multiple frequency bins. The FFT spectrum models 
the time domain as if the time record repeated itself forever. It assumes that 
the analyzed record is just one period of an infinitely repeating periodic 
signal. 

Because the amount of leakage is dependent on the amplitude of the 
discontinuity at the boundaries, you can use windowing to reduce the size 
of the discontinuity and reduce spectral leakage. Windowing consists of 
multiplying the time-domain signal by another time-domain waveform, 
known as a window, whose amplitude tapers gradually and smoothly 
towards zero at edges. The result is a windowed signal with very small or 
no discontinuities and therefore reduced spectral leakage. You can choose 
from among many different types of windows. The one you choose depends 
on your application and some prior knowledge of the signal you are 
analyzing.

Refer to Chapter 5, Smoothing Windows, for more information about 
windowing.
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Averaging to Improve the Measurement
Averaging successive measurements usually improves measurement 
accuracy. Averaging usually is performed on measurement results or 
on individual spectra but not directly on the time record.

You can choose from among the following common averaging modes:

• RMS averaging

• Vector averaging

• Peak hold

RMS Averaging
RMS averaging reduces signal fluctuations but not the noise floor. The 
noise floor is not reduced because RMS averaging averages the energy, or 
power, of the signal. RMS averaging also causes averaged RMS quantities 
of single-channel measurements to have zero phase. RMS averaging for 
dual-channel measurements preserves important phase information. 
RMS-averaged measurements are computed according to the following 
equations.

where X is the complex FFT of signal x (stimulus), Y is the complex FFT of 
signal y (response), X* is the complex conjugate of X, Y* is the complex 
conjugate of Y, and 〈X〉 is the average of X, real and imaginary parts being
averaged separately.

FFT spectrum

power spectrum

cross spectrum

frequency response  

 

X∗ X•〈 〉

X∗ X•〈 〉

X∗ Y•〈 〉

H1 X∗ Y•〈 〉
X∗ X•〈 〉

---------------------=

H2 Y∗ Y•
Y∗ X•
---------------〈 〉=

H3 H1 H2+( )
2

--------------------------=
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Vector Averaging
Vector averaging eliminates noise from synchronous signals. Vector 
averaging computes the average of complex quantities directly. The real 
part is averaged separately from the imaginary part. Averaging the real part 
separately from the imaginary part can reduce the noise floor for random 
signals because random signals are not phase coherent from one time 
record to the next. The real and imaginary parts are averaged separately, 
reducing noise but usually requiring a trigger.

where X is the complex FFT of signal x (stimulus), Y is the complex FFT of 
signal y (response), X* is the complex conjugate of X, and 〈X〉 is the average 
of X, real and imaginary parts being averaged separately.

Peak Hold
Peak hold averaging retains the peak levels of the averaged quantities. Peak 
hold averaging is performed at each frequency line separately, retaining 
peak levels from one FFT record to the next.

where X is the complex FFT of signal x (stimulus) and X* is the complex 
conjugate of X.

FFT spectrum

power spectrum

cross spectrum

frequency response  (H1 = H2 = H3)

FFT spectrum

power spectrum

X〈 〉

X∗〈 〉 X〈 〉•

X∗〈 〉 Y〈 〉•
Y〈 〉
X〈 〉

---------

MAX X∗ X•( )

MAX X∗ X•( )
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Weighting
When performing RMS or vector averaging, you can weight each new 
spectral record using either linear or exponential weighting.

Linear weighting combines N spectral records with equal weighting. When 
the number of averages is completed, the analyzer stops averaging and 
presents the averaged results. 

Exponential weighting emphasizes new spectral data more than old and is 
a continuous process.

Weighting is applied according to the following equation.

,

where Xi is the result of the analysis performed on the ith block, Yi is the 
result of the averaging process from X1 to Xi, N = i for linear weighting, 
and N is a constant for exponential weighting (N = 1 for i = 1).

Echo Detection
Echo detection using Hilbert transforms is a common measurement for the 
analysis of modulation systems.

Equation 4-16 describes a time-domain signal. Equation 4-17 yields the 
Hilbert transform of the time-domain signal.

x(t) = Ae–t/τcos(2πf0t) (4-16)

xH(t) = –Ae–t/τsin(2πf0t) (4-17)

where A is the amplitude, f0 is the natural resonant frequency, and τ is the 
time decay constant.

Equation 4-18 yields the natural logarithm of the magnitude of the analytic 
signal xA(t).

(4-18)

Yi
N 1–

N
-------------Yi 1–

1
N
---- Xi+=

xA t( )ln x t( ) jxH t( )+ln t
τ
-- Aln+–= =
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The result from Equation 4-18 has the form of a line with slope . 

Therefore, you can extract the time constant of the system by graphing 

ln|xA(t)|.

Figure 4-20 shows a time-domain signal containing an echo signal.

Figure 4-20.  Echo Signal

The following conditions make the echo signal difficult to locate in 
Figure 4-20:

• The time delay between the source and the echo signal is short relative 
to the time decay constant of the system.

• The echo amplitude is small compared to the source.

You can make the echo signal visible by plotting the magnitude of xA(t) on 
a logarithmic scale, as shown in Figure 4-21.

Figure 4-21.  Echogram of the Magnitude of xA(t)

m 1
τ
---–=
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In Figure 4-21, the discontinuity is plainly visible and indicates the location 
of the time delay of the echo.

Figure 4-22 shows a section of the block diagram of the VI used to produce 
Figures 4-20 and 4-21.

 

Figure 4-22.  Echo Detector Block Diagram

The VI in Figure 4-22 completes the following steps to detect an echo.

1. Processes the input signal with the Fast Hilbert Transform VI to 
produce the analytic signal xA(t).

2. Computes the magnitude of xA(t) with the 1D Rectangular To Polar VI.

3. Computes the natural log of xA(t) to detect the presence of an echo.
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5
Smoothing Windows

This chapter describes spectral leakage, how to use smoothing windows to 
decrease spectral leakage, the different types of smoothing windows, how 
to choose the correct type of smoothing window, the differences between 
smoothing windows used for spectral analysis and smoothing windows 
used for filter coefficient design, and the importance of scaling smoothing 
windows.

Applying a smoothing window to a signal is windowing. You can use 
windowing to complete the following analysis operations:

• Define the duration of the observation.

• Reduce spectral leakage.

• Separate a small amplitude signal from a larger amplitude signal with 
frequencies very close to each other.

• Design FIR filter coefficients.

The Windows VIs provide a simple method of improving the spectral 
characteristics of a sampled signal. Use the NI Example Finder to find 
examples of using the Windows VIs.

Spectral Leakage
According to the Shannon Sampling Theorem, you can completely 
reconstruct a continuous-time signal from discrete, equally spaced samples 
if the highest frequency in the time signal is less than half the sampling 
frequency. Half the sampling frequency equals the Nyquist frequency. 
The Shannon Sampling Theorem bridges the gap between continuous-time 
signals and digital-time signals. Refer to Chapter 1, Introduction to Digital 
Signal Processing and Analysis in LabVIEW, for more information about 
the Shannon Sampling Theorem.

In practical, signal-sampling applications, digitizing a time signal results in 
a finite record of the signal, even when you carefully observe the Shannon 
Sampling Theorem and sampling conditions. Even when the data meets the 
Nyquist criterion, the finite sampling record might cause energy leakage, 
called spectral leakage. Therefore, even though you use proper signal 
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acquisition techniques, the measurement might not result in a scaled, 
single-sided spectrum because of spectral leakage. In spectral leakage, the 
energy at one frequency appears to leak out into all other frequencies.

Spectral leakage results from an assumption in the FFT and DFT 
algorithms that the time record exactly repeats throughout all time. Thus, 
signals in a time record are periodic at intervals that correspond to the 
length of the time record. When you use the FFT or DFT to measure the 
frequency content of data, the transforms assume that the finite data set is 
one period of a periodic signal. Therefore, the finiteness of the sampling 
record results in a truncated waveform with different spectral 
characteristics from the original continuous-time signal, and the finiteness 
can introduce sharp transition changes into the measured data. The sharp 
transitions are discontinuities. Figure 5-1 illustrates discontinuities.

Figure 5-1.  Periodic Waveform Created from Sampled Period

The discontinuities shown in Figure 5-1 produce leakage of spectral 
information. Spectral leakage produces a discrete-time spectrum that 
appears as a smeared version of the original continuous-time spectrum.

Sampling an Integer Number of Cycles
Spectral leakage occurs only when the sample data set consists of a 
noninteger number of cycles. Figure 5-2 shows a sine wave sampled at 
an integer number of cycles and the Fourier transform of the sine wave.

Time

One Period Discontinuity
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Figure 5-2.  Sine Wave and Corresponding Fourier Transform

In Figure 5-2, Graph 1 shows the sampled time-domain waveform. Graph 2 
shows the periodic time waveform of the sine wave from Graph 1. In 
Graph 2, the waveform repeats to fulfill the assumption of periodicity for 
the Fourier transform. Graph 3 shows the spectral representation of the 
waveform.

Because the time record in Graph 2 is periodic with no discontinuities, 
its spectrum appears in Graph 3 as a single line showing the frequency of 
the sine wave. The waveform in Graph 2 does not have any discontinuities 
because the data set is from an integer number of cycles—in this case, one.

The following methods are the only methods that guarantee you always 
acquire an integer number of cycles:

• Sample synchronously with respect to the signal you measure. 
Therefore, you can acquire an integral number of cycles deliberately.

• Capture a transient signal that fits entirely into the time record.

Sampling a Noninteger Number of Cycles
Usually, an unknown signal you are measuring is a stationary signal. 
A stationary signal is present before, during, and after data acquisition. 
When measuring a stationary signal, you cannot guarantee that you are 
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sampling an integer number of cycles. If the time record contains a 
noninteger number of cycles, spectral leakage occurs because the 
noninteger cycle frequency component of the signal does not correspond 
exactly to one of the spectrum frequency lines. Spectral leakage distorts the 
measurement in such a way that energy from a given frequency component 
appears to spread over adjacent frequency lines or bins, resulting in a 
smeared spectrum. You can use smoothing windows to minimize the 
effects of performing an FFT over a noninteger number of cycles.

Because of the assumption of periodicity of the waveform, artificial 
discontinuities between successive periods occur when you sample a 
noninteger number of cycles. The artificial discontinuities appear as very 
high frequencies in the spectrum of the signal—frequencies that are not 
present in the original signal. The high frequencies of the discontinuities 
can be much higher than the Nyquist frequency and alias somewhere 
between 0 and fs/2. Therefore, spectral leakage occurs. The spectrum you 
obtain by using the DFT or FFT is a smeared version of the spectrum and 
is not the actual spectrum of the original signal.

Figure 5-3 shows a sine wave sampled at a noninteger number of cycles and 
the Fourier transform of the sine wave. 

 

Figure 5-3.  Spectral Representation When Sampling a Noninteger 
Number of Samples
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In Figure 5-3, Graph 1 consists of 1.25 cycles of the sine wave. In Graph 2, 
the waveform repeats periodically to fulfill the assumption of periodicity 
for the Fourier transform. Graph 3 shows the spectral representation of the 
waveform. The energy is spread, or smeared, over a wide range of 
frequencies. The energy has leaked out of one of the FFT lines and smeared 
itself into all the other lines, causing spectral leakage.

Spectral leakage occurs because of the finite time record of the input signal. 
To overcome spectral leakage, you can take an infinite time record, 
from –infinity to +infinity. With an infinite time record, the FFT calculates 
one single line at the correct frequency. However, waiting for infinite time 
is not possible in practice. To overcome the limitations of a finite time 
record, windowing is used to reduce the spectral leakage.

In addition to causing amplitude accuracy errors, spectral leakage can 
obscure adjacent frequency peaks. Figure 5-4 shows the spectrum for two 
close frequency components when no smoothing window is used and when 
a Hanning window is used.

Figure 5-4.  Spectral Leakage Obscuring Adjacent Frequency Components

In Figure 5-4, the second peak stands out more prominently in the 
windowed signal than it does in the signal with no smoothing window 
applied.

Windowing Signals
Use smoothing windows to improve the spectral characteristics of a 
sampled signal. When performing Fourier or spectral analysis on 
finite-length data, you can use smoothing windows to minimize the 
discontinuities of truncated waveforms, thus reducing spectral leakage. 
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The amount of spectral leakage depends on the amplitude of the 
discontinuity. As the discontinuity becomes larger, spectral leakage 
increases, and vice versa. Smoothing windows reduce the amplitude of the 
discontinuities at the boundaries of each period and act like predefined, 
narrowband, lowpass filters. 

The process of windowing a signal involves multiplying the time record 
by a smoothing window of finite length whose amplitude varies smoothly 
and gradually towards zero at the edges. The length, or time interval, 
of a smoothing window is defined in terms of number of samples. 
Multiplication in the time domain is equivalent to convolution in the 
frequency domain. Therefore, the spectrum of the windowed signal is a 
convolution of the spectrum of the original signal with the spectrum of the 
smoothing window. Windowing changes the shape of the signal in the time 
domain, as well as affecting the spectrum that you see.

Figure 5-5 illustrates convolving the original spectrum of a signal with the 
spectrum of a smoothing window.

Figure 5-5.  Frequency Characteristics of a Windowed Spectrum

Even if you do not apply a smoothing window to a signal, a windowing 
effect still occurs. The acquisition of a finite time record of an input signal 
produces the effect of multiplying the signal in the time domain by a 
uniform window. The uniform window has a rectangular shape and uniform 
height. The multiplication of the input signal in the time domain by the 
uniform window is equivalent to convolving the spectrum of the signal with 

*

Windowed Signal Spectrum

Signal Spectrum Window Spectrum
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the spectrum of the uniform window in the frequency domain, which has a 
sinc function characteristic.

Figure 5-6 shows the result of applying a Hamming window to a 
time-domain signal.

 

Figure 5-6.  Time Signal Windowed Using a Hamming Window

In Figure 5-6, the time waveform of the windowed signal gradually tapers 
to zero at the ends because the Hamming window minimizes the 
discontinuities along the transition edges of the waveform. Applying a 
smoothing window to time-domain data before the transform of the data 
into the frequency domain minimizes spectral leakage.

Figure 5-7 shows the effects of the following smoothing windows on a 
signal:

• None (uniform)

• Hanning

• Flat top 



Chapter 5 Smoothing Windows

LabVIEW Analysis Concepts 5-8 ni.com

Figure 5-7.  Power Spectrum of 1 Vrms Signal at 256 Hz with Uniform, Hanning, 
and Flat Top Windows

The data set for the signal in Figure 5-7 consists of an integer number of 
cycles, 256, in a 1,024-point record. If the frequency components of the 
original signal match a frequency line exactly, as is the case when you 
acquire an integer number of cycles, you see only the main lobe of the 
spectrum. The smoothing windows have a main lobe around the frequency 
of interest. The main lobe is a frequency-domain characteristic of windows. 
The uniform window has the narrowest lobe. The Hanning and flat top 
windows introduce some spreading. The flat top window has a broader 
main lobe than the uniform or Hanning windows. For an integer number of 
cycles, all smoothing windows yield the same peak amplitude reading and 
have excellent amplitude accuracy. Side lobes do not appear because the 
spectrum of the smoothing window approaches zero at ∆f intervals on 
either side of the main lobe.

Figure 5-7 also shows the values at frequency lines of 254 Hz through 
258 Hz for each smoothing window. The amplitude error at 256 Hz equals 
0 dB for each smoothing window. The graph shows the spectrum values 
between 240 Hz and 272 Hz. The actual values in the resulting spectrum 
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array for each smoothing window at 254 Hz through 258 Hz are shown 
below the graph. ∆f equals 1 Hz.

If a time record does not contain an integer number of cycles, the 
continuous spectrum of the smoothing window shifts from the main lobe 
center at a fraction of ∆f that corresponds to the difference between the 
frequency component and the FFT line frequencies. This shift causes the 
side lobes to appear in the spectrum. In addition, amplitude error occurs at 
the frequency peak because sampling of the main lobe is off center and 
smears the spectrum. Figure 5-8 shows the effect of spectral leakage on a 
signal whose data set consists of 256.5 cycles.

Figure 5-8.  Power Spectrum of 1 Vrms Signal at 256.5 Hz with Uniform, Hanning, 
and Flat Top Windows

In Figure 5-8, for a noninteger number of cycles, the Hanning and flat top 
windows introduce much less spectral leakage than the uniform window. 
Also, the amplitude error is better with the Hanning and flat top windows. 
The flat top window demonstrates very good amplitude accuracy and has a 
wider spread and higher side lobes than the Hanning window.
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Figure 5-9 shows the block diagram of a VI that measures the windowed 
and nonwindowed spectrums of a signal composed of the sum of two 
sinusoids.

Figure 5-9.  Measuring the Spectrum of a Signal Composed of the Sum 
of Two Sinusoids

Figure 5-10 shows the amplitudes and frequencies of the two sinusoids and 
the measurement results. The frequencies shown are in units of cycles.
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Figure 5-10.  Windowed and Nonwindowed Spectrums of the Sum of Two Sinusoids

In Figure 5-10, the nonwindowed spectrum shows leakage that is more than 
20 dB at the frequency of the smaller sinusoid.

You can apply more sophisticated techniques to get a more accurate 
description of the original time-continuous signal in the frequency domain. 
However, in most applications, applying a smoothing window is sufficient 
to obtain a better frequency representation of the signal.

Characteristics of Different Smoothing Windows
To simplify choosing a smoothing window, you need to define various 
characteristics so that you can make comparisons between smoothing 
windows. An actual plot of a smoothing window shows that the frequency 
characteristic of the smoothing window is a continuous spectrum with a 
main lobe and several side lobes. Figure 5-11 shows the spectrum of a 
typical smoothing window.
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Figure 5-11.  Frequency Response of a Smoothing Window

Main Lobe
The center of the main lobe of a smoothing window occurs at each 
frequency component of the time-domain signal. By convention, to 
characterize the shape of the main lobe, the widths of the main lobe at 
–3 dB and –6 dB below the main lobe peak describe the width of the main 
lobe. The unit of measure for the main lobe width is FFT bins or frequency 
lines.

The width of the main lobe of the smoothing window spectrum limits the 
frequency resolution of the windowed signal. Therefore, the ability to 
distinguish two closely spaced frequency components increases as the main 
lobe of the smoothing window narrows. As the main lobe narrows and 
spectral resolution improves, the window energy spreads into its side lobes, 
increasing spectral leakage and decreasing amplitude accuracy. A trade-off 
occurs between amplitude accuracy and spectral resolution.

Side Lobes
Side lobes occur on each side of the main lobe and approach zero at 
multiples of fs/N from the main lobe. The side lobe characteristics of the 
smoothing window directly affect the extent to which adjacent frequency 
components leak into adjacent frequency bins. The side lobe response of a 
strong sinusoidal signal can overpower the main lobe response of a nearby 
weak sinusoidal signal.

–6 dB

Peak
Side Lobe

Level

Window Frequency Response

Main Lobe Width Frequency

Side Lobe
Roll-Off Rate
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Maximum side lobe level and side lobe roll-off rate characterize the side 
lobes of a smoothing window. The maximum side lobe level is the largest 
side lobe level in decibels relative to the main lobe peak gain. The side lobe 
roll-off rate is the asymptotic decay rate in decibels per decade of frequency 
of the peaks of the side lobes. Table 5-1 lists the characteristics of several 
smoothing windows.

Rectangular (None)
The rectangular window has a value of one over its length. The following 
equation defines the rectangular window.

w(n) = 1.0 for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

Applying a rectangular window is equivalent to not using any window 
because the rectangular function just truncates the signal to within a finite 
time interval. The rectangular window has the highest amount of spectral 
leakage.

Figure 5-12 shows the rectangular window for N = 32.

Table 5-1.  Characteristics of Smoothing Windows

Smoothing 
Window

–3 dB Main 
Lobe Width 

(bins)

–6 dB Main 
Lobe Width 

(bins)
Maximum Side 
Lobe Level (dB)

Side Lobe 
Roll-Off Rate 
(dB/decade)

Uniform (none) 0.88 1.21 –13 20

Hanning 1.44 2.00 –32 60

Hamming 1.30 1.81 –43 20

Blackman-Harris 1.62 2.27 –71 20

Exact Blackman 1.61 2.25 –67 20

Blackman 1.64 2.30 –58 60

Flat Top 2.94 3.56 –44 20
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Figure 5-12.  Rectangular Window

The rectangular window is useful for analyzing transients that have a 
duration shorter than that of the window. Transients are signals that exist 
only for a short time duration. The rectangular window also is used in order 
tracking, where the effective sampling rate is proportional to the speed of 
the shaft in rotating machines. In order tracking, the rectangular window 
detects the main mode of vibration of the machine and its harmonics.

Hanning
The Hanning window has a shape similar to that of half a cycle of a cosine 
wave. The following equation defines the Hanning window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

Figure 5-13 shows a Hanning window with N = 32.

Figure 5-13.  Hanning Window

The Hanning window is useful for analyzing transients longer than the time 
duration of the window and for general-purpose applications.

w n( ) 0.5 0.5 2πn
N

----------cos–=
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Hamming
The Hamming window is a modified version of the Hanning window. 
The shape of the Hamming window is similar to that of a cosine wave. 
The following equation defines the Hamming window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

Figure 5-14 shows a Hamming window with N = 32.
 

Figure 5-14.  Hamming Window

The Hanning and Hamming windows are similar, as shown in Figures 5-13 
and 5-14. However, in the time domain, the Hamming window does not get 
as close to zero near the edges as does the Hanning window.

Kaiser-Bessel
The Kaiser-Bessel window is a flexible smoothing window whose shape 
you can modify by adjusting the beta input. Thus, depending on your 
application, you can change the shape of the window to control the amount 
of spectral leakage. 

Figure 5-15 shows the Kaiser-Bessel window for different values of beta.

w n( ) 0.54 0.46 2πn
N

----------cos–=
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Figure 5-15.  Kaiser-Bessel Window

For small values of beta, the shape is close to that of a rectangular window. 
Actually, for beta = 0.0, you do get a rectangular window. As you increase 
beta, the window tapers off more to the sides.

The Kaiser-Bessel window is useful for detecting two signals of almost the 
same frequency but with significantly different amplitudes.

Triangle
The shape of the triangle window is that of a triangle. The following 
equation defines the triangle window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window and w is the window value.

w n( ) 1 2n N–
N

----------------–=
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Figure 5-16 shows a triangle window for N = 32.
 

Figure 5-16.  Triangle Window

Flat Top
The flat top window has the best amplitude accuracy of all the smoothing 
windows at ±0.02 dB for signals exactly between integral cycles. Because 
the flat top window has a wide main lobe, it has poor frequency resolution. 
The following equation defines the flat top window.

where 

a0 = 0.215578948

a1 = 0.416631580

a2 = 0.277263158

a3 = 0.083578947

a4 = 0.006947368

Figure 5-17 shows a flat top window.

w n( ) 1–( )k

k 0=

4

∑ ak kω( )cos=

ω 2πn
N

----------=
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Figure 5-17.  Flat Top Window

The flat top window is most useful in accurately measuring the amplitude 
of single frequency components with little nearby spectral energy in the 
signal. 

Exponential
The shape of the exponential window is that of a decaying exponential. 
The following equation defines the exponential window.

for n = 0, 1, 2, …, N – 1

where N is the length of the window, w is the window value, and f is the final 
value.

The initial value of the window is one and gradually decays toward zero. 
You can adjust the final value of the exponential window to between 
0 and 1.

Figure 5-18 shows the exponential window for N = 32, with the final value 
specified as 0.1.

 

Figure 5-18.  Exponential Window

w n[ ] e
n f( )ln
N 1–
--------------- 
 

f
n

N 1–
------------- 
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The exponential window is useful for analyzing transient response signals 
whose duration is longer than the length of the window. The exponential 
window damps the end of the signal, ensuring that the signal fully decays 
by the end of the sample block. You can apply the exponential window to 
signals that decay exponentially, such as the response of structures with 
light damping that are excited by an impact, such as the impact of a 
hammer.

Windows for Spectral Analysis versus Windows 
for Coefficient Design

Spectral analysis and filter coefficient design place different requirements 
on a window. Spectral analysis requires a DFT-even window, while filter 
coefficient design requires a window symmetric about its midpoint.

Spectral Analysis
The smoothing windows designed for spectral analysis must be DFT even. 
A smoothing window is DFT even if its dot product, or inner product, with 
integral cycles of sine sequences is identically zero. In other words, the 
DFT of a DFT-even sequence has no imaginary component.

Figures 5-19 and 5-20 show the Hanning window for a sample size of 8 and 
one cycle of a sine pattern for a sample size of 8.
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Figure 5-19.  Hanning Window for Sample Size 8

Figure 5-20.  Sine Pattern for Sample Size 8

In Figure 5-19, the DFT-even Hanning window is not symmetric about its 
midpoint. The last point of the window is not equal to its first point, similar 
to one complete cycle of the sine pattern shown in Figure 5-20.

Smoothing windows for spectral analysis are spectral windows and include 
the following window types:

• Scaled time-domain window

• Hanning window

• Hamming window

• Triangle window

• Blackman window

• Exact Blackman window

• Blackman-Harris window

• Flat top window

• Kaiser-Bessel window

• General cosine window

• Cosine tapered window
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Windows for FIR Filter Coefficient Design
Designing FIR filter coefficients requires a window that is symmetric about 
its midpoint.

Equations 5-1 and 5-2 illustrate the difference between a spectral window 
and a symmetrical window for filter coefficient design.

Equation 5-1 defines the Hanning window for spectral analysis.

(5-1)

where N is the length of the window and w is the window value.

Equation 5-2 defines a symmetrical Hanning window for filter coefficient 
design.

(5-2)

where N is the length of the window and w is the window value.

By modifying a spectral window, as shown in Equation 5-2, you can define 
a symmetrical window for designing filter coefficients. Refer to Chapter 3, 
Digital Filtering, for more information about designing digital filters.

Choosing the Correct Smoothing Window
Selecting a smoothing window is not a simple task. Each smoothing 
window has its own characteristics and suitability for different 
applications. To choose a smoothing window, you must estimate the 
frequency content of the signal. If the signal contains strong interfering 
frequency components distant from the frequency of interest, choose a 
smoothing window with a high side lobe roll-off rate. If the signal contains 
strong interfering signals near the frequency of interest, choose a 
smoothing window with a low maximum side lobe level. Refer to Table 5-1 
for information about side lobe roll-off rates and maximum side lobe levels 
for various smoothing windows.

If the frequency of interest contains two or more signals very near to each 
other, spectral resolution is important. In this case, it is best to choose a 
smoothing window with a very narrow main lobe. If the amplitude accuracy 
of a single frequency component is more important than the exact location 

w i[ ] 0.5 1 2πi
N 

 

cos–

= for i 0, 1, 2, … , N 1–=
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of the component in a given frequency bin, choose a smoothing window 
with a wide main lobe. If the signal spectrum is rather flat or broadband in 
frequency content, use the uniform window, or no window. In general, the 
Hanning window is satisfactory in 95% of cases. It has good frequency 
resolution and reduced spectral leakage. If you do not know the nature of 
the signal but you want to apply a smoothing window, start with the 
Hanning window.

Table 5-2 lists different types of signals and the appropriate windows that 
you can use with them.

Table 5-2.  Signals and Windows

Type of Signal Window

Transients whose duration is shorter than the length of the 
window

Rectangular

Transients whose duration is longer than the length of the 
window

Exponential, Hanning

General-purpose applications Hanning

Spectral analysis (frequency-response measurements) Hanning (for random excitation), 
Rectangular (for pseudorandom 
excitation)

Separation of two tones with frequencies very close to each 
other but with widely differing amplitudes

Kaiser-Bessel

Separation of two tones with frequencies very close to each 
other but with almost equal amplitudes

Rectangular

Accurate single-tone amplitude measurements Flat top

Sine wave or combination of sine waves Hanning

Sine wave and amplitude accuracy is important Flat top

Narrowband random signal (vibration data) Hanning

Broadband random (white noise) Uniform

Closely spaced sine waves Uniform, Hamming

Excitation signals (hammer blow) Force

Response signals Exponential

Unknown content Hanning
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Initially, you might not have enough information about the signal to select 
the most appropriate smoothing window for the signal. You might need to 
experiment with different smoothing windows to find the best one. Always 
compare the performance of different smoothing windows to find the best 
one for the application.

Scaling Smoothing Windows
Applying a smoothing window to a time-domain signal multiplies the 
time-domain signal by the length of the smoothing window and introduces 
distortion effects due to the smoothing window. The smoothing window 
changes the overall amplitude of the signal. When applying multiple 
smoothing windows to the same signal, scaling each smoothing window by 
dividing the windowed array by the coherent gain of the window results in 
each window yielding the same spectrum amplitude result within the 
accuracy constraints of the window. The plots in Figures 5-7 and 5-8 are 
the result of applying scaled smoothing windows to the time-domain 
signal.

An FFT is equivalent to a set of parallel filters with each filter having a 
bandwidth equal to ∆f. Because of the spreading effect of a smoothing 
window, the smoothing window increases the effective bandwidth of an 
FFT bin by an amount known as the equivalent noise-power bandwidth 
(ENBW) of the smoothing window. The power of a given frequency peak 
equals the sum of the adjacent frequency bins around the peak increased by 
a scaling factor equal to the ENBW of the smoothing window. You must 
take the scaling factor into account when you perform computations based 
on the power spectrum. Refer to Chapter 4, Frequency Analysis, for 
information about performing computations on the power spectrum.

Table 5-3 lists the scaling factor, also known as coherent gain, the ENBW, 
and the worst-case peak amplitude accuracy caused by off-center 
components for several popular smoothing windows.

Table 5-3.  Correction Factors and Worst-Case Amplitude Errors for Smoothing Windows

Window
Scaling Factor 

(Coherent Gain) ENBW
Worst-Case 

Amplitude Error (dB)

Uniform (none) 1.00 1.00 3.92

Hanning 0.50 1.50 1.42

Hamming 0.54 1.36 1.75
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Blackman-Harris 0.42 1.71 1.13

Exact Blackman 0.43 1.69 1.15

Blackman 0.42 1.73 1.10

Flat Top 0.22 3.77 <0.01

Table 5-3.  Correction Factors and Worst-Case Amplitude Errors for Smoothing Windows (Continued)

Window
Scaling Factor 

(Coherent Gain) ENBW
Worst-Case 

Amplitude Error (dB)
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6
Distortion Measurements

This chapter describes harmonic distortion, total harmonic distortion 
(THD), signal noise and distortion (SINAD), and when to use distortion 
measurements.

Defining Distortion
Applying a pure single-frequency sine wave to a perfectly linear system 
produces an output signal having the same frequency as that of the input 
sine wave. However, the output signal might have a different amplitude 
and/or phase than the input sine wave. Also, when you apply a composite 
signal consisting of several sine waves at the input, the output signal 
consists of the same frequencies but different amplitudes and/or phases.

Many real-world systems act as nonlinear systems when their input limits 
are exceeded, resulting in distorted output signals. If the input limits of a 
system are exceeded, the output consists of one or more frequencies that did 
not originally exist at the input. For example, if the input to a nonlinear 
system consists of two frequencies f1 and f2, the frequencies at the output 
might have the following components:

• f1 and harmonics, or integer multiples, of f1

• f2 and harmonics of f2

• Sums and differences of f1, f2

• Harmonics of f1 and f2

The number of new frequencies at the output, their corresponding 
amplitudes, and their relationships with respect to the original frequencies 
vary depending on the transfer function. Distortion measurements quantify 
the degree of nonlinearity of a system. Common distortion measurements 
include the following measurements:

• Total harmonic distortion (THD)

• Total harmonic distortion + noise (THD + N)

• Signal noise and distortion (SINAD)

• Intermodulation distortion
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Application Areas
You can make distortion measurements for many devices, such as A/D 
and D/A converters, audio processing devices, analog tape recorders, 
cellular phones, radios, televisions, stereos, and loudspeakers.

Measurements of harmonics often provide a good indication of the cause 
of the nonlinearity of a system. For example, nonlinearities that are 
asymmetrical around zero produce mainly even harmonics. Nonlinearities 
symmetrical around zero produce mainly odd harmonics. You can use 
distortion measurements to diagnose faults such as bad solder joints, 
torn speaker cones, and incorrectly installed components.

However, nonlinearities are not always undesirable. For example, many 
musical sounds are produced specifically by driving a device into its 
nonlinear region.

Harmonic Distortion
When a signal x(t) of a particular frequency f1 passes through a nonlinear 
system, the output of the system consists of f1 and its harmonics. The 
following expression describes the relationship between f1 and its 
harmonics.

f1, f2 = 2f1, f3 = 3f1, f4 = 4f1, …, fn = nf1

The degree of nonlinearity of the system determines the number of 
harmonics and their corresponding amplitudes the system generates. In 
general, as the nonlinearity of a system increases, the harmonics become 
higher. As the nonlinearity of a system decreases, the harmonics become 
lower.

Figure 6-1 illustrates an example of a nonlinear system where the output 
y(t) is the cube of the input signal x(t).

Figure 6-1.  Example of a Nonlinear System

The following equation defines the input for the system shown in 
Figure 6-1.

y(t) = f(x) = x3(t)cos(ωt) cos3(ωt)

x t( ) ωt( )cos=
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Equation 6-1 defines the output of the system shown in Figure 6-1.

(6-1)

In Equation 6-1, the output contains not only the input fundamental 
frequency ω but also the third harmonic 3ω.

A common cause of harmonic distortion is clipping. Clipping occurs when 
a system is driven beyond its capabilities. Symmetrical clipping results in 
odd harmonics. Asymmetrical clipping creates both even and odd 
harmonics.

THD
To determine the total amount of nonlinear distortion, also known as total 
harmonic distortion (THD), a system introduces, measure the amplitudes of 
the harmonics the system introduces relative to the amplitude of the 
fundamental frequency. The following equation yields THD.

where A1 is the amplitude of the fundamental frequency, A2 is the amplitude 
of the second harmonic, A3 is the amplitude of the third harmonic, A4 is the 
amplitude of the fourth harmonic, and so on.

You usually report the results of a THD measurement in terms of the 
highest order harmonic present in the measurement, such as THD through 
the seventh harmonic.

The following equation yields the percentage total harmonic distortion 
(%THD).

x3 t( ) 0.5 ωt( )cos 0.25 ωt( )cos 3ωt( )cos+[ ]+=

THD
A2

2 A3
2 A4

2 …+ + +

A1
------------------------------------------------------=

%THD 100( )
A2

2 A3
2 A4

2 …+ + +

A1
------------------------------------------------------
 
 
 

=
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THD + N
Real-world signals usually contain noise. A system can introduce 
additional noise into the signal. THD + N measures signal distortion while 
taking into account the amount of noise power present in the signal. 
Measuring THD + N requires measuring the amplitude of the fundamental 
frequency and the power present in the remaining signal after removing the 
fundamental frequency. The following equation yields THD + N.

where N is the noise power. 

A low THD + N measurement means that the system has a low amount of 
harmonic distortion and a low amount of noise from interfering signals, 
such as AC mains hum and wideband white noise.

As with THD, you usually report the results of a THD + N measurement in 
terms of the highest order harmonic present in the measurement, such as 
THD + N through the third harmonic.

The following equation yields percentage total harmonic distortion + noise 
(%THD + N).

SINAD
Similar to THD + N, SINAD takes into account both harmonics and noise. 
However, SINAD is the reciprocal of THD + N. The following equation 
yields SINAD.

You can use SINAD to characterize the performance of FM receivers in 
terms of sensitivity, adjacent channel selectivity, and alternate channel 
selectivity.

THD N+
A2

2 A3
2 … N2+ + +

A1
2 A2

2 A3
2 …N2+ + +

-------------------------------------------------------------=

%THD N+ 100( )
A2

2 A3
2 … N2+ + +

A1
2 A2

2 A3
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-------------------------------------------------------------

 
 
 
 

=
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7
DC/RMS Measurements

Two of the most common measurements of a signal are its direct current 
(DC) and root mean square (RMS) levels. This chapter introduces 
measurement analysis techniques for making DC and RMS measurements 
of a signal.

What Is the DC Level of a Signal?
You can use DC measurements to define the value of a static or slowly 
varying signal. DC measurements can be both positive and negative. The 
DC value usually is constant within a specific time window. You can track 
and plot slowly moving values, such as temperature, as a function of time 
using a DC meter. In that case, the observation time that results in the 
measured value has to be short compared to the speed of change for the 
signal. Figure 7-1 illustrates an example DC level of a signal.

Figure 7-1.  DC Level of a Signal

The DC level of a continuous signal V(t) from time t1 to time t2 is given by 
the following equation.

where t2 – t1 is the integration time or measurement time.

t1 t2
Time

V
ol

ta
ge

Vdc

Vdc
1

t2 t1–( )
-------------------- V t( ) td

t1

t2

∫⋅=
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For digitized signals, the discrete-time version of the previous equation is 
given by the following equation.

For a sampled system, the DC value is defined as the mean value of the 
samples acquired in the specified measurement time window.

Between pure DC signals and fast-moving dynamic signals is a gray zone 
where signals become more complex, and measuring the DC level of these 
signals becomes challenging.

Real-world signals often contain a significant amount of dynamic 
influence. Often, you do not want the dynamic part of the signal. The DC 
measurement identifies the static DC signal hidden in the dynamic signal, 
for example, the voltage generated by a thermocouple in an industrial 
environment, where external noise or hum from the main power can disturb 
the DC signal significantly.

What Is the RMS Level of a Signal?
The RMS level of a signal is the square root of the mean value of the 
squared signal. RMS measurements are always positive. Use RMS 
measurements when a representation of energy is needed. You usually 
acquire RMS measurements on dynamic signals—signals with relatively 
fast changes—such as noise or periodic signals. Refer to Chapter 7, 
Measuring AC Voltage, of the LabVIEW Measurements Manual for more 
information about when to use RMS measurements.

The RMS level of a continuous signal V(t) from time t1 to time t2 is given 
by the following equation.

where t2 – t1 is the integration time or measurement time.

Vdc
1
N
---- Vi

i 1=

N

∑⋅=

Vrms
1

t2 t1–( )
-------------------- V 2 t( ) td

t1

t2

∫⋅=
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The RMS level of a discrete signal Vi is given by the following equation.

One difficulty is encountered when measuring the dynamic part of a signal 
using an instrument that does not offer an AC-coupling option. A true RMS 
measurement includes the DC part in the measurement, which is a 
measurement you might not want.

Averaging to Improve the Measurement
Instantaneous DC measurements of a noisy signal can vary randomly and 
significantly, as shown in Figure 7-2. You can measure a more accurate 
value by averaging out the noise that is superimposed on the desired DC 
level. In a continuous signal, the averaged value between two times, t1 and 
t2, is defined as the signal integration between t1 and t2, divided by the 
measurement time, t2 – t1, as shown in Figure 7-1. The area between the 
averaged value Vdc and the signal that is above Vdc is equal to the area 
between Vdc and the signal that is under Vdc. For a sampled signal, the 
average value is the sum of the voltage samples divided by the 
measurement time in samples, or the mean value of the measurement 
samples. Refer to Chapter 6, Measuring DC Voltage, of the LabVIEW 
Measurements Manual for more information about averaging in LabVIEW.

Figure 7-2.  Instantaneous DC Measurements
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An RMS measurement is an averaged quantity because it is the average 
energy in the signal over a measurement period. You can improve the RMS 
measurement accuracy by using a longer averaging time, equivalent to the 
integration time or measurement time.

There are several different strategies to use for making DC and RMS 
measurements, each dependent on the type of error or noise sources. 
When choosing a strategy, you must decide if accuracy or speed of the 
measurement is more important.

Common Error Sources Affecting DC 
and RMS Measurements

Some common error sources for DC measurements are single-frequency 
components (or tones), multiple tones, or random noise. These same error 
signals can interfere with RMS measurements so in many cases the 
approach taken to improve RMS measurements is the same as for 
DC measurements.

DC Overlapped with Single Tone
Consider the case where the signal you measure is composed of a DC signal 
and a single sine tone. The average of a single period of the sine tone is 
ideally zero because the positive half-period of the tone cancels the 
negative half-period.

Figure 7-3.  DC Signal Overlapped with Single Tone

Any remaining partial period, shown in Figure 7-3 with vertical hatching, 
introduces an error in the average value and therefore in the DC 
measurement. Increasing the averaging time reduces this error because the 
integration is always divided by the measurement time t2 – t1. If you know 
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the period of the sine tone, you can take a more accurate measurement of 
the DC value by using a measurement period equal to an integer number 
of periods of the sine tone. The most severe error occurs when the 
measurement time is a half-period different from an integer number of 
periods of the sine tone because this is the maximum area under or over the 
signal curve.

Defining the Equivalent Number of Digits
Defining the Equivalent Number of Digits (ENOD) makes it easier to relate 
a measurement error to a number of digits, similar to digits of precision. 
ENOD translates measurement accuracy into a number of digits.

ENOD = log10(Relative Error)

A 1% error corresponds to two digits of accuracy, and a one part per million 
error corresponds to six digits of accuracy (log10(0.000001) = 6).

ENOD is only an approximation that tells you what order of magnitude of 
accuracy you can achieve under specific measurement conditions. 
This accuracy does not take into account any error introduced by the 
measurement instrument or data acquisition hardware itself. ENOD is only 
a tool for computing the reliability of a specific measurement technique.

Thus, the ENOD should at least match the accuracy of the measurement 
instrument or measurement requirements. For example, it is not necessary 
to use a measurement technique with an ENOD of six digits if your 
instrument has an accuracy of only 0.1% (three digits). Similarly, you do 
not get the six digits of accuracy from your six-digit accurate measurement 
instrument if your measurement technique is limited to an ENOD of only 
three digits.

DC Plus Sine Tone
Figure 7-4 shows that for a 1.0 VDC signal overlapped with a 0.5 V 
single sine tone, the worst ENOD increases with measurement 
time—x-axis shown in periods of the additive sine tone—at a rate of 
approximately one additional digit for 10 times more measurement time. 
To achieve 10 times more accuracy, you need to increase your 
measurement time by a factor of 10. In other words, accuracy and 
measurement time are related through a first-order function.
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Figure 7-4.  Digits versus Measurement Time for 1.0 VDC Signal with 0.5 V Single Tone

Windowing to Improve DC Measurements
The worst ENOD for a DC signal plus a sine tone occurs when the 
measurement time is at half-periods of the sine tone. You can greatly 
reduce these errors due to noninteger number of cycles by using a 
weighting function before integrating to measure the desired DC value. 
The most common weighting or window function is the Hann window, 
commonly known as the Hanning window.

Figure 7-5 shows a dramatic increase in accuracy from the use of the Hann 
window. The accuracy as a function of the number of sine tone periods is 
improved from a first-order function to a third-order function. In other 
words, you can achieve one additional digit of accuracy for every 
101/3 = 2.15 times more measurement time using the Hann window instead 
of one digit for every 10 times more measurement time without using a 
window. As in the non-windowing case, the DC level is 1.0 V and the single 
tone peak amplitude is 0.5 V.
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Figure 7-5.  Digits versus Measurement Time for DC + Tone Using Hann Window

You can use other types of window functions to further reduce the 
necessary measurement time or greatly increase the resulting accuracy. 
Figure 7-6 shows that the Low Sidelobe (LSL) window can achieve more 
than six ENOD of worst accuracy when averaging your DC signal over only 
five periods of the sine tone (same test signal).

Figure 7-6.  Digits versus Measurement Time for DC + Tone Using LSL Window
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RMS Measurements Using Windows
Like DC measurements, the worst ENOD for measuring the RMS level of 
signals sometimes can be improved significantly by applying a window 
to the signal before RMS integration. For example, if you measure the 
RMS level of the DC signal plus a single sine tone, the most accurate 
measurements are made when the measurement time is an integer number 
of periods of the sine tone. Figure 7-7 shows that the worst ENOD varies 
with measurement time (in periods of the sine tone) for various window 
functions. Here, the test signal contains 0.707 VDC with 1.0 V peak sine 
tone.

Figure 7-7.  Digits versus Measurement Time for RMS Measurements

Applying the window to the signal increases RMS measurement accuracy 
significantly, but the improvement is not as large as in DC measurements. 
For this example, the LSL window achieves six digits of accuracy when the 
measurement time reaches eight periods of the sine tone.

Using Windows with Care
Window functions can be very useful to improve the speed of your 
measurement, but you must be careful. The Hann window is a general 
window recommended in most cases. Use more advanced windows such as 
the LSL window only if you know the window will improve the 
measurement. For example, you can reduce significantly RMS 
measurement accuracy if the signal you want to measure is composed of 
many frequency components close to each other in the frequency domain.
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You also must make sure that the window is scaled correctly or that you 
update scaling after applying the window. The most useful window 
functions are pre-scaled by their coherent gain—the mean value of the 
window function—so that the resulting mean value of the scaled window 
function is always 1.00. DC measurements do not need to be scaled when 
using a properly scaled window function. For RMS measurements, each 
window has a specific equivalent noise bandwidth that you must use to 
scale integrated RMS measurements. You must scale RMS measurements 
using windows by the reciprocal of the square root of the equivalent noise 
bandwidth.

Rules for Improving DC and RMS Measurements
Use the following guidelines when determining a strategy for improving 
your DC and RMS measurements:

• If your signal is overlapped with a single tone, longer integration times 
increase the accuracy of your measurement. If you know the exact 
frequency of the sine tone, use a measurement time that corresponds to 
an exact number of sine periods. If you do not know the frequency of 
the sine tone, apply a window, such as a Hann window, to reduce 
significantly the measurement time needed to achieve a specific 
accuracy.

• If your signal is overlapped with many independent tones, increasing 
measurement time increases the accuracy of the measurement. As in 
the single tone case, using a window significantly reduces the 
measurement time needed to achieve a specific accuracy.

• If your signal is overlapped with noise, do not use a window. In this 
case, you can increase the accuracy of your measurement by increasing 
the integration time or by preprocessing or conditioning your noisy 
signal with a lowpass (or bandstop) filter.

RMS Levels of Specific Tones
You always can improve the accuracy of an RMS measurement by 
choosing a specific measurement time to contain an integer number of 
cycles of your sine tones or by using a window function. The measurement 
of the RMS value is based only on the time domain knowledge of your 
signal. You can use advanced techniques when you are interested in a 
specific frequency or narrow frequency range.
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You can use bandpass or bandstop filtering before RMS computations to 
measure the RMS power in a specific band of frequencies. You also can use 
the Fast Fourier Transform (FFT) to pick out specific frequencies for RMS 
processing. Refer to Chapter 4, Frequency Analysis, for more information 
about the FFT.

The RMS level of a specific sine tone that is part of a complex or noisy 
signal can be extracted very accurately using frequency domain processing, 
leveraging the power of the FFT, and using the benefits of windowing.
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8
Limit Testing

This chapter provides information about setting up an automated system for 
performing limit testing, specifying limits, and applications for limit 
testing.

You can use limit testing to monitor a waveform and determine if it always 
satisfies a set of conditions, usually upper and lower limits. The region 
bounded by the specified limits is a mask. The result of a limit or mask test 
is generally a pass or fail.

Setting up an Automated Test System
You can use the same method to create and control many different 
automated test systems. Complete the following basic steps to set up an 
automated test system for limit mask testing.

1. Configure the measurement by specifying arbitrary upper and lower 
limits. This defines your mask or region of interest.

2. Acquire data using a DAQ device.

3. Monitor the data to make sure it always falls within the specified mask.

4. Log the pass/fail results from step 3 to a file or visually inspect the 
input data and the points that fall outside the mask.

5. Repeat steps 2 through 4 to continue limit mask testing.

The following sections describe steps 1 and 3 in further detail. Assume that 
the signal to be monitored starts at x = x0 and all the data points are evenly 
spaced. The spacing between each point is denoted by dx.

Specifying a Limit
Limits are classified into two types—continuous limits and segmented 
limits, as shown in Figure 8-1. The top graph in Figure 8-1 shows a 
continuous limit. A continuous limit is specified using a set of x and 
y points {{x1, x2, x3, …}, {y1, y2, y3, …}}. Completing step 1 creates a limit 
with the first point at x0 and all other points at a uniform spacing of 
dx (x0 + dx, x0 + 2dx, …). This is done through a linear interpolation of the 
x and y values that define the limit. In Figure 8-1, black dots represent the 
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points at which the limit is defined and the solid line represents the limit 
you create. Creating the limit in step 1 reduces test times in step 3. If the 
spacing between the samples changes, you can repeat step 1. The limit is 
undefined in the region x0 < x < x1 and for x > x4.

Figure 8-1.  Continuous versus Segmented Limit Specification

The bottom graph of Figure 8-1 shows a segmented limit. The first segment 
is defined using a set of x and y points {{x1, x2}, {y1, y2}}. The second 
segment is defined using a set of points {x3, x4, x5} and {y3, y4, y5}. You can 
define any number of such segments. As with continuous limits, step 1 uses 
linear interpolation to create a limit with the first point at x0 and all other 
points with an uniform spacing of dx. The limit is undefined in the region 
x0 < x < x1 and in the region x > x5. Also, the limit is undefined in the region 
x2 < x < x3.
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Specifying a Limit Using a Formula
You can specify limits using formulas. Such limits are best classified as 
segmented limits. Each segment is defined by start and end frequencies and 
a formula. For example, the ANSI T1.413 recommendation specifies the 
limits for the transmit and receive spectrum of an ADSL signal in terms of 
formula. Table 8-1, which includes only a part of the specification, shows 
the start and end frequencies and the upper limits of the spectrum for each 
segment.

The limit is specified as an array of a set of x and y points, 
[{0.3, 4.0}{–97.5, –97.5}, {4.0, 25.9}{–92.5 + 21.5 log2(f/4,000), 
–92.5 + 21.5 log2(f/4,000)}, …, {307.0, 1,221.0}{–90, –90}]. Each 
element of the array corresponds to a segment.

Figure 8-2 shows the segmented limit plot specified using the formulas 
shown in Table 8-1. The x-axis is on a logarithmic scale.

Table 8-1.  ADSL Signal Recommendations

Start (kHz) End (kHz)
Maximum (Upper Limit) 

Value (dBm/Hz)

0.3 4.0 –97.5

4.0 25.9 –92.5 + 21.5 log2(f/4,000)

25.9 138.0 –34.5

138.0 307.0 –34.5 – 48.0 log2(f/138,000)

307.0 1,221.0 –90
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Figure 8-2.  Segmented Limit Specified Using Formulas

Limit Testing
After you define your mask, you acquire a signal using a DAQ device. The 
sample rate is set at 1/dx S/s. Compare the signal with the limit. In step 1, 
you create a limit value at each point where the signal is defined. In step 3, 
you compare the signal with the limit. For the upper limit, if the data point 
is less than or equal to the limit point, the test passes. If the data point is 
greater than the limit point, the test fails. For the lower limit, if the data 
point is greater than or equal to the limit point, the test passes. If the data 
point is less than the limit point, the test fails.

Figure 8-3 shows the result of limit testing in a continuous mask case. The 
test signal falls within the mask at all the points it is sampled, other than 
points b and c. Thus, the limit test fails. Point d is not tested because it falls 
outside the mask.
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Figure 8-3.  Result of Limit Testing with a Continuous Mask

Figure 8-4 shows the result of limit testing in a segmented mask case. All 
the points fall within the mask. Points b and c are not tested because the 
mask is undefined at those points. Thus, the limit test passes. Point d is not 
tested because it falls outside the mask.

Figure 8-4.  Result of Limit Testing with a Segmented Mask
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Applications
You can use limit mask testing in a wide range of test and measurement 
applications. For example, you can use limit mask testing to determine that 
the power spectral density of ADSL signals meets the recommendations in 
the ANSI T1.413 specification. Refer to the Specifying a Limit Using a 
Formula section of this chapter for more information about ADSL signal 
limits.

The following sections provide examples of when you can use limit mask 
testing. In all these examples, the specifications are recommended by 
standards-generating bodies, such as the CCITT, ITU-T, ANSI, and IEC, 
to ensure that all the test and measurement systems conform to a 
universally accepted standard. In some other cases, the limit testing 
specifications are proprietary and are strictly enforced by companies for 
quality control.

Modem Manufacturing Example
Limit testing is used in modem manufacturing to make sure the transmit 
spectrum of the line signal meets the V.34 modem specification, as shown 
in Figure 8-5. 

Figure 8-5.  Upper and Lower Limit for V.34 Modem Transmitted Spectrum
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The ITU-T V.34 recommendation contains specifications for a modem 
operating at data signaling rates up to 33,600 bits/s. It specifies that the 
spectrum for the line signal that transmits data conforms to the template 
shown in Figure 8-5. For example, for a normalized frequency of 1.0, the 
spectrum must always lie between 3 dB and 1 dB. All the modems must 
meet this specification. A modem manufacturer can set up an automated 
test system to monitor the transmit spectrum for the signals that the modem 
outputs. If the spectrum conforms to the specification, the modem passes 
the test and is ready for customer use. Recommendations such as the 
ITU-T V.34 are essential to ensure interoperability between modems from 
different manufacturers and to provide high-quality service to customers.

Digital Filter Design Example
You also can use limit mask testing in the area of digital filter design. You 
might want to design lowpass filters with a passband ripple of 10 dB and 
stopband attenuation of 60 dB. You can use limit testing to make sure the 
frequency response of the filter always meets these specifications. The first 
step in this process is to specify the limits. You can specify a lower limit of 
–10 dB in the passband region and an upper limit of –60 dB in the stopband 
region, as shown in Figure 8-6. After you specify these limits, you can run 
the actual test repeatedly to make sure that all the frequency responses of 
all the filters are designed to meet these specifications.

Figure 8-6.  Limit Test of a Lowpass Filter Frequency Response
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Pulse Mask Testing Example
The ITU-T G.703 recommendation specifies the pulse mask for signals 
with bit rates, n × 64, where n is between 2 and 31. Figure 8-7 shows the 
pulse mask for interface at 1,544 kbits/s. Signals with this bit rate also are 
referred to as T1 signals. T1 signals must lie in the mask specified by the 
upper and lower limit. These limits are set to properly enable the 
interconnection of digital network components to form a digital path or 
connection.

Figure 8-7.  Pulse Mask Testing on T1/E1 Signals
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Part II

Mathematics

This part provides information about mathematical concepts commonly 
used in analysis applications.

• Chapter 9, Curve Fitting, describes how to extract information from 
a data set to obtain a functional description.

• Chapter 10, Probability and Statistics, describes fundamental 
concepts of probability and statistics and how to use these concepts 
to solve real-world problems.

• Chapter 11, Linear Algebra, describes how to use the Linear Algebra 
VIs to perform matrix computation and analysis.

• Chapter 12, Optimization, describes basic concepts and methods used 
to solve optimization problems.

• Chapter 13, Polynomials, describes polynomials and operations 
involving polynomials.
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9
Curve Fitting

This chapter describes how to extract information from a data set to obtain 
a functional description. Use the NI Example Finder to find examples of 
using the Curve Fitting VIs.

Introduction to Curve Fitting
The technique of curve fitting analysis extracts a set of curve parameters or 
coefficients from a data set to obtain a functional description of the data set. 
The least squares method of curve fitting fits a curve to a particular data set. 
Equation 9-1 defines the least square error.

e(a) = [f(x, a) – y(x)]2 (9-1)

where e(a) is the least square error, y(x) is the observed data set, f(x, a) is 
the functional description of the data set, and a is the set of curve 
coefficients that best describes the curve.

For example, if a = {a0, a1}, the following equation yields the functional 
description.

f(x, a) = a0 + a1 x

The least squares algorithm finds a by solving the system defined by 
Equation 9-2.

(9-2)

To solve the system defined by Equation 9-2, you set up and solve the 
Jacobian system generated by expanding Equation 9-2. After you solve the 
system for a, you can use the functional description f(x, a) to obtain an 
estimate of the observed data set for any value of x.

The Curve Fitting VIs automatically set up and solve the Jacobian system 
and return the set of coefficients that best describes the data set. You can 
concentrate on the functional description of the data without having to 
solve the system in Equation 9-2.

∂
∂a
------e a( ) 0=
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Applications of Curve Fitting
In some applications, parameters such as humidity, temperature, and 
pressure can affect data you collect. You can model the statistical data by 
performing regression analysis and gain insight into the parameters that 
affect the data.

Figure 9-1 shows the block diagram of a VI that uses the Linear Fit VI to 
fit a line to a set of data points.

Figure 9-1.  Fitting a Line to Data

You can modify the block diagram to fit exponential and polynomial curves 
by replacing the Linear Fit VI with the Exponential Fit VI or the General 
Polynomial Fit VI.

Figure 9-2 shows a multiplot graph of the result of fitting a line to a noisy 
data set.

Figure 9-2.  Fitting a Line to a Noisy Data Set
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The practical applications of curve fitting include the following 
applications:

• Removing measurement noise

• Filling in missing data points, such as when one or more measurements 
are missing or improperly recorded

• Interpolating, which is estimating data between data points, such as 
if the time between measurements is not small enough

• Extrapolating, which is estimating data beyond data points, such as 
looking for data values before or after a measurement

• Differentiating digital data, such as finding the derivative of the 
data points by modeling the discrete data with a polynomial and 
differentiating the resulting polynomial equation

• Integrating digital data, such as finding the area under a curve when 
you have only the discrete points of the curve

• Obtaining the trajectory of an object based on discrete measurements 
of its velocity, which is the first derivative, or acceleration, which is the 
second derivative

General LS Linear Fit Theory
For a given set of observation data, the general least-squares (LS) linear fit 
problem is to find a set of coefficients that fits the linear model, as shown 
in Equation 9-3.

(9-3)

where xij is the observed data contained in the observation matrix H, n is the 
number of elements in the set of observed data and the number of rows of 
in H, b is the set of coefficients that fit the linear model, and k is the number 
of coefficients.

yi boxi0 … bk 1– xik 1– bjxij

j 0=

k 1–

∑ i 0 1 … n 1–, , ,==+ +=
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The following equation defines the observation matrix H.

You can rewrite Equation 9-3 as the following equation.

Y = HB.

The general LS linear fit model is a multiple linear regression model. 
A multiple linear regression model uses several variables, xi0, xi1, …, xik – 1, 
to predict one variable, yi.

In most analysis situations, you acquire more observation data than 
coefficients. Equation 9-3 might not yield all the coefficients in set B. 
The fit problem becomes to find the coefficient set B that minimizes the 
difference between the observed data yi and the predicted value zi. 
Equation 9-4 defines zi.

(9-4)

You can use the least chi-square plane method to find the solution set B that 
minimizes the quantity given by Equation 9-5.

 = |H0B – Y0|2 (9-5)

where , , i = 0, 1, …, n – 1, and j = 0, 1, …, k – 1.

H
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In Equation 9-5, σi is the standard deviation. If the measurement errors are 
independent and normally distributed with constant standard deviation, 
σi = σ, Equation 9-5 also is the least-square estimation.

You can use the following methods to minimize χ2 from Equation 9-5:

• Solve normal equations of the least-square problems using LU or 
Cholesky factorization.

• Minimize χ2 to find the least-square solution of equations.

Solving normal equations involves completing the following steps.

1. Set the partial derivatives of χ2 to zero with respect to b0, b1, …, bk – 1, 
as shown by the following equations.

(9-6)

2. Derive the equations in Equation 9-6 to the following equation form.

(9-7)

where is the transpose of H0.

Equations of the form given by Equation 9-7 are called normal equations of 
the least-square problems. You can solve them using LU or Cholesky 
factorization algorithms. However, the solution from the normal equations 
is susceptible to roundoff error.

The preferred method of minimizing χ2 is to find the least-square solution 
of equations. Equation 9-8 defines the form of the least-square solution of 
equations.

H0B = Y0 (9-8)

∂χ2

∂b0
-------- 0=

∂χ2

∂b1
--------- 0=

.

.

.

.
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You can use QR or SVD factorization to find the solution set B for 
Equation 9-8. For QR factorization, you can use the Householder 
algorithm, the Givens algorithm, or the Givens 2 algorithm, which also 
is known as the fast Givens algorithm. Different algorithms can give you 
different precision. In some cases, if one algorithm cannot solve the 
equation, another algorithm might solve it. You can try different algorithms 
to find the one best suited for the observation data.

Polynomial Fit with a Single Predictor Variable
Polynomial fit with a single predictor variable uses one variable to predict 
another variable. Polynomial fit with a single predictor variable is a special 
case of multiple regression. If the observation data sets are {xi, yi}, where 
i = 0, 1, …, n – 1, Equation 9-9 defines the model for polynomial fit.

(9-9)

Comparing Equations 9-3 and 9-9 shows that , as shown by the 
following equations.

Because , you can build the observation matrix H as shown by the 
following equation.

Instead of using , you also can choose another function formula 
to fit the data sets {xi, yi}. In general, you can select xij = fj(xi). Here, fj(xi) 

yi bjx i
j

j 0=

k 1–

∑= b0 b1xi b2xi
2 � bk 1– xi
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is the function model that you choose to fit your observation data. 
In polynomial fit, 

In general, you can build H as shown in the following equation.

The following equation defines the fit model.

Curve Fitting in LabVIEW
For the Curve Fitting VIs, the input sequences Y and X represent the data 
set y(x). A sample or point in the data set is (xi, yi). xi is the ith element of 
the sequence X. yi is the ith element of the sequence Y.

Some Curve Fitting VIs return only the coefficients for the curve that best 
describe the input data while other Curve Fitting VIs return the fitted curve. 
Using the VIs that return only coefficients allows you to further manipulate 
the data. The VIs that return the fitted curve also return the coefficients and 
the mean squared error (MSE). MSE is a relative measure of the residuals 
between the expected curve values and the actual observed values. Because 
the input data represents a discrete system, the VIs use the following 
equation to calculate MSE.

where f is the sequence representing the fitted values, y is the sequence 
representing the observed values, and n is the number of observed sample 
points.

fj xi( ) xi
j.=

H
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f0 x1( ) f1 x1( ) f2 x1( ) … fk 1– x1( )

  ..
.

  

f0 xn 1–( ) f1 xn 1–( ) f2 xn 1–( ) … fk 1– xn 1–( ) 
 
 
 
 
 
 
 
 
 
 

=

yi b0f0 x( ) b1f1 x( ) … bk 1– fk 1– x( )+ + +=

MSE 1
n
--- fi yi–( )2

i 0=

n 1–

∑=
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Linear Fit
The Linear Fit VI fits experimental data to a straight line of the general 
form described by the following equation.

y = mx + b

The Linear Fit VI calculates the coefficients a0 and a1 that best fit the 
experimental data (x[i] and y[i]) to a straight line model described by the 
following equation.

y[i]=a0 + a1x[i]

where y[i] is a linear combination of the coefficients a0 and a1.

Exponential Fit
The Exponential Fit VI fits data to an exponential curve of the general form 
described by the following equation.

y = aebx

The following equation specifically describes the exponential curve 
resulting from the exponential fit algorithm.

General Polynomial Fit
The General Polynomial Fit VI fits data to a polynomial function of the 
general form described by the following equation.

y = a + bx + cx2 + …

The following equation specifically describes the polynomial function 
resulting from the general polynomial fit algorithm.

y[i] = a0 + a1x[i]+a2x[i]2…

y i[ ] a0e
a1x i[ ]

=
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General LS Linear Fit
The General LS Linear Fit VI fits data to a line described by the following 
equation.

y[i] = a0 + a1f1(x[i]) + a2f2(x[i]) + …

where y[i] is a linear combination of the parameters a0, a1, a2, ….

You can extend the concept of a linear combination of coefficients further 
so that the multiplier for a1 is some function of x, as shown in the following 
equations.

y[i] = a0 + a1sin(ωx[i])

y[i] = a0 + a1(x[i])2

y[i] = a0 + a1cos(ωx[i]2)

where ω is the angular frequency.

In each of the preceding equations, y[i] is a linear combination of the 
coefficients a0 and a1. In the case of the General LS Linear Fit VI, you 
can have y[i] that is a linear combination of several coefficients. Each 
coefficient can have a multiplier of some function of x[i]. Therefore, 
you can use the General LS Linear Fit VI to calculate coefficients of the 
functional models and represent the coefficients of the functional models 
as linear combinations of the coefficients, as shown in the following 
equations.

y = a0 + a1sin(ωx)

y = a0 + a1x2 + a2cos(ωx2)

y = a0 + a1(3sin(ωx)) + a2x3 + + …

In each of the preceding equations, y is a linear function of the coefficients, 
although it might be a nonlinear function of x.

a3
x
-----
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Computing Covariance
The General LS Linear Fit VI returns a k × k matrix of covariances between 
the coefficients ak. The General LS Linear Fit VI uses the following 
equation to compute the covariance matrix C.

Building the Observation Matrix
When you use the General LS Linear Fit VI, you must build the observation 
matrix H. For example, Equation 9-10 defines a model for data from a 
transducer.

y = a0 + a1sin(ωx) + a2cos(ωx) + a3x2 (9-10)

In Equation 9-10, each aj has the following different functions as a 
multiplier:

• One multiplies a0.

• sin(ωx) multiplies a1.

• cos(ωx) multiplies a2.

• x2 multiplies a3.

To build H, set each column of H to the independent functions evaluated at 
each x value x[i]. If the data set contains 100 x values, the following 
equation defines H.

If the data set contains N data points and if k coefficients (a0, a1, … ak – 1) 
exist for which to solve, H is an N × k matrix with N rows and k columns. 
Therefore, the number of rows in H equals the number of data points N. The 
number of columns in H equals the number of coefficients k.

C H0
TH0( ) 1–

=

H

1 ωx0( )sin ωx0( )cos x0
2

1 ωx1( )sin ωx1( )cos x1
2

1 ωx2( )sin ωx2( )cos x2
2

… … … …

1 ωx99( )sin ωx99( )cos x99
2

=
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Nonlinear Levenberg-Marquardt Fit
The nonlinear Levenberg-Marquardt Fit method fits data to the curve 
described by the following equation.

y[i] = f(x[i]), a0, a1, a2,...

where a0, a1, a2,... are the parameters.

The nonlinear Levenberg-Marquardt method is the most general curve 
fitting method and does not require y to have a linear relationship with 
a0, a1, a2, .... You can use the nonlinear Levenberg-Marquardt method to fit 
linear or nonlinear curves. However, the most common application of the 
method is to fit a nonlinear curve because the general linear fit method is 
better for linear curve fitting. You must verify the results you obtain with 
the Levenberg-Marquardt method because the method does not always 
guarantee a correct result.
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10
Probability and Statistics

This chapter describes fundamental concepts of probability and statistics 
and how to use these concepts to solve real-world problems. Use the 
NI Example Finder to find examples of using the Probability and 
Statistics VIs.

Statistics
Statistics allow you to summarize data and draw conclusions for the present 
by condensing large amounts of data into a form that brings out all the 
essential information and is yet easy to remember. To condense data, single 
numbers must make the data more intelligible and help draw useful 
inferences. For example, in a season, a sports player participates in 
51 games and scores a total of 1,568 points. The total of 1,568 points 
includes 45 points in Game A, 36 points in Game B, 51 points in Game C, 
45 points in Game D, and 40 points in Game E. As the number of games 
increases, remembering how many points the player scored in each 
individual game becomes increasingly difficult. If you divide the total 
number of points that the player scored by the number of games played, 
you obtain a single number that tells you the average number of points the 
player scored per game. Equation 10-1 yields the points per game average 
for the player.

(10-1)

Computing percentage provides a method for making comparisons. For 
example, the officials of an American city are considering installing a 
traffic signal at a major intersection. The purpose of the traffic signal is to 
protect motorists turning left from oncoming traffic. However, the city has 
only enough money to fund one traffic signal but has three intersections that 
potentially need the signal. Traffic engineers study each of the three 
intersections for a week. The engineers record the total number of cars 
using the intersection, the number of cars travelling straight through the 

1,568 points
51 games

----------------------------- 30.7 points per game average=
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intersection, the number of cars making left-hand turns, and the number of 
cars making right-hand turns. Table 10-1 shows the data for one of the 
intersections.

Looking only at the raw data from each intersection might make 
determining which intersection needs the traffic signal difficult because the 
raw numbers can vary widely. However, computing the percentage of cars 
turning at each intersection provides a common basis for comparison. To 
obtain the percentage of cars turning left, divide the number of cars turning 
left by the total number of cars using the intersection and multiply that 
result by 100. For the intersection whose data is shown in Table 10-1, the 
following equation gives the percentage of cars turning left.

Given the data for the other two intersections, the city officials can obtain 
the percentage of cars turning left at those two intersections. Converting the 
raw data to a percentage condenses the information for the three 
intersections into single numbers representing the percentage of cars that 
turn left at each intersection. The city officials can compare the percentage 
of cars turning left at each intersection and rank the intersections in order 
of highest percentage of cars turning left to the lowest percentage of cars 

Table 10-1.  Data for One Major Intersection

Day

Total Number 
of Cars Using 

the Intersection
Number of Cars 

Turning Left
Number of Cars 
Turning Right

Number of Cars 
Continuing 

Straight

1 1,258 528 330 400

2 1,306 549 340 417

3 1,355 569 352 434

4 1,227 515 319 393

5 1,334 560 346 428

6 694 291 180 223

7 416 174 108 134

Totals 7,590 3,186 1,975 2,429

3,186
7,590
------------- 100× 42%=
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turning left. Ranking the intersections can help determine where the traffic 
signal is needed most. Thus, in a broad sense, the term statistics implies 
different ways to summarize data to derive useful and important 
information from it.

Mean
The mean value is the average value for a set of data samples. The 
following equation defines an input sequence X consisting of n samples.

X = {x0, x1, x2, x3, …, xn – 1}

The following equation yields the mean value for input sequence X.

The mean equals the sum of all the sample values divided by the number of 
samples, as shown in Equation 10-1.

Median
The median of a data sequence is the midpoint value in the sorted version 
of the sequence. The median is useful for making qualitative statements, 
such as whether a particular data point lies in the upper or lower portion of 
an input sequence.

The following equation represents the sorted sequence of an input 
sequence X.

S = {s0, s1, s2, …, sn – 1}

You can sort the sequence either in ascending order or in descending order. 
The following equation yields the median value of S.

(10-2)

where  and .

Equation 10-3 defines a sorted sequence consisting of an odd number of 
samples sorted in descending order.

S = {5, 4, 3, 2, 1} (10-3)

x 1
n
--- x0 x1 x2 x3 … xn 1–+ + + + +( )=

xmedian

si                    n is odd

0.5 sk 1– sk+( ) n is even



=

i n 1–
2

------------= k n
2
---=
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In Equation 10-3, the median is the midpoint value 3.

Equation 10-4 defines a sorted sequence consisting of an even number of 
samples sorted in ascending order.

S = {1, 2, 3, 4} (10-4)

The sorted sequence in Equation 10-4 has two midpoint values, 2 and 3. 
Using Equation 10-2 for n is even, the following equation yields the median 
value for the sorted sequence in Equation 10-4.

xmedian = 0.5(sk – 1 + sk) = 0.5(2 + 3) = 2.5

Sample Variance and Population Variance
The Standard Deviation and Variance VI can calculate either the sample 
variance or the population variance. Statisticians and mathematicians 
prefer to use the sample variance. Engineers prefer to use the population 
variance. For values of both methods produce similar results.

Sample Variance
Sample variance measures the spread or dispersion of the sample values. 
You can use the sample variance as a measure of the consistency. The 
sample variance is always positive, except when all the sample values are 
equal to each other and in turn, equal to the mean.

The sample variance s2 for an input sequence X equals the sum of the 
squares of the deviations of the sample values from the mean divided by 
n – 1, as shown in the following equation.

where n > 1 and is the number of samples in X and  is the mean of X.

n 30,≥

s2 1
n 1–
------------ x1 x–( )2 x2 x–( )2 … xn x–( )2

+ + +[ ]=

x
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Population Variance
The population variance σ2 for an input sequence X equals the sum of the 
squares of the deviations of the sample values from the mean divided by n, 
as shown in the following equation.

where n > 1 and is the number of samples in X, and  is the mean of X.

Standard Deviation
The standard deviation s of an input sequence equals the positive square 
root of the sample variance s2, as shown in the following equation.

Mode
The mode of an input sequence is the value that occurs most often in the 
input sequence. The following equation defines an input sequence X.

The mode of X is 4 because 4 is the value that occurs most often in X. 

Moment about the Mean
The moment about the mean is a measure of the deviation of the elements 
in an input sequence from the mean. The following equation yields the mth 
order moment for an input sequence X.

where n is the number of elements in X and is the mean of X.

For m = 2, the moment about the mean equals the population variance σ2.

σ2 1
n
--- x1 x–( )

2
x2 x–( )

2
… xn x–( )

2
+ + +[ ]=

x

s s2=

X 0 1 3 3 4 4 4 5 5 7, , , , , , , , ,{ }=

σn
m

σx
m 1

n
--- xi x–( )m

i 0=

n 1–

∑=

x



Chapter 10 Probability and Statistics

LabVIEW Analysis Concepts 10-6 ni.com

Skewness
Skewness is a measure of symmetry and corresponds to the third-order 
moment.

Kurtosis
Kurtosis is a measure of peakedness and corresponds to the fourth-order 
moment.

Histogram
A histogram is a bar graph that displays frequency data and is an indication 
of the data distribution. A histogram provides a method for graphically 
displaying data and summarizing key information.

Equation 10-5 defines a data sequence.

X = {0, 1, 3, 3, 4, 4, 4, 5, 5, 8} (10-5)

To compute a histogram for X, divide the total range of values into the 
following eight intervals, or bins:

• 0–1

• 1–2

• 2–3

• 3–4

• 4–5

• 5–6

• 6–7

• 7–8

The histogram display for X indicates the number of data samples that lie 
in each interval, excluding the upper boundary. Figure 10-1 shows the 
histogram for the sequence in Equation 10-5.
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Figure 10-1.  Histogram

Figure 10-1 shows that no data samples are in the 2–3 and 6–7 intervals. 
One data sample lies in each of the intervals 0–1, 1–2, and 7–8. Two data 
samples lie in each of the intervals 3–4 and 5–6. Three data samples lie in 
the 4–5 interval.

The number of intervals in the histogram affects the resolution of the 
histogram. A common method of determining the number of intervals to 
use in a histogram is Sturges’ Rule, which is given by the following 
equation.

Number of Intervals = 1 + 3.3log(size of (X))

Mean Square Error (mse)
The mean square error (mse) is the average of the sum of the square of the 
difference between the corresponding elements of two input sequences. 
The following equation yields the mse for two input sequences X and Y.

where n is the number of data points. 

You can use the mse to compare two sequences. For example, system S1 
receives a digital signal x and produces an output signal y1. System S2 
produces y2 when it receives x. Theoretically, y1 = y2. To verify that y1 = y2, 
you want to compare y1 and y2. Both y1 and y2 contain a large number of 
data points. Because y1 and y2 are large, an element-by-element comparison 
is difficult. You can calculate the mse of y1 and y2. If the mse is smaller than 
an acceptable tolerance, y1 and y2 are equivalent.

0 1 2 3 4 5 6 7 8

1

2

3

∆0 ∆1 ∆7

mse 1
n
--- xi yi–( )2

i 0=

n 1–

∑=
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Root Mean Square (rms)
The root mean square (rms) of an input sequence equals the positive square 
root of the mean of the square of the input sequence. In other words, you 
can square the input sequence, take the mean of the new squared sequence, 
and take the square root of the mean of the new squared sequence. The 
following equation yields the rms  for an input sequence X.

where n is the number of elements in X.

Root mean square is a widely used quantity for analog signals. The 
following equation yields the root mean square voltage Vrms for a sine 
voltage waveform.

where Vp is the peak amplitude of the signal.

Probability
In any random experiment, a chance, or probability, always exists that a 
particular event will or will not occur. The probability that event A will 
occur is the ratio of the number of outcomes favorable to A to the total 
number of equally likely outcomes.

You can assign a number between zero and one to an event as an indication 
of the probability that the event will occur. If you are absolutely sure that 
the event will occur, its probability is 100% or one. If you are sure that the 
event will not occur, its probability is zero.

Random Variables
Many experiments generate outcomes that you can interpret in terms of real 
numbers. Some examples are the number of cars passing a stop sign during 
a day, the number of voters favoring candidate A, and the number of 
accidents at a particular intersection. Random variables are the numerical 
outcomes of an experiment whose values can change from experiment to 
experiment.

Ψx

Ψx
1
n
--- xi

2

i 0=

n 1–

∑=

Vrms
Vp

2
-------=
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Discrete Random Variables
Discrete random variables can take on only a finite number of possible 
values. For example, if you roll a single unbiased die, six possible events 
can occur. The roll can result in a 1, 2, 3, 4, 5, or 6. The probability that a 
2 will result is one in six, or 0.16666.

Continuous Random Variables
Continuous random variables can take on any value in an interval of real 
numbers. For example, an experiment measures the life expectancy x of 
50 batteries of a certain type. The batteries selected for the experiment 
come from a larger population of the same type of battery. Figure 10-2 
shows the histogram for the observed data.

 

Figure 10-2.  Life Lengths Histogram

Figure 10-2 shows that most of the values for x are between zero and 
100 hours. The histogram values drop off smoothly for larger values of x. 
The value of x can equal any value between zero and the largest observed 
value, making x a continuous random variable.

You can approximate the histogram in Figure 10-2 by an exponentially 
decaying curve. The exponentially decaying curve is a mathematical model 
for the behavior of the data sample. If you want to know the probability that 
a randomly selected battery will last longer than 400 hours, you can 
approximate the probability value by the area under the curve to the right 
of the value 4. The function that models the histogram of the random 
variable is the probability density function. Refer to the Probability 

0 1 2 3 4 5 6

Life Length in Hundreds of Hours

Histogram
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Distribution and Density Functions section of this chapter for more 
information about the probability density function.

A random variable X is continuous if it can take on an infinite number of 
possible values associated with intervals of real numbers and a probability 
density function f(x) exists such that the following relationships and 
equations are true.

(10-6)

The chance that X will assume a specific value of X = a is extremely small. 
The following equation shows solving Equation 10-6 for a specific value 
of X.

Because X can assume an infinite number of possible values, the probability 
of it assuming a specific value is zero.

Normal Distribution
The normal distribution is a continuous probability distribution. The 
functional form of the normal distribution is the normal density function. 
The following equation defines the normal density function f(x).

f x( ) 0 for all x≥

f x( ) xd
∞–

∞

∫ 1=

P a X b≤ ≤( ) f x( ) xd
a

b

∫=

X a P X a=( ), f x( ) xd
a

a

∫ 0= = =

f x( ) 1
2πs

-------------e x x–( )
2 2s2( )⁄–=
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The normal density function has a symmetric bell shape. The following 
parameters completely determine the shape and location of the normal 
density function:

• The center of the curve is the mean value  = 0.

• The spread of the curve is the variance s2 = 1.

If a random variable has a normal distribution with a mean equal to zero 
and a variance equal to one, the random variable has a standard normal 
distribution.

Computing the One-Sided Probability of a Normally 
Distributed Random Variable
The following equation defines the one-sided probability of a normally 
distributed random variable.

where p is the one-sided probability, X is a standard normal distribution 
with the mean value equal to zero and the variance equal to one, and x is the 
value.

You can use the Normal Distribution VI to compute p for x. Suppose you 
measure the heights of 1,000 randomly selected adult males and obtain a 
data set S. The histogram distribution of S shows many measurements 
grouped closely about a mean height, with relatively few very short and 
very tall males in the population. Therefore, you can closely approximate 
the histogram with the normal distribution.

Next, you want to find the probability that the height of a male in a different 
set of 1,000 randomly chosen males is greater than or equal to 170 cm. 
After normalizing 170 cm, you can use the Normal Distribution VI to 
compute the one-sided probability p. Complete the following steps to 
normalize 170 cm and calculate p using the Normal Distribution VI.

1. Subtract the mean from 170 cm.

2. Scale the difference from step 1 by the standard deviation to obtain the 
normalized x value.

3. Wire the normalized x value to the x input of the Normal Distribution 
VI and run the VI.

The choice of the probability density function is fundamental to obtaining 
a correct probability value.

x

p Prob X x≤( )=
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In addition to the normal distribution method, you can use the following 
methods to compute p:

• Chi-Square distribution

• F distribution

• T distribution 

Finding x with a Known p
The Inv Normal Distribution VI computes the values x that have the chance 
of lying in a normally distributed sample for a given p. For example, you 
might want to find the heights of males that have a 60% chance of lying in 
a randomly chosen data set.

In addition to the inverse normal distribution method, you can use the 
following methods to compute x with a known p:

• Inverse Chi-Square distribution

• Inverse F distribution

• Inverse T distribution 

Probability Distribution and Density Functions
Equation 10-7 defines the probability distribution function F(x).

(10-7)

where f(x) is the probability density function, , 

and 

By performing differentiation, you can derive the following equation from 
Equation 10-7.

F x( ) f µ( ) µd
∞–

x

∫=

f x( ) 0≥   x∀ domain of f∈

f x( ) xd
∞–

∞

∫ 1.=

f x( ) dF x( )
dx

--------------=
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You can use a histogram to obtain a denormalized discrete representation 
of f(x). The following equation defines the discrete representation of f(x).

The following equation yields the sum of the elements of the histogram.

where m is the number of samples in the histogram and n is the number of 
samples in the input sequence representing the function.

Therefore, to obtain an estimate of F(x) and f(x), normalize the histogram 
by a factor of ∆x = 1/n and let hj = xj.

Figure 10-3 shows the block diagram of a VI that generates F(x) and f(x) 
for Gaussian white noise.

Figure 10-3.  Generating Probability Distribution Function and Probability 
Density Function

xi

i 0=

n 1–

∑ ∆ x 1=

hl

l 0=

m 1–

∑ n=
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The VI in Figure 10-3 uses 25,000 samples, 2,500 in each of the 10 loop 
iterations, to compute the probability distribution function for Gaussian 
white noise. The Integral x(t) VI computes the probability distribution 
function. The Derivative x(t) VI performs differentiation on the probability 
distribution function to compute the probability density function.

Figure 10-4 shows the results the VI in Figure 10-3 returns.

Figure 10-4.  Input Signal, Probability Distribution Function, 
and Probability Density Function
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Figure 10-4 shows the last block of Gaussian-distributed noise samples, 
the plot of the probability distribution function F(x), and the plot of the 
probability density function f(x). The plot of F(x) monotonically increases 
and is limited to the maximum value of 1.00 as the value of the x-axis 
increases. The plot of f(x) shows a Gaussian distribution that conforms to 
the specific pattern of the noise signal.
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11
Linear Algebra

This chapter describes how to use the Linear Algebra VIs to perform matrix 
computation and analysis. Use the NI Example Finder to find examples of 
using the Linear Algebra VIs.

Linear Systems and Matrix Analysis
Systems of linear algebraic equations arise in many applications that 
involve scientific computations, such as signal processing, computational 
fluid dynamics, and others. Such systems occur naturally or are the result 
of approximating differential equations by algebraic equations.

Types of Matrices
Whatever the application, it is always necessary to find an accurate solution 
for the system of equations in a very efficient way. In matrix-vector 
notation, such a system of linear algebraic equations has the following 
form.

where A is an n × n matrix, b is a given vector consisting of n elements, and 
x is the unknown solution vector to be determined.

A matrix is a 2D array of elements with m rows and n columns. The 
elements in the 2D array might be real numbers, complex numbers, 
functions, or operators. The matrix A shown below is an array of m rows 
and n columns with m × n elements.

Here, ai, j denotes the (i, j)th element located in the ith row and the jth column. 
In general, such a matrix is a rectangular matrix. When m = n so that the 

Ax b=

A

a0 0, a0 1, … a0 n 1–,

a1 0, a1 1, … a1 n 1–,

… … … …
am 1– 0, am 1– 1, … am 1– n 1–,

=
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number of rows is equal to the number of columns, the matrix is a square 
matrix. An m × 1 matrix—m rows and one column—is a column vector. A 
row vector is a 1 × n matrix—one row and n columns. If all the elements 
other than the diagonal elements are zero—that is, ai, j = 0, i ≠ j—such a 
matrix is a diagonal matrix. For example,

is a diagonal matrix. A diagonal matrix with all the diagonal elements equal 
to one is an identity matrix, also known as unit matrix. If all the elements 
below the main diagonal are zero, the matrix is an upper triangular matrix. 
On the other hand, if all the elements above the main diagonal are zero, the 
matrix is a lower triangular matrix. When all the elements are real numbers, 
the matrix is a real matrix. On the other hand, when at least one of the 
elements of the matrix is a complex number, the matrix is a complex matrix.

Determinant of a Matrix
One of the most important attributes of a matrix is its determinant. In the 
simplest case, the determinant of a 2 × 2 matrix

 

is given by ad – bc. The determinant of a square matrix is formed by taking 
the determinant of its elements. For example, if

then the determinant of A, denoted by , is

 

= =

= –196

A
4 0 0
0 5 0
0 0 9

=

A a b
c d

=

A
2 5 3
6 1 7
1 6 9

=

A

A 2 5 3
6 1 7
1 6 9

2 1 7
6 9

5 6 7
1 9

– 3 6 1
1 6

+
 
 
 

=

2 33–( ) 5 47( )– 3 35( )+
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The determinant of a diagonal matrix, an upper triangular matrix, or a lower 
triangular matrix is the product of its diagonal elements.

The determinant tells many important properties of the matrix. For 
example, if the determinant of the matrix is zero, the matrix is singular. In 
other words, the above matrix with nonzero determinant is nonsingular. 
Refer to the Matrix Inverse and Solving Systems of Linear Equations 
section of this chapter for more information about singularity and the 
solution of linear equations and matrix inverses.

Transpose of a Matrix
The transpose of a real matrix is formed by interchanging its rows and 
columns. If the matrix B represents the transpose of A, denoted by AT, 
then bj,i = ai,j. For the matrix A defined above,

In the case of complex matrices, we define complex conjugate 
transposition. If the matrix D represents the complex conjugate transpose 
(if a = x + iy, then complex conjugate a* = x – iy) of a complex matrix C, 
then

That is, the matrix D is obtained by replacing every element in C by its 
complex conjugate and then interchanging the rows and columns of the 
resulting matrix.

A real matrix is a symmetric matrix if the transpose of the matrix is equal 
to the matrix itself. The example matrix A is not a symmetric matrix. If a 
complex matrix C satisfies the relation C = CH, C is a Hermitian matrix.

Linear Independence
A set of vectors x1, x2, …, xn is linearly dependent only if there exist scalars 
α1, α2, …, αn, not all zero, such that

 (11-1)

B AT
2 6 1
5 1 6
3 7 9

==

D CH di j, c∗j i,=⇒=

α1x1 α2x2 … αnxn+ + + 0=
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In simpler terms, if one of the vectors can be written in terms of a linear 
combination of the others, the vectors are linearly dependent.

If the only set of αi for which Equation 11-1 holds is α1 = 0, α2 = 0, …, 
αn = 0, the set of vectors x1, x2, …, xn is linearly independent. So in this 
case, none of the vectors can be written in terms of a linear combination of 
the others. Given any set of vectors, Equation 11-1 always holds for α1 = 0, 
α2 = 0, …, αn = 0. Therefore, to show the linear independence of the set, 
you must show that α1 = 0, α2 = 0, …, αn = 0 is the only set of αi for which 
Equation 11-1 holds.

For example, first consider the vectors

α1 = 0 and α2 = 0 are the only values for which the relation α1x + α2y = 0 
holds true. Therefore, these two vectors are linearly independent of each 
other. Now consider the vectors

If α1 = –2 and α2 = 1, α1x + α2y = 0. Therefore, these two vectors are 
linearly dependent on each other. You must understand this definition of 
linear independence of vectors to fully appreciate the concept of the rank of 
the matrix.

Matrix Rank
The rank of a matrix A, denoted by ρ(A), is the maximum number of 
linearly independent columns in A. If you look at the example matrix A, 
you find that all the columns of A are linearly independent of each other. 
That is, none of the columns can be obtained by forming a linear 
combination of the other columns. Hence, the rank of the matrix is 3. 
Consider one more example matrix, B, where

x 1
2

= y 3
4

=

x 1
2

= y 2
4

=

B
0 1 1
1 2 3
2 0 2

=
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This matrix has only two linearly independent columns because the third 
column of B is linearly dependent on the first two columns. Hence, the rank 
of this matrix is 2. It can be shown that the number of linearly independent 
columns of a matrix is equal to the number of independent rows. So the 
rank can never be greater than the smaller dimension of the matrix. 
Consequently, if A is an  matrix, then

 

where min denotes the minimum of the two numbers. In matrix theory, 
the rank of a square matrix pertains to the highest order nonsingular matrix 
that can be formed from it. A matrix is singular if its determinant is zero. 
So the rank pertains to the highest order matrix that you can obtain whose 
determinant is not zero. For example, consider a 4 × 4 matrix

For this matrix, det(B) = 0, but

Hence, the rank of B is 3. A square matrix has full rank only if its 
determinant is different from zero. Matrix B is not a full-rank matrix.

Magnitude (Norms) of Matrices
You must develop a notion of the magnitude of vectors and matrices to 
measure errors and sensitivity in solving a linear system of equations. 
As an example, these linear systems can be obtained from applications in 
control systems and computational fluid dynamics. In two dimensions, 
for example, you cannot compare two vectors x = [x1 x2] and y = [y1 y2] 
because you might have x1 > y1 but x2 < y2. A vector norm is a way to 
assign a scalar quantity to these vectors so that they can be compared with 
each other. It is similar to the concept of magnitude, modulus, or absolute 
value for scalar numbers.

n m×

ρ A( ) min n m,( )≤

B

1 2 3 4
0 1 1– 0
1 0 1 2
1 1 0 2

=

1 2 3
0 1 1–

1 0 1
1–=



Chapter 11 Linear Algebra

LabVIEW Analysis Concepts 11-6 ni.com

There are ways to compute the norm of a matrix. These include the 2-norm 
(Euclidean norm), the 1-norm, the Frobenius norm (F-norm), and the 
Infinity norm (inf-norm). Each norm has its own physical interpretation. 
Consider a unit ball containing the origin. The Euclidean norm of a vector 
is simply the factor by which the ball must be expanded or shrunk in order 
to encompass the given vector exactly, as shown in Figure 11-1.

Figure 11-1.  Euclidean Norm of a Vector

Figure 11-1a shows a unit ball of radius = 1 unit. Figure 11-1b shows a 
vector of length  =  = . As shown in Figure 11-1c, the unit 
ball must be expanded by a factor of  before it can exactly encompass 
the given vector. Hence, the Euclidean norm of the vector is .

The norm of a matrix is defined in terms of an underlying vector norm. It is 
the maximum relative stretching that the matrix does to any vector. With the 
vector 2-norm, the unit ball expands by a factor equal to the norm. On the 
other hand, with the matrix 2-norm, the unit ball might become an 
ellipsoidal (ellipse in 3D), with some axes longer than others. The longest 
axis determines the norm of the matrix.

Some matrix norms are much easier to compute than others. The 1-norm 
is obtained by finding the sum of the absolute value of all the elements in 
each column of the matrix. The largest of these sums is the 1-norm. 
In mathematical terms, the 1-norm is simply the maximum absolute 
column sum of the matrix.

 

1

1

2

2

2

2

2 22 2

a b c

22 22+ 8 2 2
2 2

2 2

A 1 maxj ai j,

i 0=

n 1–

∑=
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For example,

then

The inf-norm of a matrix is the maximum absolute row sum of the matrix.

(11-2)

In this case, you add the magnitudes of all elements in each row of the 
matrix. The maximum value that you get is the inf-norm. For the 
Equation 11-2 example matrix, 

The 2-norm is the most difficult to compute because it is given by the 
largest singular value of the matrix. Refer to the Matrix Factorization 
section of this chapter for more information about singular values.

Determining Singularity (Condition Number)
Whereas the norm of the matrix provides a way to measure the magnitude 
of the matrix, the condition number of a matrix is a measure of how close 
the matrix is to being singular. The condition number of a square 
nonsingular matrix is defined as

 

where p can be one of the four norm types described in the Magnitude 
(Norms) of Matrices section of this chapter. For example, to find the 
condition number of a matrix A, you can find the 2-norm of A, the 2-norm 
of the inverse of the matrix A, denoted by A–1, and then multiply them 
together. The inverse of a square matrix A is a square matrix B such that 
AB = I, where I is the identity matrix. As described earlier in this chapter, 

A 1 3
2 4

=

A 1 max 3 7,( ) 7= =

A ∞ maxi ai j,

j 0=

n 1–

∑=

A ∞ max 4 6,( ) 6= =

cond A( ) A p A 1–
p⋅=
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the 2-norm is difficult to calculate on paper. You can use the Matrix Norm 
VI to compute the 2-norm. For example,

The condition number can vary between 1 and infinity. A matrix with a 
large condition number is nearly singular, while a matrix with a condition 
number close to 1 is far from being singular. The matrix A above is 
nonsingular. However, consider the matrix

The condition number of this matrix is 47,168, and hence the matrix is close 
to being singular. A matrix is singular if its determinant is equal to zero. 
However, the determinant is not a good indicator for assessing how close a 
matrix is to being singular. For the matrix B above, the determinant 
(0.0299) is nonzero. However, the large condition number indicates that the 
matrix is close to being singular. Remember that the condition number of a 
matrix is always greater than or equal to one; the latter being true for 
identity and permutation matrices. A permutation matrix is an identity 
matrix with some rows and columns exchanged. The condition number is a 
very useful quantity in assessing the accuracy of solutions to linear 
systems.

Basic Matrix Operations and 
Eigenvalues-Eigenvector Problems

In this section, consider some very basic matrix operations. Two matrices, 
A and B, are equal if they have the same number of rows and columns and 
their corresponding elements all are equal. Multiplication of a matrix A by 
a scalar α is equal to multiplication of all its elements by the scalar. That is,

 

A 1 2
3 4

A 1–, 2– 1
1.5 0.5–

A 2, 5.4650 A 1–
2,

2.7325 cond A( ), 14.9331

= = =

= =

B 1 0.99
1.99 2

=

C αA ci j,⇒ αai j,= =
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For example,

Two (or more) matrices can be added or subtracted only if they have the 
same number of rows and columns. If both matrices A and B have m rows 
and n columns, their sum C is an m × n matrix defined as , 
where ci, j = ai, j ± bi, j. For example,

 

For multiplication of two matrices, the number of columns of the first 
matrix must be equal to the number of rows of the second matrix. If matrix 
A has m rows and n columns and matrix B has n rows and p columns, their 
product C is an m × p matrix defined as C = AB, where

 

For example,

So you multiply the elements of the first row of A by the corresponding 
elements of the first column of B and add all the results to get the elements 
in the first row and first column of C. Similarly, to calculate the element in 
the ith row and the jth column of C, multiply the elements in the ith row of A 
by the corresponding elements in the jth column of C, and then add them all. 
This is shown pictorially in Figure 11-2.

2 1 2
3 4

2 4
6 8

=

C A B±=

1 2
3 4

2 4
5 1

+ 3 6
8 5

=

ci j, ai k, bk j,

k 0=

n 1–

∑=

1 2
3 4

2 4
5 1

× 12 6
26 16

=
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Figure 11-2.  Matrix Multiplication

Matrix multiplication, in general, is not commutative, that is, AB ≠ BA. 
Also, multiplication of a matrix by an identity matrix results in the original 
matrix.

Dot Product and Outer Product
If X represents a vector and Y represents another vector, the dot product of 
these two vectors is obtained by multiplying the corresponding elements of 
each vector and adding the results. This is denoted by

where n is the number of elements in X and Y. Both vectors must have the 
same number of elements. The dot product is a scalar quantity and has 
many practical applications.

For example, consider the vectors a = 2i + 4j and b = 2i + j in a 
two-dimensional rectangular coordinate system, as shown in Figure 11-3.

Rn • C1 Rn • Cm

R1 • C1 R1 • Cm

R1

Rn

X
C1 Cm

=

X Y• xiyi

i 0=

n 1–

∑=
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Figure 11-3.  Vectors a and b

Then the dot product of these two vectors is given by

The angle α between these two vectors is given by

where |a| denotes the magnitude of a.

As a second application, consider a body on which a constant force a acts, 
as shown in Figure 11-4. The work W done by a in displacing the body is 
defined as the product of |d| and the component of a in the direction of 
displacement d. That is,

 

Figure 11-4.  Force Vector

a=2i+4j

α=36.86°

b=2i+j

d 2
4

2
1

• 2 2×( ) 4 1×( )+ 8= = =

α inv a b•
a b
------------ 
 cos inv 8

10
------ 
 cos 36.86o= = =

W a d αcos a d•= =

d

Force a

Body
α

α
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On the other hand, the outer product of these two vectors is a matrix. 
The (i, j)th element of this matrix is obtained using the formula

a(i,j) = xi × yj

For example,

Eigenvalues and Eigenvectors
To understand eigenvalues and eigenvectors, start with the classical 
definition. Given an  matrix A, the problem is to find a scalar λ 
and a nonzero vector x such that

 (11-3)

In Equation 11-3, λ is an eigenvalue. Similar matrices have the same 
eigenvalues. In Equation 11-3, x is the eigenvector that corresponds to the 
eigenvalue. An eigenvector of a matrix is a nonzero vector that does not 
rotate when the matrix is applied to it. 

Calculating the eigenvalues and eigenvectors are fundamental principles of 
linear algebra and allow you to solve many problems such as systems of 
differential equations when you understand what they represent. Consider 
an eigenvector x of a matrix A as a nonzero vector that does not rotate when 
x is multiplied by A, except perhaps to point in precisely the opposite 
direction. x may change length or reverse its direction, but it will not turn 
sideways. In other words, there is some scalar constant λ such that 
Equation 11-3 holds true. The value λ is an eigenvalue of A. 

Consider the following example. One of the eigenvectors of the matrix A, 
where

is

1
2

3
4

× 3 4
6 8

=

n n×

Ax λx=

A 2 3
3 5

=

x 0.62
1.00

=
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Multiplying the matrix A and the vector x simply causes the vector x 
to be expanded by a factor of 6.85. Hence, the value 6.85 is one of the 
eigenvalues of the vector x. For any constant α, the vector αx also is 
an eigenvector with eigenvalue λ because

 

In other words, an eigenvector of a matrix determines a direction in 
which the matrix expands or shrinks any vector lying in that direction by 
a scalar multiple, and the expansion or contraction factor is given by the 
corresponding eigenvalue. A generalized eigenvalue problem is to find a 
scalar λ and a nonzero vector x such that

where B is another n × n matrix.

The following are some important properties of eigenvalues and 
eigenvectors:

• The eigenvalues of a matrix are not necessarily all distinct. In other 
words, a matrix can have multiple eigenvalues. 

• All the eigenvalues of a real matrix need not be real. However, complex 
eigenvalues of a real matrix must occur in complex conjugate pairs. 

• The eigenvalues of a diagonal matrix are its diagonal entries, and the 
eigenvectors are the corresponding columns of an identity matrix of 
the same dimension. 

• A real symmetric matrix always has real eigenvalues and eigenvectors.

• Eigenvectors can be scaled arbitrarily.

There are many practical applications in the field of science and 
engineering for an eigenvalue problem. For example, the stability of a 
structure and its natural modes and frequencies of vibration are determined 
by the eigenvalues and eigenvectors of an appropriate matrix. Eigenvalues 
also are very useful in analyzing numerical methods, such as convergence 
analysis of iterative methods for solving systems of algebraic equations and 
the stability analysis of methods for solving systems of differential 
equations.

The EigenValues and Vectors VI has an Input Matrix input, which is an 
N × N real square matrix. The matrix type input specifies the type of the 
input matrix. The matrix type input could be 0, indicating a general matrix, 
or 1, indicating a symmetric matrix. A symmetric matrix always has real 

A αx( ) αAx λαx==

Ax λBx=
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eigenvalues and eigenvectors. A general matrix has no special property 
such as symmetry or triangular structure.

The output option input specifies what needs to be computed. A value 
of 0 indicates that only the eigenvalues need to be computed. A value of 1 
indicates that both the eigenvalues and the eigenvectors should be 
computed. It is computationally expensive to compute both the eigenvalues 
and the eigenvectors. So it is important that you use the output option input 
of the EigenValues and Vectors VI carefully. Depending on your particular 
application, you might just want to compute the eigenvalues or both the 
eigenvalues and the eigenvectors. Also, a symmetric matrix needs less 
computation than a nonsymmetric matrix. Choose the matrix type 
carefully. 

Matrix Inverse and Solving Systems of Linear Equations
The inverse, denoted by A–1, of a square matrix A is a square matrix 
such that

where I is the identity matrix. The inverse of a matrix exists only if the 
determinant of the matrix is not zero—that is, it is nonsingular. In general, 
you can find the inverse of only a square matrix. However, you can compute 
the pseudoinverse of a rectangular matrix. Refer to the Matrix 
Factorization section of this chapter for more information about 
the pseudoinverse of a rectangular matrix.

Solutions of Systems of Linear Equations
In matrix-vector notation, a system of linear equations has the form Ax = b, 
where A is an n × n matrix and b is a given n-vector. The aim is to determine 
x, the unknown solution n-vector. Whether such a solution exists and 
whether it is unique lies in determining the singularity or nonsingularity of 
the matrix A.

A matrix is singular if it has any one of the following equivalent properties:

• The inverse of the matrix does not exist.

• The determinant of the matrix is zero.

• The rows or columns of A are linearly dependent.

•  Az = 0 for some vector z ≠ 0.

A 1– A AA 1– I= =
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Otherwise, the matrix is nonsingular. If the matrix is nonsingular, its inverse 
A–1 exists, and the system Ax = b has a unique solution, x = A–1b, regardless 
of the value for b.

On the other hand, if the matrix is singular, the number of solutions is 
determined by the right-hand-side vector b. If A is singular and Ax = b, 
A(x + ϒz) = b for any scalar ϒ, where the vector z is as in the previous 
definition. Thus, if a singular system has a solution, the solution cannot be 
unique.

Explicitly computing the inverse of a matrix is prone to numerical 
inaccuracies. Therefore, you should not solve a linear system of equations 
by multiplying the inverse of the matrix A by the known right-hand-side 
vector. The general strategy to solve such a system of equations is to 
transform the original system into one whose solution is the same as that of 
the original system but is easier to compute. One way to do so is to use the 
Gaussian Elimination technique. The Gaussian Elimination technique has 
three basic steps. First, express the matrix A as a product

where L is a unit lower triangular matrix and U is an upper triangular 
matrix. Such a factorization is LU factorization. Given this, the linear 
system Ax = b can be expressed as LUx = b. Such a system then can be 
solved by first solving the lower triangular system Ly = b for y by 
forward-substitution. This is the second step in the Gaussian Elimination 
technique. For example, if

 

then

A LU=

l a 0
b c

= y p
q

= b r
s

=

p r
a
--- q, s bp–( )

c
-------------------= =
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The first element of y can be determined easily due to the lower triangular 
nature of the matrix L. Then you can use this value to compute the 
remaining elements of the unknown vector sequentially—hence the name 
forward-substitution. The final step involves solving the upper triangular 
system Ux = y by back-substitution. For example, if

then

In this case, this last element of x can be determined easily and then 
used to determine the other elements sequentially—hence the name 
back-substitution. So far, this chapter has described the case of square 
matrices. Because a nonsquare matrix is necessarily singular, the system 
of equations must have either no solution or a nonunique solution. In such 
a situation, you usually find a unique solution x that satisfies the linear 
system in an approximate sense.

You can use the Linear Algebra VIs to compute the inverse of a matrix, 
compute LU decomposition of a matrix, and solve a system of linear 
equations. It is important to identify the input matrix properly, as it 
helps avoid unnecessary computations, which in turn helps to minimize 
numerical inaccuracies. The four possible matrix types are general 
matrices, positive definite matrices, and lower and upper triangular 
matrices. A real matrix is positive definite only if it is symmetric, and if the 
quadratic form for all nonzero vectors is X. If the input matrix is square but 
does not have a full rank (a rank-deficient matrix), the VI finds the least 
square solution x. The least square solution is the one that minimizes the 
norm of Ax – b. The same also holds true for nonsquare matrices.

Matrix Factorization
The Matrix Inverse and Solving Systems of Linear Equations section of this 
chapter describes how a linear system of equations can be transformed into 
a system whose solution is simpler to compute. The basic idea was to 
factorize the input matrix into the multiplication of several, simpler 
matrices. The LU decomposition technique factors the input matrix as a 
product of upper and lower triangular matrices. Other commonly used 
factorization methods are Cholesky, QR, and the Singular Value 

U a b
0 c

= x m
n

= y p
q

=

n
q
c
--- m, p bn–( )

a
--------------------= =
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Decomposition (SVD). You can use these factorization methods to solve 
many matrix problems, such as solving linear system of equations, 
inverting a matrix, and finding the determinant of a matrix.

If the input matrix A is symmetric and positive definite, an LU factorization 
can be computed such that A = UTU, where U is an upper triangular matrix. 
This is Cholesky factorization. This method requires only about half the 
work and half the storage compared to LU factorization of a general matrix 
by Gaussian Elimination. You can determine if a matrix is positive definite 
by using the Test Positive Definite VI.

A matrix Q is orthogonal if its columns are orthonormal—that is, 
if QT Q = I, the identity matrix. QR factorization technique factors a 
matrix as the product of an orthogonal matrix Q and an upper triangular 
matrix R—that is, A = QR. QR factorization is useful for both square 
and rectangular matrices. A number of algorithms are possible for 
QR factorization, such as the Householder transformation, the 
Givens transformation, and the Fast Givens transformation.

The Singular Value Decomposition (SVD) method decomposes a matrix 
into the product of three matrices—A = USVT. U and V are orthogonal 
matrices. S is a diagonal matrix whose diagonal values are called the 
singular values of A. The singular values of A are the nonnegative square 
roots of the eigenvalues of AT A, and the columns of U and V, which are 
called left and right singular vectors, are orthonormal eigenvectors of AAT 
and ATA, respectively. SVD is useful for solving analysis problems such as 
computing the rank, norm, condition number, and pseudoinverse of 
matrices.

Pseudoinverse
The pseudoinverse of a scalar σ is defined as 1/σ if σ ≠ 0, and zero 
otherwise. In case of scalars, pseudoinverse is the same as the inverse. 
You now can define the pseudoinverse of a diagonal matrix by transposing 
the matrix and then taking the scalar pseudoinverse of each entry. Then the 
pseudoinverse of a general real m × n matrix A, denoted by A†, is given by

The pseudoinverse exists regardless of whether the matrix is square or 
rectangular. If A is square and nonsingular, the pseudoinverse is the same 
as the usual matrix inverse. You can use the PseudoInverse Matrix VI to 
compute the pseudoinverse of real and complex matrices.

A† VS†UT=
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12
Optimization

This chapter describes basic concepts and methods used to solve 
optimization problems. Refer to Appendix A, References, for a list of 
references to more information about optimization.

Introduction to Optimization
Optimization is the search for a set of parameters that minimize a function. 
For example, you can use optimization to define an optimal set of 
parameters for the design of a specific application, such as the optimal 
parameters for designing a control mechanism for a system or the 
conditions that minimize the cost of a manufacturing process. Generally, 
optimization problems involve a set of possible solutions X and the 
objective function f(x), also known as the cost function. f(x) is the function 
of the variable or variables you want to minimize or maximize.

The optimization process either minimizes or maximizes f(x) until reaching 
the optimal value for f(x). When minimizing f(x), the optimal solution 
x* ∈ X satisfies the following condition.

(12-1)

The optimization process searches for the value of x* that minimizes f(x), 
subject to the constraint x* ∈ X, where X is the constraint set. A value that 
satisfies the conditions defined in Equation 12-1 is a global minimum. 
Refer to the Local and Global Minima section of this chapter for more 
information about global minima.

In the case of maximization, x* satisfies the following condition.

A value satisfying the preceding condition is a global maximum. This 
chapter describes optimization in terms of minimizing f(x).

f x∗( ) f x( )≤ x∀ X∈

f x∗( ) f x( )  x∀ X∈≥
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Constraints on the Objective Function
The presence and structure of any constraints on the value of f(x) influence 
the selection of the algorithm you use to solve an optimization problem. 
Certain algorithms solve only unconstrained optimization problems. If the 
value of f(x) has any of the following constraints, the optimal value of f(x) 
must satisfy the condition the constraint defines:

• Equality constraints, such as Gi(x) = 4 (i = 1, …, me)

• Inequality constraints, such as 

• Lower and upper level boundaries, such as xl, xu

Note Currently, LabVIEW does not include VIs you can use to solve optimization 
problems in which the value of the objective function has constraints.

Linear and Nonlinear Programming Problems
The most common method of categorizing optimization problems is as 
either a linear programming problem or a nonlinear programming problem. 
In addition to constraints on the value of f(x), whether an optimization 
problem is linear or nonlinear influences the selection of the algorithm you 
use to solve the problem.

Note In the context of optimization, the term programming does not refer to computer 
programming. Programming also refers to scheduling or planning. Linear and nonlinear 
programming are subsets of mathematical programming. The objective of mathematical 
programming is the same as optimization—maximizing or minimizing f(x).

Discrete Optimization Problems
Linear programming problems are discrete optimization problems. A finite 
solution set X and a combinatorial nature characterize discrete optimization 
problems. A combinatorial nature refers to the fact that several solutions to 
the problem exist. Each solution to the problem consists of a different 
combination of parameters. However, at least one optimal solution exists. 
Planning a route to several destinations so you travel the minimum distance 
typifies a combinatorial optimization problem.

Continuous Optimization Problems
Nonlinear programming problems are continuous optimization problems. 
An infinite and continuous set X characterizes continuous optimization 
problems.

Gi x( ) 4≤  i me 1+ … m, ,=( )
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Solving Problems Iteratively
Algorithms for solving optimization problems use an iterative process. 
Beginning at a user-specified starting point, the algorithms establish a 
search direction. Each iteration of the algorithm proceeds along the search 
direction to the optimal solution by solving subproblems. Finding the 
optimal solution terminates the iterative process of the algorithm.

As the number of design variables increases, the complexity of the 
optimization problem increases. As problem complexity increases, 
computational overhead increases due to the size and number of 
subproblems the optimization algorithm must solve to find the optimal 
solution. Because of the computational overhead associated with highly 
complex problems, consider limiting the number of iterations allocated to 
find the optimal solution. Use the accuracy input of the Optimization VIs 
to specify the accuracy of the optimal solution.

Linear Programming
Linear programming problems have the following characteristics:

• Linear objective function

• Solution set X with a polyhedron shape defined by linear inequality 
constraints

• Continuous f(x)

• Partially combinatorial structure

Solving linear programming problems involves finding the optimal value 
of f(x) where f(x) is a linear combination of variables, as shown in 
Equation 12-2.

f(x) = a1x1 + … + anxn (12-2)

The value of f(x) in Equation 12-2 can have the following constraints:

• Primary constraints of 

• Additional constraints of M = m1 + m2 + m3

• m1 of the following form

• m2 of the following form

x1 0 … xn, , 0≥ ≥

ai1x1 … ainxn+ + bi bi 0≥( ) i 1 … m1, ,=, ,≤

aj1x1 … ajnxn+ + bj bj 0≥( ) j m1 1 … m1 m2+, ,+=, ,≥
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• m3 of the following form

Any vector x that satisfies all the constraints on the value of f(x) constitutes 
a feasible answer to the linear programming problem. The vector yielding 
the best result for f(x) is the optimal solution.

The following relationship represents the standard form of the linear 
programming problem.

where is the vector of unknowns, is the cost vector, and 
is the constraint matrix. At least one member of solution set X 

is at a vertex of the polyhedron that describes X.

Linear Programming Simplex Method
A simplex describes the solution set X for a linear programming problem. 
The constraints on the value of f(x) define the polygonal surface 
hyperplanes of the simplex. The hyperplanes intersect at vertices along the 
surface of the simplex. The linear nature of f(x) means the optimal solution 
is at one of the vertices of the simplex. The linear programming simplex 
method iteratively moves from one vertex to the adjoining vertex until 
moving to an adjoining vertex no longer yields a more optimal solution.

Note Although both the linear programming simplex method and the nonlinear downhill 
simplex method use the concept of a simplex, the methods have nothing else in common. 
Refer to the Downhill Simplex Method section of this chapter for information about the 
downhill simplex method.

Nonlinear Programming
Nonlinear programming problems have either a nonlinear f(x) or a solution 
set X defined by nonlinear equations and inequalities. Nonlinear 
programming is a broad category of optimization problems and includes 
the following subcategories:

• Quadratic programming problems

• Least-squares problems

• Convex problems

ak1x1 … aknxn+ + bk bk 0≥( ) k m1 m2 1+ … M, ,+=, ,=

min cTx: Ax b x 0≥,={ }

x IRn∈ c IRn∈
A IRm n×∈
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Impact of Derivative Use on Search Method Selection
When you select a search method, consider whether the method uses 
derivatives, which can help you determine the suitability of the method for 
a particular optimization problem. For example, the downhill simplex 
method, also known as the Nelder-Mead method, uses only evaluations of 
f(x) to find the optimal solution. Because it uses only evaluations of f(x), the 
downhill simplex method is a good choice for problems with pronounced 
nonlinearity or with problems containing a significant number of 
discontinuities.

The search methods that use derivatives, such as the gradient search 
methods, work best with problems in which the objective function is 
continuous in its first derivative.

Line Minimization
The process of iteratively searching along a vector for the minimum value 
on the vector is line minimization or line searching. Line minimization can 
help establish a search direction or verify that the chosen search direction 
is likely to produce an optimal solution.

Nonlinear programming search algorithms use line minimization to solve 
the subproblems leading to an optimal value for f(x). The search algorithm 
searches along a vector until it reaches the minimum value on the vector. 
After the search algorithm reaches the minimum on one vector, the search 
continues along another vector, usually orthogonal to the first vector. The 
line search continues along the new vector until reaching its minimum 
value. The line minimization process continues until the search algorithm 
finds the optimal solution.

Local and Global Minima
The goal of any optimization problem is to find a global optimal solution. 
However, nonlinear programming problems are continuous optimization 
problems so the solution set X for a nonlinear programming problem might 
be infinitely large. Therefore, you might not be able to find a global 
optimum for f(x). In practice, you solve most nonlinear programming 
problems by finding a local optimum for f(x).
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Global Minimum
In terms of solution set X, x* is a global minimum of f over X if it satisfies 
the following relationship.

Local Minimum
A local minimum is a minimum of the function over a subset of the domain. 
In terms of solution set X, x* is a local minimum of f over X if x* ∈ X, and 
an ε > 0 exists so that the following relationship is true.

where 

Figure 12-1 illustrates a function of x where the domain is any value 
between 32 and 65; x ∈ [32, 65].

Figure 12-1.  Domain of X (32, 65)

In Figure 12-1, A is a local minimum because you can find ε > 0, such that 
ε = 1 would suffice. Similarly, C is a local minimum. B is the 

global minimum because  for 

Downhill Simplex Method
The downhill simplex method developed by Nelder and Mead uses a 
simplex and performs function evaluations without derivatives.

Note Although the downhill simplex method and the linear programming simplex method 
use the concept of a simplex, the methods have nothing else in common. Refer to the Linear 

f x∗( ) f x( )≤ x∀ X∈

f x∗( ) f x( )≤ x X∈∀  with x x∗– ε<

x x′x.=

f x∗( ) f x( ).≤
f x∗( ) x≤ x∀ 32 65,[ ].∈
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Programming Simplex Method section of this chapter for information about the linear 
programming simplex method and the geometry of the simplex.

Most practical applications involve solution sets that are nondegenrate 
simplexes. A nondegenrate simplex encloses a finite volume of 
N dimensions. If you take any point of the nondegenrate simplex as the 
origin of the simplex, the remaining N points of the simplex define vector 
directions spanning the N-dimensional space.

The downhill simplex method requires that you define an initial simplex by 
specifying N + 1 starting points. No effective means of determining the 
initial starting point exists. You must use your judgement about the best 
location from which to start. After deciding upon an initial starting point P0, 
you can use Equation 12-3 to determine the other points needed to define 
the initial simplex.

Pi = P0 + λei (12-3)

where ei is a unit vector and λ is an estimate of the characteristic length 
scale of the problem.

Starting with the initial simplex defined by the points from Equation 12-3, 
the downhill simplex method performs a series of reflections. A reflection 
moves from a point on the simplex through the opposite face of the simplex 
to a point where the function f is smaller. The configuration of the 
reflections conserves the volume of the simplex, which maintains the 
nondegeneracy of the simplex. The method continues to perform 
reflections until the function value reaches a predetermined tolerance.

Because of the multidimensional nature of the downhill simplex method, 
the value it finds for f(x) might not be the optimal solution. You can verify 
that the value for f(x) is the optimal solution by repeating the process. When 
you repeat the process, use the optimal solution from when you first ran the 
method as P0. Reinitialize the method to N + 1 starting points using 
Equation 12-3.

Golden Section Search Method
The golden section search method finds a local minimum of a 1D function 
by bracketing the minimum. Bracketing a minimum requires a triplet of 
points, as shown in the following relationship.

a < b < c such that f(b) < f(a) and f(b) < f(c) (12-4)
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Because the relationship in Equation 12-4 is true, the minimum of the 
function is within the interval (a, c). The search method starts by choosing 
a new point x between either a and b or between b and c. For example, 
choose a point x between b and c and evaluate f(x). If f(b) < f(x), the new 
bracketing triplet is a < b < x. If f(b) > f(x), the new bracketing triplet is 
b < x < c. In each instance, the middle point, b or x, is the current optimal 
minimum found during the current iteration of the search.

Choosing a New Point x in the Golden Section
Given that a < b < c, point b is a fractional distance W between a and c, 
as shown in the following equations.

A new point x is an additional fractional distance Z beyond b, as shown in 
Equation 12-5.

(12-5)

Given Equation 12-5, the next bracketing triplet can have either a length 
of W + Z relative to the current bracketing triplet or a length of 1 – W. 
To minimize the possible worst case, choose Z such that the following 
equations are true.

W + Z = 1 – W

Z = 1 – 2W (12-6)

Given Equation 12-6, the new x is the point in the interval symmetric to b. 
Therefore, Equation 12-7 is true.

|b – a| = |x – c| (12-7)

You can imply from Equation 12-7 that x is within the larger segment 
because Z is positive only if W < 1/2.

If Z is the current optimal value of f(x), W is the previous optimal value of 
f(x). Therefore, the fractional distance of x from b to c equals the fractional 
distance of b from a to c, as shown in Equation 12-8.

(12-8)

b a–
c a–
------------ W= c b–

c a–
----------- 1 W–=

x b–
c a–
----------- Z=

Z
1 W–
-------------- W=
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Equations 12-6 and 12-8 yield the following quadratic equation.

W2 – 3W + 1 = 0

(12-9)

Therefore, the middle point b of the optimal bracketing interval a < b < c 
is the fractional distance of 0.38197 from one of the end points and the 
fractional distance of 0.61803 from the other end point. 0.38197 and 
0.61803 comprise the golden mean, or golden section, of the Pythagoreans.

The golden section search method uses a bracketing triplet and measures 
from point b to find a new point x a fractional distance of 0.38197 into the 
larger interval, either (a, b) or (b, c), on each iteration of the search method. 
Even when starting with an initial bracketing triplet whose segments are not 
within the golden section, the process of successively choosing a new 
point x at the golden mean quickly causes the method to converge linearly 
to the correct, self-replicating golden section. After the search method 
converges to the self-replicating golden section, each new function 
evaluation brackets the minimum to an interval only 0.61803 times the size 
of the preceding interval.

Gradient Search Methods
Gradient search methods determine a search direction by using information 
about the slope of f(x). The search direction points toward the most 
probable location of the minimum. After the gradient search method 
establishes the search direction, it uses iterative descent to move toward the 
minimum.

The iterative descent process starts at a point x0, which is an estimate of the 
best starting point, and successively produces vectors x1, x2, …, so f 
decreases with each iteration, as shown in the following relationship.

where k is the iteration number, f(xk + 1) is the objective function value at 
iteration k + 1, and f(xk) is the objective function value at iteration k.

Successively decreasing f improves the current estimate of the solution. 
The iterative descent process attempts to decrease f to its minimum.

W 3 5–
2

---------------- 0.38197≈=

f xk 1+( ) f xk( ),< k 0 1 …, ,=
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The following equations and relationships provide a general definition of 
the gradient search method of solving nonlinear programming problems.

(12-10)

where dk is the search direction and αk is the step size.

In Equation 12-10, if the gradient of the objective function  the 
gradient search method needs a positive value for αk and a value for dk that 
fulfills the following relationship.

Iterations of gradient search methods continue until xk + 1 = xk.

Caveats about Converging to an Optimal Solution
A global minimum is a value for f(x) that satisfies the relationship described 
in Equation 12-1.

Ideally, iteratively decreasing f converges to a global minimum for f(x). In 
practice, convergence rarely proceeds to a global minimum for f(x) because 
of the presence of local minima that are not global. Local minima attract 
gradient search methods because the form of f near the current iterate and 
not the global structure of f determines the downhill course the method 
takes.

When a gradient search method begins on or encounters a stationary point, 
the method stops at the stationary point. Therefore, a gradient search 
method converges to a stationary point. If f is convex, the stationary point 
is a global minimum. However, if f is not convex, the stationary point might 
not be a global minimum. Therefore, if you have little information about the 
locations of local minima, you might have to start the gradient search 
method from several starting points.

Terminating Gradient Search Methods
Because a gradient search method does not produce convergence at a 
global minimum, you must decide upon an error tolerance ε that assures 
that the point at which the gradient search method stops is at least close to 
a local minimum. Unfortunately, no explicit rules exist for determining an 
absolutely accurate ε. The selection of a value for ε is somewhat arbitrary 
and based on an estimate about the value of the optimal solution.

xk 1+ xk αkdk+= k 0 1 …, ,=

∇f xk( ) 0,≠

∇f xk( )′dk 0<
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Use the accuracy input of the Optimization VIs to specify a value for ε. 
The nonlinear programming optimization VIs iteratively compare the 
difference between the highest and lowest input values to the value of 
accuracy until two consecutive approximations do not differ by more than 
the value of accuracy. When two consecutive approximations do not differ 
by more than the value of accuracy, the VI stops.

Conjugate Direction Search Methods
Conjugate direction methods attempt to find f(x) by defining a direction set 
of vectors such that minimizing along one vector does not interfere with 
minimizing along another vector, which prevents indefinite cycling 
through the direction set.

When you minimize a function f along direction u, the gradient of f is 
perpendicular to u at the line minimum. If P is the origin of a coordinate 
system with coordinates x, you can approximate f by the Taylor series of f, 
as shown in Equation 12-11.

(12-11)

where 

, ,

and 

The components of matrix A are the second partial derivative matrix of f. 
Matrix A is the Hessian matrix of f at P.

The following equation gives the gradient of f.

f x( ) f P( ) ∂f
∂xi
-------xi

i
∑ 1

2
--- ∂2f

∂xi∂xj
---------------xixj

i j,
∑ …+ + +=

 c bx 1
2
---xAx+–≈

c f P( )≡ b ∇– f P≡

A[ ]i j
∂2f

∂xi∂xj
---------------

P

≡

f∇ Ax b–=
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The following equation shows how the gradient  changes with 
movement along A.

After the search method reaches the minimum by moving in direction u, it 
moves in a new direction v. To fulfill the condition that minimization along 
one vector does not interfere with minimization along another vector, the 
gradient of f must remain perpendicular to u, as shown in Equation 12-12.

(12-12)

When Equation 12-12 is true for two vectors u and v, u and v are conjugate 
vectors. When Equation 12-12 is true pairwise for all members of a set of 
vectors, the set of vectors is a conjugate set. Performing successive line 
minimizations of a function along a conjugate set of vectors prevents the 
search method from having to repeat the minimization along any member 
of the conjugate set.

If a conjugate set of vectors contains N linearly independent vectors, 
performing N line minimizations arrives at the minimum for functions 
having the quadratic form shown in Equation 12-11. If a function does not 
have exactly the form of Equation 12-11, repeated cycles of N line 
minimizations eventually converge quadratically to the minimum.

Conjugate Gradient Search Methods
At an N-dimensional point P, the conjugate gradient search methods 
calculate the function f(P) and the gradient . is the vector 
of first partial derivatives. The conjugate gradient search method attempts 
to find f(x) by searching a gradient conjugate to the previous gradient 
and conjugating to all previous gradients, as much as possible.

The Fletcher-Reeves method and the Polak-Ribiere method are the two 
most common conjugate gradient search methods. The following theorems 
serve as the basis for each method.

Theorem A
Theorem A has the following conditions:

• A is a symmetric, positive-definite, n × n matrix.

• g0 is an arbitrary vector.

• h0 = g0.

f∇

δ f∇( ) A δx( )=

0 uδ f∇( ) uAv==

f P( )∇ f P( )∇
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• The following equations define the two sequences of vectors for 
i = 0, 1, 2, ….

(12-13)

(12-14)

where the chosen values for λi and γi make gi + 1gi = 0 and hi + 1Ahi = 0, 
as shown in the following equations.

(12-15)

(12-16)

If the denominators equal zero, take λi = 0, γi = 0.

• The following equations are true for all .

(12-17)

The elements in the sequence that Equation 12-13 produces are mutually 
orthogonal. The elements in the sequence that Equation 12-14 produces are 
mutually conjugate.

Because Equation 12-17 is true, you can rewrite Equations 12-15 
and 12-16 as the following equations.

(12-18)

Theorem B
The following theorem defines a method for constructing the vector from 
Equation 12-13 when the Hessian matrix A is unknown:

• gi is the vector sequence defined by Equation 12-13.

• hi is the vector sequence defined by Equation 12-14.

gi 1+ gi λi Ahi–=

hi 1+ gi 1+ γ ihi+=

γ i
gi 1+ Ah i

hiAhi
-------------------=

λi
gigi

giAhi
-------------=

i j≠

gigj 0= hiAhj 0=

γi
gi 1+ gi 1+⋅

gi gi⋅
--------------------------

gi 1+ gi–( ) gi 1+⋅
gi gi⋅

-----------------------------------------= =

λi
gi hi⋅

hi A hi⋅ ⋅
---------------------=
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• Approximate f as the quadratic form given by the following 
relationship.

•  for some point Pi.

• Proceed from Pi in the direction hi to the local minimum of f at 
point Pi + 1.

• Set the value for gi + 1 according to Equation 12-19.

(12-19)

The vector gi + 1 that Equation 12-19 yields is the same as the vector that 
Equation 12-13 yields when the Hessian matrix A is known. Therefore, you 
can optimize f without having knowledge of Hessian matrix A and without 
the computational resources to calculate and store the Hessian matrix A. 
You construct the direction sequence hi with line minimization of the 
gradient vector and the latest vector in the g sequence.

Difference between Fletcher-Reeves and 
Polak-Ribiere
Both the Fletcher-Reeves method and the Polak-Ribiere method use 
Theorem A and Theorem B. However, the Fletcher-Reeves method uses the 
first term from Equation 12-18 for γi, as shown in Equation 12-20.

(12-20)

The Polak-Ribiere method uses the second term from Equation 12-18 for 
γi, as shown in Equation 12-21.

(12-21)

Equation 12-20 equals Equation 12-21 for functions with exact quadratic 
forms. However, most functions in practical applications do not have exact 
quadratic forms. Therefore, after you find the minimum for the quadratic 
form, you might need another set of iterations to find the actual minimum.

f x( ) c b x 1
2
---x A x⋅ ⋅+⋅–≈

gi f Pi( )∇–=

gi 1+ f Pi 1+( )∇–=

γi
gi 1+ gi 1+⋅

gi gi⋅
--------------------------=

γi
gi 1+ gi–( ) gi 1+⋅

gi gi⋅
-----------------------------------------=
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When the Polak-Ribiere method reaches the minimum for the quadratic 
form, it resets the direction h along the local gradient, essentially starting 
the conjugate-gradient process again. Therefore, the Polak-Ribiere method 
can make the transition to additional iterations more efficiently than the 
Fletcher-Reeves method.
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13
Polynomials

Polynomials have many applications in various areas of engineering and 
science, such as curve fitting, system identification, and control design. 
This chapter describes polynomials and operations involving polynomials.

General Form of a Polynomial
A univariate polynomial is a mathematical expression involving a sum of 
powers in one variable multiplied by coefficients. Equation 13-1 shows the 
general form of an nth-order polynomial.

P(x) = a0 + a1x + a2x2 + … + anxn (13-1)

where P(x) is the nth-order polynomial, the highest power n is the order of 
the polynomial if an ≠ 0, a0, a1, …, an are the constant coefficients of the 
polynomial and can be either real or complex.

You can rewrite Equation 13-1 in its factored form, as shown in 
Equation 13-2.

P(x) = an(x – r1)(x – r2) … (x – rn) (13-2)

where r1, r2, …, rn are the roots of the polynomial.

The root ri of P(x) satisfies the following equation.

In general, P(x) might have repeated roots, such that Equation 13-3 is true.

(13-3)

The following conditions are true for Equation 13-3:

• r1, r2, …, rl are the repeated roots of the polynomial

• ki is the multiplicity of the root ri, i = 1, 2, …, l

P x( ) x ri= 0= i 1 2 … n, , ,=

P x( ) an x r1–( )
k1 x r2–( )

k2… x rl–( )
kl x rl 1+–( ) x rl 2+–( )…= x rl j+–( )
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• rl + 1, rl + 2, …, rl + j are the non-repeated roots of the polynomial

• k1 + k2 + … + kl + j = n

A polynomial of order n must have n roots. If the polynomial coefficients 
are all real, the roots of the polynomial are either real or complex conjugate 
numbers. 

Basic Polynomial Operations
The basic polynomial operations include the following operations:

• Finding the order of a polynomial

• Evaluating a polynomial

• Adding, subtracting, multiplying, or dividing polynomials

• Determining the composition of a polynomial

• Determining the greatest common divisor of two polynomials

• Determining the least common multiple of two polynomials

• Calculating the derivative of a polynomial

• Integrating a polynomial

• Finding the number of real roots of a real polynomial

The following equations define two polynomials used in the following 
sections.

P(x) = a0 + a1x + a2x2 + a3x3 = a3(x – p1)(x – p2)(x – p3) (13-4)

Q(x) = b0 +b1x + b2x2 = b2(x – q1)(x – q2) (13-5)

Order of Polynomial
The largest exponent of the variable determines the order of a polynomial. 
The order of P(x) in Equation 13-4 is three because of the variable x3. The 
order of Q(x) in Equation 13-5 is two because of the variable x2.

Polynomial Evaluation
Polynomial evaluation determines the value of a polynomial for a particular 
value of x, as shown by the following equation.

P x( ) x x0=
a0 a1x0 a2x0

2 a3x 0
3 a0 x0 a1 x0 a2 x0a3+( )+( )+=+ + +=
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Evaluating an nth-order polynomial requires n multiplications and 
n additions.

Polynomial Addition
The addition of two polynomials involves adding together coefficients 
whose variables have the same exponent. The following equation shows 
the result of adding together the polynomials defined by Equations 13-4 
and 13-5.

P(x) + Q(x) = (ao + b0) + (a1 + b1)x +(a2 + b2)x2 + a3x3

Polynomial Subtraction
Subtracting one polynomial from another involves subtracting coefficients 
whose variables have the same exponent. The following equation shows 
the result of subtracting the polynomials defined by Equations 13-4 
and 13-5.

P(x) – Q(x) = (a0 – b0) + (a1 – b1)x + (a2 – b2)x2 + a3x3

Polynomial Multiplication
Multiplying one polynomial by another polynomial involves multiplying 
each term of one polynomial by each term of the other polynomial. The 
following equations show the result of multiplying the polynomials defined 
by Equations 13-4 and 13-5.

P(x)Q(x) = (a0 + a1x + a2x2 + a3x3)(b0 + b1x + b2x2)

= a0(b0 + b1x + b2x2) + a1x(b0 + b1x + b2x2)

+ a2x2(b0 + b1x + b2x2) + a3x3(b0 + b1x + b2x2)

= a3b2x5 + (a3b1 + a2b2)x4 + (a3b0 + a2b1 + a1b2)x3

+ (a2b0 + a1b1 + a0b2)x2 + (a1b0 + a0b1)x + a0b0

Polynomial Division
Dividing the two polynomials P(x) and Q(x) results in the quotient U(x) and 
remainder V(x), such that the following equation is true.

P(x) = Q(x)U(x) + V(x)

For example, the following equations define polynomials P(x) and Q(x).

P(x) = 5 – 3x – x2 + 2x3 (13-6)
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Q(x) = 1 – 2x + x2 (13-7)

Complete the following steps to divide P(x) by Q(x).

1. Divide the highest order term in Equation 13-6 by the highest order 
term in Equation 13-7.

(13-8)

2. Multiply the result of Equation 13-8 by Q(x) from Equation 13-7.

2xQ(x) = 2x – 4x2 + 2x3 (13-9)

3. Subtract the product of Equation 13-9 from P(x).

The highest order term becomes 3x2.

4. Repeat step 1 through step 3 using 3x2 as the highest term of P(x).

a. Divide 3x2 by the highest order term in Equation 13-7.

(13-10)

b. Multiply the result of Equation 13-10 by Q(x) from 
Equation 13-7.

3Q(x) = 3x2 – 6x + 3 (13-11)

c. Subtract the result of Equation 13-11 from 3x2 – 5x + 5.
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Because the order of the remainder x + 2 is lower than the order of 
Q(x), the polynomial division procedure stops. The following 
equations give the quotient polynomial U(x) and the remainder 
polynomial V(x) for the division of Equation 13-6 by Equation 13-7.

U(x) = 3 + 2x

V(x) = 2 + x.

Polynomial Composition
Polynomial composition involves replacing the variable x in a polynomial 
with another polynomial. For example, replacing x in Equation 13-4 with 
the polynomial from Equation 13-5 results in the following equation.

P(Q(x)) = a0 + a1Q(x) + a2(Q(x))2 + a3(Q(x))3

= a0 + Q(x){a1 + Q(x)[a2 +a3Q(x)]}

where P(Q(x)) denotes the composite polynomial.

Greatest Common Divisor of Polynomials
The greatest common divisor of two polynomials P(x) and Q(x) is a 
polynomial R(x) = gcd(P(x), Q(x)) and has the following properties:

• R(x) divides P(x) and Q(x). 

• C(x) divides P(x) and Q(x) where C(x) divides R(x).

The following equations define two polynomials P(x) and Q(x).

P(x) = U(x)R(x) (13-12)

Q(x) = V(x)R(x) (13-13)

where U(x), V(x), and R(x) are polynomials.

The following conditions are true for Equations 13-12 and 13-13:

• U(x) and R(x) are factors of P(x).

• V(x) and R(x) are factors of Q(x).

• P(x) is a multiple of U(x) and R(x).

• Q(x) is a multiple of V(x) and R(x).

• R(x) is a common factor of polynomials P(x) and Q(x).
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If P(x) and Q(x) have the common factor R(x), and if R(x) is divisible by 
any other common factors of P(x) and Q(x) such that the division does not 
result in a remainder, R(x) is the greatest common divisor of P(x) and Q(x). 
If the greatest common divisor R(x) of polynomials P(x) and Q(x) is equal 
to a constant, P(x) and Q(x) are coprime.

You can find the greatest common divisor of two polynomials by using 
Euclid’s division algorithm and an iterative procedure of polynomial 
division. If the order of P(x) is larger than Q(x), you can complete the 
following steps to find the greatest common divisor R(x).

1. Divide P(x) by Q(x) to obtain the quotient polynomial Q1(x) and 
remainder polynomial R1(x).

P(x) = Q(x)Q1(x) + R1(x)

2. Divide Q(x) by R1(x) to obtain the new quotient polynomial Q2(x) and 
new remainder polynomial R2(x).

Q(x) = R1(x)Q2(x) + R2(x)

3. Divide R1(x) by R2(x) to obtain Q3(x) and R3(x)

R1(x) = R2(x)Q3(x) + R3(x)

R2(x) = R3(x)Q4(x) + R4(x)

If the remainder polynomial becomes zero, as shown by the following 
equation,

Rn – 1(x) = Rn(x)Qn + 1(x), 

the greatest common divisor R(x) of polynomials P(x) and Q(x) equals 
Rn(x).

Least Common Multiple of Two Polynomials
Finding the least common multiple of two polynomials involves finding the 
smallest polynomial that is a multiple of each polynomial.

P(x) and Q(x) are polynomials defined by Equations 13-12 and 13-13, 
respectively. If L(x) is a multiple of both P(x) and Q(x), L(x) is a common 
multiple of P(x) and Q(x). In addition, if L(x) has the lowest order among 

...
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all the common multiples of P(x) and Q(x), L(x) is the least common 
multiple of P(x) and Q(x).

If L(x) is the least common multiple of P(x) and Q(x) and if R(x) is the 
greatest common divisor of P(x) and Q(x), dividing the product of P(x) 
and Q(x) by R(x) obtains L(x), as shown by the following equation.

Derivatives of a Polynomial
Finding the derivative of a polynomial involves finding the sum of the 
derivatives of the terms of the polynomial.

Equation 13-14 defines an nth-order polynomial, T(x).

T(x) = c0 + c1x + c2x2 + … +cnxn (13-14)

The first derivative of T(x) is a polynomial of order n – 1, as shown by the 
following equation.

The second derivative of T(x) is a polynomial of order n – 2, as shown by 
the following equation.

The following equation defines the kth derivative of T(x).

where k ≤ n.

The Newton-Raphson method of finding the zeros of an arbitrary equation 
is an application where you need to determine the derivative of a 
polynomial.

L x( ) P x( )Q x( )
R x( )

------------------------ U x( )R x( )V x( )R x( )
R x( )

----------------------------------------------- U= x( )V x( )R x( )= =

d
dx
------T x( ) c1 2c2x 3c3x2 … ncn xn 1–+ + + +=

d 2

dx2
--------T x( ) 2c2 6c3x … n n 1–( )cn xn 2–+ + +=

d k

dxk
--------T x( ) k!ck

k 1+( )!
1!

------------------ck 1+ x k 2+( )!
2!

------------------ck 2+ x2 … n!
n k–( )!

------------------cnxn k–+ + + +=
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Integrals of a Polynomial
Finding the integral of a polynomial involves the summation of integrals of 
the terms of the polynomial.

Indefinite Integral of a Polynomial
The following equation yields the indefinite integral of the polynomial T(x) 
from Equation 13-14.

Because the derivative of a constant is zero, c can be an arbitrary constant. 
For convenience, you can set c to zero.

Definite Integral of a Polynomial
Subtracting the evaluations at the two limits of the indefinite integral 
obtains the definite integral of the polynomial, as shown by the following 
equation.

Number of Real Roots of a Real Polynomial
For a real polynomial, you can find the number of real roots of the 
polynomial over a certain interval by applying the Sturm function.

If

P0(x) = P(x)

and

,

T x( ) xd∫ c c0x 1
2
---c1x2 … 1

n 1+
------------cnxn 1++ + + +=

T x( ) xd
a

b

∫ c0x 1
2
---c1x2 … 1

n 1+
------------cnxn 1++ + + 

 

x b=

=

c0x 1
2
---c1x2 … 1

n 1+
------------cnxn 1++ + + 

 

x a=

–

c0x 1
2
---c1x2 … 1

n 1+
------------cnxn 1++ + + 

 

a

b

=

P1 x( ) d
dx
------P x( )=
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the following equation defines the Sturm function.

where Pi(x) is the Sturm function and

represents the quotient polynomial resulting from the division of 
Pi – 2(x) by Pi – 1(x).

You can calculate Pi(x) until it becomes a constant. For example, the 
following equations show the calculation of the Sturm function over 
the interval (–2,1).

P0(x) = P(x) = 1 – 4x + 2x3

        

Pi x( ) Pi 2– x( ) Pi 1– x( )
Pi 2– x( )
Pi 1– x( )
-------------------–

 
 
 

– ,= i 2 3 …, ,=

Pi 2– x( )
Pi 1– x( )
-------------------

P1 x( ) d
dx
------P x( ) 4 6x2+–= =

P2 x( ) P0 x( ) P1 x( )
P0 x( )
P1 x( )
-------------–

 
 
 

–=

P0 x( ) P1 x( )1
3
---x–

 
 
 

–=

1–
8
3
---x+=

P3 x( ) P1 x( ) P2 x( )
P1 x( )
P2 x( )
-------------–

 
 
 

–=

P1 x( ) P2 x( ) 27
32
------

9
4
---x+ 

 –
 
 
 

–=

101
32

---------=



Chapter 13 Polynomials

LabVIEW Analysis Concepts 13-10 ni.com

To evaluate the Sturm functions at the boundary of the interval (–2,1), you 
do not have to calculate the exact values in the evaluation. You only need 
to know the signs of the values of the Sturm functions. Table 13-1 lists the 
signs of the Sturm functions for the interval (–2,1).

In Table 13-1, notice the number of sign changes for each boundary. For 
x = –2, the evaluation of Pi(x) results in three sign changes. For x = 1, the 
evaluation of Pi(x) results in one sign change.

The difference in the number of sign changes between the two boundaries 
corresponds to the number of real roots that lie in the interval. For the 
calculation of the Sturm function over the interval (–2,1), the difference in 
the number of sign changes is two, which means two real roots of 
polynomial P(x) lie in the interval (–2,1). Figure 13-1 shows the result of 
evaluating P(x) over (–2,1).

Figure 13-1.  Result of Evaluating P(x) over (–2, 1)

In Figure 13-1, the two real roots lie at approximately –1.5 and 0.26.

Table 13-1.  Signs of the Sturm Functions for the Interval (–2, 1)

x P0(x) P1(x) P2(x) P3(x)
Number of 

Sign Changes

–2 – + – + 3

1 – + + + 1

4

2

0–2

–2

–1.5 –1 –0.5 0.5

–4

–6

–8

1

P(x)

x
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Rational Polynomial Function Operations
Rational polynomial functions have many applications, such as filter 
design, system theory, and digital image processing. In particular, rational 
polynomial functions provide the most common way of representing the 
z-transform. A rational polynomial function takes the form of the division 
of two polynomials, as shown by the following equation.

where F(x) is the rational polynomial, B(x) is the numerator polynomial, 
A(x) is the denominator polynomial, and A(x) cannot equal zero.

The roots of B(x) are the zeros of F(x). The roots of A(x) are the poles 
of F(x).

The following equations define two rational polynomials used in the 
following sections.

(13-15)

Rational Polynomial Function Addition
The following equation shows the addition of two rational polynomials.

Rational Polynomial Function Subtraction
The following equation shows the subtraction of two rational polynomials.

F x( ) B x( )
A x( )
-----------

b0 b1x b2x2 … bmxm+ + + +

a0 a1x a2x2 … anxn+ + + +
--------------------------------------------------------------------= =

F1 x( )
B1 x( )
A1 x( )
-------------=

F2 x( )
B2 x( )
A2 x( )
-------------=

F1 x( ) F2 x( )+
B1 x( )A2 x( ) B2 x( )A1 x( )+

A1 x( )A2 x( )
--------------------------------------------------------------=

F1 x( ) F2 x( )–
B1 x( )A2 x( ) B2 x( )A1 x( )–

A1 x( )A2 x( )
--------------------------------------------------------------=
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Rational Polynomial Function Multiplication
The following equation shows the multiplication of two rational 
polynomials.

Rational Polynomial Function Division
The following equation shows the division of two rational polynomials.

Negative Feedback with a Rational Polynomial Function
Figure 13-2 shows a diagram of a generic system with negative feedback.

Figure 13-2.  Generic System with Negative Feedback

For the system shown in Figure 13-2, the following equation yields the 
transfer function of the system.

Positive Feedback with a Rational Polynomial Function
Figure 13-3 shows a diagram of a generic system with positive feedback.

F1 x( )F2 x( )
B1 x( )B2 x( )
A1 x( )A2 x( )
----------------------------=

F1 x( )
F2 x( )
-------------

B1 x( )A2 x( )
A1 x( )B2 x( )
----------------------------=

F1

F2

–

H x( )
F1 x( )

1 F1 x( )F2 x( )+
-------------------------------------

B1 x( )A2 x( )
A1 x( )A2 x( ) B1 x( )B2 x( )+
--------------------------------------------------------------= =
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Figure 13-3.  Generic System with Positive Feedback

For the system shown in Figure 13-3, the following equation yields the 
transfer function of the system.

Derivative of a Rational Polynomial Function
The derivative of a rational polynomial function also is a rational 
polynomial function. Using the quotient rule, you obtain the derivative of 
a rational polynomial function from the derivatives of the numerator and 
denominator polynomials. According to the quotient rule, the following 
equation yields the first derivative of the rational polynomial function F1(x) 
defined in Equation 13-15.

You can derive the second derivative of a rational polynomial function 
from the first derivative, as shown by the following equation.

You continue to derive rational polynomial function derivatives such that 
you derive the jth derivative of a rational polynomial function from the 
( j – 1)th derivative.

Partial Fraction Expansion
Partial fraction expansion involves splitting a rational polynomial into a 
summation of low order rational polynomials. Partial fraction expansion is 
a useful tool for z-transform and digital filter structure conversion.

F1

F2

+

H x( )
F1 x( )

1 F1 x( )F2 x( )–
-------------------------------------

B1 x( )A2 x( )
A1xA2x B1 x( )B2 x( )–
----------------------------------------------------= =

d
dx
------F1 x( )

A1 x( ) d
dx
------B1 x( ) B1 x( ) d

dx
------A1 x( )–

A1 x( )( )2
---------------------------------------------------------------------------=

d 2

dx2
--------F1 x( ) d

dx
------ d

dx
------F1 x( ) 
 =
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Heaviside Cover-Up Method
The Heaviside cover-up method is the easiest of the partial fraction 
expansion methods.

The following actions and conditions illustrate the Heaviside cover-up 
method:

• Define a rational polynomial function F(x) with the following 
equation.

where m < n, meaning, without loss of generality, the order of B(x) is 
lower than the order of A(x).

• Assume that A(x) has one repeated root r0 of multiplicity k and use the 
following equation to express A(x) in terms of its roots.

A(x) = an(x – r0)k(x – r1)(x – r2) … (x – rn – k)

• Rewrite F(x) as a sum of partial fractions.

where

F x( ) B x( )
A x( )
-----------

b0 b1x b2x2 … bmxm+ + + +

a0 a1x a2x2 … anxn+ + + +
--------------------------------------------------------------------= =

F x( ) B x( )
an x r0–( )k x r1–( )… x rn k––( )
---------------------------------------------------------------------------=

β0

x r0–
-------------

β1

x r0–( )2
-------------------- …

βk 1–

x r0–( )k
--------------------+ + +=

 
α1

x r1–
-------------

α2
x r2–
------------- …

αn k–

x rn k––
-------------------+ + + +

αi x ri–( )F x( ) x ri=
= i 1 2 … n, k–, ,=

βj
1

k j– 1–( )!
-------------------------- d k j– 1–( )

dx k j– 1–( )
----------------------- x r0–( )kF x( )( )

x r0=
= j 0 1 … k 1–, , ,=
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Orthogonal Polynomials
A set of polynomials Pi(x) are orthogonal polynomials over the interval 
a < x < b if each polynomial in the set satisfies the following equations.

The interval (a, b) and the weighting function w(x) vary depending on the 
set of orthogonal polynomials. One of the most important applications of 
orthogonal polynomials is to solve differential equations.

Chebyshev Orthogonal Polynomials of the First Kind
The recurrence relationship defines Chebyshev orthogonal polynomials of 
the first kind Tn(x), as shown by the following equations.

T0(x) = 1

T1(x) = x

Chebyshev orthogonal polynomials of the first kind satisfy the following 
equations.

w x( )Pn x( )Pm x( ) x 0      n m≠,=d
a

b

∫
w x( )Pn x( )Pn x( ) x 0      n m=,≠d

a

b

∫








Tn x( ) 2xTn 1– x( ) Tn 2– x( )–= n 2 3 …, ,=

1

1 x2–
------------------Tn x( )Tm x( ) x 0  ,=d

1–

1

∫ n m≠

1

1 x2–
------------------Tn x( )Tn x( ) x

π
2
---  , n 0≠

π  , n 0=





=d
1–

1

∫
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Chebyshev Orthogonal Polynomials of the Second Kind
The recurrence relationship defines Chebyshev orthogonal polynomials of 
the second kind Un(x), as shown by the following equations.

U0(x) = 1

U1(x) = 2x

Chebyshev orthogonal polynomials of the second kind satisfy the 
following equations.

Gegenbauer Orthogonal Polynomials
The recurrence relationship defines Gegenbauer orthogonal polynomials 

as shown by the following equations.

Gegenbauer orthogonal polynomials satisfy the following equations.

Un x( ) 2xUn 1– x( ) Un 2– x( )–= n 2 3 …, ,=

1 x2– Un x( )Um x( ) x 0=d
1–

1

∫
1 x2– Un x( )Un x( ) x π

2
---=d

1–

1

∫








n m≠

n m=

C a
n x( ),

C a
0 x( ) 1=

C a
1 x( ) 2ax=

Cn
a x( ) 2 n a 1–+( )

n
-----------------------------xCn 1–

a x( ) n 2a 2–+
n

------------------------Cn 2–
a x( )–=

n 2 3 …, ,=

a 0≠

1 x2–( )
a 1 2⁄–

Cn
a x( )Cm

a x( ) x 0                            n m≠=d
1–

1

∫

1 x2–( )
a 1 2⁄–

Cn
a x( )C n

a x( ) x

π 21 2a– Γ n 2a+( )
n! n a+( )Γ 2 a( )

------------------------------------------ a 0≠

2π
n2
------ a 0=









=d
1–

1

∫
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where Γ(z) is a gamma function defined by the following equation.

Hermite Orthogonal Polynomials
The recurrence relationship defines Hermite orthogonal polynomials Hn(x), 
as shown by the following equations.

H0(x) = 1

H1(x) = 2x

Hermite orthogonal polynomials satisfy the following equations.

Laguerre Orthogonal Polynomials
The recurrence relationship defines Laguerre orthogonal polynomials 
Ln(x), as shown by the following equations.

L0(x) = 1

L1(x) = –x + 1

Laguerre orthogonal polynomials satisfy the following equations.

Γ z( ) t z 1– e t– td
0

∞

∫=

Hn x( ) 2xHn 1– x( ) 2 n 1–( )Hn 2––= x( ) n 2 3 …, ,=

e x2– Hn x( )Hm x( ) x 0=d
∞–

∞

∫
e x2– Hn x( )Hn x( ) x π2nn!=d

∞–

∞

∫








n m≠

n m=

Ln x( ) 2n 1– x–
n

------------------------Ln 1– x( ) n 1–
n

------------Ln 2– x( )–= n 2 3 …, ,=

e x– Ln x( )Lm x( ) x 0=d
0

∞

∫
e x– Ln x( )Ln x( ) x 1=d

0

∞

∫








n m≠

n m=
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Associated Laguerre Orthogonal Polynomials
The recurrence relationship defines associated Laguerre orthogonal 
polynomials as shown by the following equations.

Associated Laguerre orthogonal polynomials satisfy the following 
equation.

Legendre Orthogonal Polynomials
The recurrence relationship defines Legendre orthogonal polynomials 
Pn(x), as shown by the following equations.

P0(x) = 1

P1(x) = x

Legendre orthogonal polynomials satisfy the following equations.

La
n x( ),

La
0 x( ) 1=

La
1 x( ) x– a 1+ +=

La
n x( ) 2n a 1 x––+

n
--------------------------------- Ln 1–

a x( ) n a 1–+
n

--------------------- Ln 2–
a x( )–= n 2 3 …, ,=

e x– xa La
n x( ) La

m x( ) x 0=d
0

∞

∫
e x– xa La

n x( ) La
n x( ) x Γ a n 1+ +( )

n!
------------------------------=d

0

∞

∫








n m≠

n m=

Pn x( ) 2n 1–
n

---------------xPn 1– x( ) n 1–
n

------------Pn 2– x( )–= n 2 3 …, ,=

Pn x( )Pm x( ) x 0=d
1–

1

∫
Pn x( )Pn x( ) x 2

2n 1+
---------------=d

1–

1

∫








n m≠

n m=
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Evaluating a Polynomial with a Matrix
The matrix evaluation of a polynomial differs from 2D polynomial 
evaluation.

When performing matrix evaluation of a polynomial, you must use a square 
matrix. The following equations define a second-order polynomial P(x) and 
a square 2 × 2 matrix G.

P(x) = a0 + a1x + a2x2 (13-16)

(13-17)

In 2D polynomial evaluation, you evaluate P(x) at each element of 
matrix G, as shown by the following equation.

When performing matrix polynomial evaluation, you replace the variable x 
with matrix G, as shown by the following equation.

P([G]) = aoI +a1G + a1GG

where I is the identity matrix of the same size as G.

In the following equations, actual values replace the variables a and g in 
Equations 13-16 and 13-17.

P(x) = 5 + 3x +2x2 (13-18)

(13-19)

G g1 g2

g3 g4

=

P G( )
P x( ) x g1=

P x( ) x g2=

P x( ) x g3=
P x( ) x g4=

=

G 1 2
3 4

=
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The following equation shows the matrix evaluation of the polynomial P(x) 
from Equation 13-18 with matrix G from Equation 13-19.

Polynomial Eigenvalues and Vectors
For every operator, a collection of functions exists that when operated 
on by the operator produces the same function, modified only by a 
multiplicative constant factor. The members of the collection of functions 
are eigenfunctions. The multiplicative constants modifying the 
eigenfunctions are eigenvalues. The following equation illustrates the 
eigenfunction/eigenvalue relationship.

,

where f(x) is an eigenfunction of A and a is the eigenvalue of f(x).

Some applications lead to a polynomial eigenvalue problem. Given a set of 
square matrices, the problem becomes determining a scalar λ and a nonzero 
vector x such that Equation 13-20 is true.

(13-20)

The following conditions apply to Equation 13-20:

• Ψ(λ) is the matrix polynomial whose coefficients are square matrixes.

• Ci is a square matrix of size m × m, i = 0, 1, …, n.

• λ is the eigenvalue of Ψ(λ).

• x is the corresponding eigenvector of Ψ(λ) and has length m.

•  is the zero vector and has length m.

P G[ ]( ) 5 1 0
0 1

3 1 2
3 4

2 1 2
3 4

1 2
3 4

+ +=

5 0
0 5

= 3 6
9 12

14 20
30 44

+ +

22 26
39 61

=

Â f x( ) a f x( )=

Ψ λ( )x C0 λC1 … λn 1– Cn 1– λnCn+ + + +( )x 0= =

0



Chapter 13 Polynomials

© National Instruments Corporation 13-21 LabVIEW Analysis Concepts

You can write the polynomial eigenvalue problem as a generalized 
eigenvalue problem, as shown by the following equation.

Az = λBz

where

and is an nm × nm matrix;

and is an nm × nm matrix;

 and is an nm matrix;

  is the zero matrix of size m × m; 

 I is the identity matrix of size m × m.

A

 =
0 I

 =
0 …

 =
0

 =
0

 =
0 I …

 =
0

...
...

 
...

...

...
...

...
 

I

C0– C1– C2– … Cn 1––

=

B

I
I

 

 
...

I
  Cn

=

z

x
λx

λ2x
...

λn 1– x

=

=
0
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Entering Polynomials in LabVIEW
Use the Polynomial and Rational Polynomial VIs to perform polynomial 
operations.

LabVIEW uses 1D arrays for polynomial inputs and outputs. The 1D array 
stores the polynomial coefficients. When entering polynomial coefficient 
values into an array, maintain a consistent method for entering the values. 
The order in which LabVIEW displays the results of polynomial operations 
reflects the order in which you enter the input polynomial coefficient 
values. National Instruments recommends entering polynomial coefficient 
values in ascending order of power. For example, the following equations 
define polynomials P(x) and Q(x).

P(x) = 1 – 3x + 4x2 + 2x3

Q(x) = 1 – 2x + x2

You can describe P(x) and Q(x) by vectors P and Q, as shown in the 
following equations.

Figure 13-4 shows the front panel of a VI that uses the Add Polynomials VI 
to add P(x) and Q(x).

Figure 13-4.  Adding P(x) and Q(x)

P

1
3–

4
2

=

Q
1
2–

1
=
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In Figure 13-4, you enter the polynomial coefficients into the array 
controls, P(x) and Q(x), in ascending order of power. Also, the VI displays 
the results of the addition in P(x) + Q(x) in ascending order of power, based 
on the order of the two input arrays.
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Part III

Point-By-Point Analysis

This part describes the concepts of point-by-point analysis, answers 
frequently asked questions about point-by-point analysis, and describes 
a case study that illustrates the use of the Point By Point VIs.
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14
Point-By-Point Analysis

This chapter describes the concepts of point-by-point analysis, answers 
frequently asked questions about point-by-point analysis, and describes 
a case study that illustrates the use of the Point By Point VIs. Use the 
NI Example Finder to find examples of using the Point By Point VIs.

Introduction to Point-By-Point Analysis
Point-by-point analysis is a method of continuous data analysis in which 
analysis occurs for each data point, point by point. Point-by-point analysis 
is ideally suited to real-time data acquisition. When your data acquisition 
system requires real-time, deterministic performance, you can build a 
program that uses point-by-point versions of array-based LabVIEW 
analysis VIs.

Real-time performance is a reality for data acquisition. With point-by-point 
analysis, data analysis also can utilize real-time performance. The discrete 
stages of array-based analysis, such as buffer preparation, analysis, and 
output, can make array-based analysis too slow for higher speed, 
deterministic, real-time systems.

Point-by-point analysis enables you to accomplish the following tasks:

• Track and respond to real-time events.

• Connect the analysis process directly to the signal for speed and 
minimal data loss.

• Perform programming tasks more easily, because you do not allocate 
arrays and you make fewer adjustments to sampling rates.

• Synchronize analysis with data acquisition automatically, because you 
work with a single signal instantaneously.
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Using the Point By Point VIs
The Point By Point VIs correspond to each array-based analysis VI that is 
relevant to continuous data acquisition. However, you must account for 
programming differences. You usually have fewer programming tasks 
when you use the Point By Point VIs. Table 14-1 describes characteristic 
inputs and outputs of the Point By Point VIs.

Refer to the Case Study of Point-By-Point Analysis section of this chapter 
for an example of a point-by-point analysis system.

Initializing Point By Point VIs
This section describes when and how to use the point-by-point initialize 
parameter of many Point By Point VIs. This section also describes the 
First Call? function.

Purpose of Initialization in Point By Point VIs
Using the initialize parameter, you can reset the internal state of Point By 
Point VIs without interrupting the continuous flow of data or computation. 
You can reset a VI in response to events such as the following:

• A user changing the value of a parameter

• The application generating a specific event or reaching a threshold

For example, the Value Has Changed PtByPt VI can respond to change 
events such as the following:

• Receiving the input data

• Detecting the change

Table 14-1.  Characteristic Inputs and Outputs for Point By Point VIs

Parameter Description

input data Incoming data

output data Outgoing, analyzed data

initialize Routine that resets the internal state of a VI

sample length Setting for your data acquisition system or 
computation system that best represents the area 
of interest in the data
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• Generating a Boolean TRUE value that triggers initialization in 
another VI

• Transferring the input data to another VI for processing

Figure 14-1 shows the Value Has Changed PtByPt VI triggering 
initialization in another VI and transferring data to that VI. In this case, 
the input data is a parameter value for the target VI.

Figure 14-1.  Typical Role of the Value Has Changed PtByPt VI

Many point-by-point applications do not require use of the initialize 
parameter because initialization occurs automatically whenever an operator 
quits an application and then starts again.

Using the First Call? Function
Where necessary, use the First Call? function to build point by point VIs. 
In a VI that includes the First Call? function, the internal state of the VI 
is reset once, the first time you call the VI. The value of the initialize 
parameter in the First Call? function is always TRUE for the first call to the 
VI. The value remains FALSE for the remainder of the time you run the VI. 
Figure 14-2 shows a typical use of the First Call? function with a While 
Loop.

Figure 14-2.  Using the First Call? Function with a While Loop

Error Checking and Initialization
The Point By Point VIs generate errors to help you identify flaws in the 
configuration of the applications you build. Several point-by-point error 
codes exist in addition to the standard LabVIEW error codes.
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Error codes usually identify invalid parameters and settings. For 
higher-level error checking, configure your program to monitor and 
respond to irregularities in data acquisition or in computation. For example, 
you create a form of error checking when you range check your data.

A Point By Point VI generates an error code once at the initial call to the 
VI or at the first call to the VI after you initialize your application. Because 
Point By Point VIs generate error codes only once, they can perform 
optimally in a real-time, deterministic application.

The Point By Point VIs generate an error code to inform you of any invalid 
parameters or settings when they detect an error during the first call. In 
subsequent calls, the Point By Point VIs set the error code to zero and 
continue running, generating no error codes. You can program your 
application to take one of the following actions in response to the first error:

• Report the error and continue running.

• Report the error and stop.

• Ignore the error and continue running. This is the default behavior.

The following programming sequence describes how to use the Value Has 
Changed PtByPt VI to build a point-by-point error checking mechanism for 
Point By Point VIs that have an error parameter.

1. Choose a parameter that you want to monitor closely for errors.

2. Wire the parameter value as input data to the Value Has Changed 
PtByPt VI.

3. Transfer the output data, which is always the unchanged input data 
in Value Has Changed PtByPt VI, to the target VI.

4. Pass the TRUE event generated by the Value Has Changed PtByPt VI 
to the target VI to trigger initialization, as shown in Figure 14-1. The 
Value Has Changed PtByPt VI outputs a TRUE value whenever the 
input parameter value changes. 

For the first call that follows initialization of the target VI, LabVIEW 
checks for errors. Initialization of the target VI and error checking occurs 
every time the input parameter changes.
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Frequently Asked Questions
This section answers frequently asked questions about point-by-point 
analysis.

What Are the Differences between Point-By-Point Analysis 
and Array-Based Analysis in LabVIEW?

Tables 14-2 and 14-3 compare array-based LabVIEW analysis to 
point-by-point analysis from multiple perspectives. In Table 14-2, the 
differences between two automotive fuel delivery systems, carburation and 
fuel injection, demonstrate the differences between array-based data 
analysis and point-by-point analysis.

Table 14-3 presents other comparisons between array-based and 
point-by-point analysis.

Table 14-2.  Comparison of Traditional and Newer Paradigms

Traditional Paradigm Newer Paradigm

Automotive Technology

Carburation

• Fuel accumulates in a float bowl.

• Engine vacuum draws fuel through a single 
set of metering valves that serve all 
combustion chambers.

• Somewhat efficient combustion occurs.

Fuel Injection

• Fuel flows continuously from gas tank.

• Fuel sprays directly into each combustion 
chamber at the moment of combustion.

• Responsive, precise combustion occurs.

Data Analysis Technology

Array-Based Analysis

• Prepare a buffer unit of data.

• Analyze data.

• Produce a buffer of analyzed data.

• Generate report.

Point-By-Point Analysis

• Receive continuous stream of data.

• Filter and analyze data continuously.

• Generate real-time events and reports
continuously.
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Why Use Point-By-Point Analysis?
Point-by-point analysis works well with computer-based real-time data 
acquisition. In array-based analysis, the input-analysis-output process takes 
place for subsets of a larger data set. In point-by-point analysis, the 
input-analysis-output process takes place continuously, in real time.

Table 14-3.  Comparison of Array-Based and Point-By-Point Data Analysis

Characteristic Array-Based Analysis
Data Acquisition and Analysis 

with Point By Point VIs

Compatibility Limited compatibility with 
real-time systems

Compatible with real-time systems; 
backward compatible with array-based 
systems

Data typing Array-oriented Scalar-oriented

Interruptions Interruptions critical Interruptions tolerated

Operation You observe, offline You control, online

Performance and 
programming

Compensate for startup data 
loss (4–5 seconds) with 
complex “state machines”

Startup data loss does not occur; 
initialize the data acquisition system 
once and run continuously

Point of view Reflection of a process, like a 
mirror

Direct, natural flow of a process

Programming Specify a buffer No explicit buffers

Results Output a report Output a report and an event in real time

Run-time behavior Delayed processing Real time

Run-time behavior Stop Continue

Run-time behavior Wait Now

Work style Asynchronous Synchronous
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What Is New about Point-By-Point Analysis?
When you perform point-by-point analysis, keep in mind the following 
concepts:

• Initialization—You must initialize the point-by-point analysis 
application to prevent interference from settings you made in previous 
sessions of data analysis.

• Re-Entrant Execution—You must enable LabVIEW re-entrant 
execution for point-by-point analysis. Re-entrant execution allocates 
fixed memory to a single analysis process, guaranteeing that two 
processes that use the same analysis function never interfere with each 
other.

Note If you create custom VIs to use in your own point-by-point application, be sure to 
enable re-entrant execution. Re-entrant execution is enabled by default in almost all Point 
By Point VIs.

• Deterministic Performance—Point-by-point analysis is the natural 
companion to many deterministic systems, because it efficiently 
integrates with the flow of a real-time data signal.

What Is Familiar about Point-By-Point Analysis?
The approach used for most point-by-point analysis operations in 
LabVIEW remains the same as array-based analysis. You use filters, 
integration, mean value algorithms, and so on, in the same situations and 
for the same reasons that you use these operations in array-based data 
analysis. In contrast, the computation of zeroes in polynomial functions is 
not relevant to point-by-point analysis, and point-by-point versions of these 
array-based VIs are not necessary.

How Is It Possible to Perform Analysis without Buffers of Data?
Analysis functions yield solutions that characterize the behavior of a data 
set. In array-based data acquisition and analysis, you might analyze a large 
set of data by dividing the data into 10 smaller buffers. Analyzing those 
10 sets of data yields 10 solutions. You can further resolve those 
10 solutions into one solution that characterizes the behavior of the entire 
data set.

In point-by-point analysis, you analyze an entire data set in real-time. 
A sample unit of a specific length replaces a buffer. The point-by-point 
sample unit can have a length that matches the length of a significant 
event in the data set that you are analyzing. For example, the application in 
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the Case Study of Point-By-Point Analysis section of this chapter acquires 
a few thousand samples per second to detect defective train wheels. The 
input data for the train wheel application comes from the signal generated 
by a train that is moving at 60 km to 70 km per hour. The sample length 
corresponds to the minimum distance between wheels. 

A typical point-by-point analysis application analyzes a long series of 
sample units, but you are likely to have interest in only a few of those 
sample units. To identify those crucial samples of interest, the 
point-by-point application focuses on transitions, such as the end of the 
relevant signal.

The train wheel detection application in the Case Study of Point-By-Point 
Analysis section of this chapter uses the end of a signal to identify crucial 
samples of interest. The instant the application identifies the transition 
point, it captures the maximum amplitude reading of the current sample 
unit. This particular amplitude reading corresponds to the complete signal 
for the wheel on the train whose signal has just ended. You can use this 
real-time amplitude reading to generate an event or a report about that 
wheel and that train.

Why Is Point-By-Point Analysis Effective in Real-Time Applications?
In general, when you must process continuous, rapid data flow, 
point-by-point analysis can respond. For example, in industrial automation 
settings, control data flows continuously, and computers use a variety 
of analysis and transfer functions to control a real-world process. 
Point-by-point analysis can take place in real time for these engineering 
tasks.

Some real-time applications do not require high-speed data acquisition 
and analysis. Instead, they require simple, dependable programs. 
Point-by-point analysis offers simplicity and dependability, because 
you do not allocate arrays explicitly, and data analysis flows naturally 
and continuously.

Do I Need Point-By-Point Analysis?
As you increase the samples-per-seconds rate by factors of ten, the need for 
point-by-point analysis increases. The point-by-point approach simplifies 
the design, implementation, and testing process, because the flow of a 
point-by-point application closely matches the natural flow of the 
real-world processes you want to monitor and control.
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You can continue to work without point-by-point analysis as long as 
you can control your processes without high-speed, deterministic, 
point-by-point data acquisition. However, if you dedicate resources in 
a real-time data acquisition application, use point-by-point analysis 
to achieve the full potential of your application.

What Is the Long-Term Importance of Point-By-Point Analysis?
Real-time data acquisition and analysis continue to demand more 
streamlined and stable applications. Point-by-point analysis is streamlined 
and stable because it directly ties into the acquisition and analysis process. 
Streamlined and stable point-by-point analysis allows the acquisition and 
analysis process to move closer to the point of control in field 
programmable gate array (FPGA) chips, DSP chips, embedded controllers, 
dedicated CPUs, and ASICs.

Case Study of Point-By-Point Analysis
The case study in this section uses the Train Wheel PtByPt VI and shows a 
complete point-by-point analysis application built in LabVIEW with Point 
By Point VIs. The Train Wheel PtByPt VI is a real-time data acquisition 
application that detects defective train wheels and demonstrates the 
simplicity and flexibility of point-by-point data analysis. The Train Wheel 
PtByPt VI is located in the labview\examples\ptbypt\
PtByPt_No_HW.llb.

Point-By-Point Analysis of Train Wheels
In this example, the maintenance staff of a train yard must detect defective 
wheels on a train. The current method of detection consists of a railroad 
worker striking a wheel with a hammer and listening for a different 
resonance that identifies a flaw. Automated surveillance must replace 
manual testing, because manual surveillance is too slow, too prone to error, 
and too crude to detect subtle defects. An automated solution also adds the 
power of dynamic testing, because the train wheels can be in service during 
the test, instead of standing still.

The automated solution to detect potentially defective train wheels needs to 
have the following characteristics:

• Detect even subtle signs of defects quickly and accurately.

• Gather data when a train travels during a normal trip.

• Collect and analyze data in real time to simplify programming and to 
increase speed and accuracy of results.
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The Train Wheel PtByPt VI offers a solution for detecting defective train 
wheels. Figures 14-3 and 14-4 show the front panel and the block diagram, 
respectively, for the Train Wheel PtByPt VI.

Figure 14-3.  Front Panel of the Train Wheel PtByPt VI
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Figure 14-4.  Block Diagram of the Train Wheel PtByPt VI

Note This example focuses on implementing a point-by-point analysis program in 
LabVIEW. The issues of ideal sampling periods and approaches to signal conditioning 
are beyond the scope of this example.

Overview of the LabVIEW Point-By-Point Solution
As well as Point By Point VIs, the Train Wheel PtByPt VI requires standard 
LabVIEW programming objects, such as Case structures, While Loops, 
numeric controls, and numeric operators.

The data the Train Wheel PtByPt VI acquires flows continuously through 
a While Loop. The process carried out by the Train Wheel PtByPt VI inside 
the While Loop consists of five analysis stages that occur sequentially. The 
following list reflects the order in which the five analysis stages occur, 
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briefly describes what occurs in each stage, and corresponds to the labeled 
portions of the block diagram in Figure 14-4.

1. In the data acquisition stage (DAQ), waveform data flows into the 
While Loop.

2. In the Filter stage, separation of low- and high-frequency components 
of the waveform occurs.

3. In the Analysis stage, detection of the train, wheel, and energy level of 
the waveform for each wheel occurs.

4. In the Events stage, responses to signal transitions of trains and wheels 
occurs.

5. In the Report stage, the logging of trains, wheels, and trains that might 
have defective wheels occurs.

Characteristics of a Train Wheel Waveform
The characteristic waveform that train wheels emit determines how you 
analyze and filter the waveform signal point-by-point. A train wheel in 
motion emits a signal that contains low- and high-frequency components. 
If you mount a strain gauge in a railroad track, you detect a noisy signal 
similar to a bell curve. Figure 14-5 shows the low- and high-frequency 
components of this curve.

Figure 14-5.  Low- and High-Frequency Components of a Train Wheel Signal

The low-frequency component of train wheel movement represents the 
normal noise of operation. Defective and normal wheels generate the same 
low-frequency component in the signal. The peak of the curve represents 
the moment when the wheel moves directly above the strain gauge. The 
lowest points of the bell curve represent the beginning and end of the wheel, 
respectively, as the wheel passes over the strain gauge.

Lowpass component
of a typical train

wheel signal

Highpass component
of a typical train

wheel signal



Chapter 14 Point-By-Point Analysis

© National Instruments Corporation 14-13 LabVIEW Analysis Concepts

The signal for a train wheel also contains a high-frequency component that 
reflects the quality of the wheel. In operation, a defective train wheel 
generates more energy than a normal train wheel. In other words, the 
high-frequency component for a defective wheel has greater amplitude.

Analysis Stages of the Train Wheel PtByPt VI
The waveform of all train wheels, including defective ones, falls within 
predictable ranges. This predictable behavior allows you to choose the 
appropriate analysis parameters. These parameters apply to the five stages 
described in the Overview of the LabVIEW Point-By-Point Solution section 
of this chapter. This section discusses each of the five analysis stages and 
the parameters use in each analysis stage.

Note You must adjust parameters for any implementation of the Train Wheel PtByPt VI 
because the characteristics of each data acquisition system differ.

DAQ Stage
Data moves into the Point By Point VIs through the input data parameter. 
The point-by-point detection application operates on the continuous stream 
of waveform data that comes from the wheels of a moving train. For a train 
moving at 60 km to 70 km per hour, a few hundred to a few thousand 
samples per second are likely to give you sufficient information to detect 
a defective wheel.

Filter Stage
The Train Wheel PtByPt VI must filter low- and high-frequency 
components of the train wheel waveform. Two Butterworth Filter 
PtByPt VIs perform the following tasks:

• Extract the low-frequency components of the waveform.

• Extract the high-frequency components of the waveform.

In the Train Wheel PtByPt VI, the Butterworth Filter PtByPt VIs use the 
following parameters:

• order specifies the amount of the waveform data that the VI filters at 
a given time and is the filter resolution. 2 is acceptable for the Train 
Wheel PtByPt.

• fl specifies the low cut-off frequency, which is the minimum signal 
strength that identifies the departure of a train wheel from the strain 
gauge. 0.01 is acceptable for the Train Wheel PtByPt.
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• fh specifies the high cut-off frequency, which is the minimum signal 
strength that identifies the end of high-frequency waveform 
information. 0.25 is acceptable for the Train Wheel PtByPt.

Analysis Stage
The point-by-point detection application must analyze the low- and 
high-frequency components separately. The Array Max & Min PtByPt VI 
extracts waveform data that reveals the level of energy in the waveform for 
each wheel, the end of each train, and the end of each wheel.

Three separate Array Max & Min PtByPt VIs perform the following 
discrete tasks:

• Identify the maximum high-frequency value for each wheel.

• Identify the end of each train.

• Identify the end of each wheel.

Note The name Array Max & Min PtByPt VI contains the word array only to match the 
name of the array-based form of this VI. You do not need to allocate arrays for the Array 
Max & Min PtByPt VI.

In the Train Wheel PtByPt VI, the Array Max & Min PtByPt VIs use the 
following parameters and functions:

• sample length specifies the size of the portion of the waveform that the 
Train Wheel PtByPt VI analyzes. To calculate the ideal sample length, 
consider the speed of the train, the minimum distance between wheels, 
and the number of samples you receive per second. 100 is acceptable 
for the Train Wheel PtByPt VI. The Train Wheel PtByPt VI uses 
sample length to calculate values for all three Array Max & Min 
PtByPt VIs.

• The Multiply function sets a longer portion of the waveform to 
analyze. When this longer portion fails to display signal activity for 
train wheels, the Array Max & Min PtByPt VIs identify the end of the 
train. 4 is acceptable for the Train Wheel PtByPt VI.

• threshold provides a comparison point to identify when no train wheel 
signals exist in the signal that you are acquiring. threshold is wired to 
the Greater? function. 3 is an acceptable setting for threshold in the 
Train Wheel PtByPt VI.
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Events Stage
After the Analysis stage identifies maximum and minimum values, the 
Events stage detects when these values cross a threshold setting.

The Train Wheel PtByPt VI logs every wheel and every train that it detects. 
Two Boolean Crossing PtByPt VIs perform the following tasks:

• Generate an event each time the Array Max & Min PtByPt VIs detect 
the transition point in the signal that indicates the end of a wheel.

• Generate an event every time the Array Max & Min PtByPt VIs detect 
the transition point in the signal that indicates the end of a train.

The Boolean Crossing PtByPt VIs respond to transitions. When the 
amplitude of a single wheel waveform falls below the threshold setting, 
the end of the wheel has arrived at the strain gauge. For the Train Wheel 
PtByPt VI, 3 is a good threshold setting to identify the end of a wheel. 
When the signal strength falls below the threshold setting, the Boolean 
Crossing PtByPt VIs recognize a transition event and pass that event to a 
report.

Analysis of the high-frequency signal identifies which wheels, if any, might 
be defective. When the Train Wheel PtByPt VI encounters a potentially 
defective wheel, the VI passes the information directly to the report at the 
moment the end-of-wheel event is detected.

In the Train Wheel PtByPt VI, the Boolean Crossing PtByPt VIs use the 
following parameters:

• initialize resets the VI for a new session of continuous data 
acquisition.

• direction specifies the kind of Boolean crossing.

Report Stage
The Train Wheel PtByPt VI reports on all wheels for all trains that pass 
through the data acquisition system. The Train Wheel PtByPt VI also 
reports any potentially defective wheels.

Every time a wheel passes the strain gauge, the Train Wheel PtByPt VI 
captures its waveform, analyzes it, and reports the event. Table 14-4 
describes the components of a report on a single train wheel.
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The Train Wheel PtByPt VI uses point-by-point analysis to generate a 
report, not to control an industrial process. However, the Train Wheel 
PtByPt VI acquires data in real time, and you can modify the application to 
generate real-time control responses, such as stopping the train when the 
Train Wheel PtByPt VI encounters a potentially defective wheel.

Conclusion
When acquiring data with real-time performance, point-by-point analysis 
helps you analyze data in real time. Point-by-point analysis occurs 
continuously and instantaneously. While you acquire data, you filter and 
analyze it, point by point, to extract the information you need and to make 
an appropriate response. This case study demonstrates the effectiveness of 
the point-by-point approach for generation of both events and reports in 
real time.

Table 14-4.  Example Report on a Single Train Wheel

Information Source Meaning of Results

Counter mechanism for 
waveform events

Stage One: Wheel number four has passed the strain gauge.

Analysis of highpass filter data Stage Two: Wheel number four has passed the strain gauge and 
the wheel might be defective.

Counter mechanism for 
end-of-train events

Stage Three: Wheel number four in train number eight has 
passed the strain gauge, and the wheel might be defective.
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B
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions, 
visit our extensive library of technical support resources available 
in English, Japanese, and Spanish at ni.com/support. These 
resources are available for most products at no cost to registered 
users and include software drivers and updates, a KnowledgeBase, 
product manuals, step-by-step troubleshooting wizards, 
conformity documentation, example code, tutorials and 
application notes, instrument drivers, discussion forums, 
a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other 
measurement and automation professionals by visiting 
ni.com/support. Our online system helps you define your 
question and connects you to the experts by phone, discussion 
forum, or email.

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, NI Alliance Program 
members can help. To learn more, call your local NI office or visit 
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.
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