
Archived
Oracle WebLogic Server 12c

on AWS
December 2018

This paper has been archived.

For the latest technical content, see
the AWS Whitepapers & Guides page:

https://aws.amazon.com/whitepapers/

https://aws.amazon.com/whitepapers/

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 2

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices

This document is provided for informational purposes only. It represents AWS’s

current product offerings and practices as of the date of issue of this document,

which are subject to change without notice. Customers are responsible for

making their own independent assessment of the information in this document

and any use of AWS’s products or services, each of which is provided “as is”

without warranty of any kind, whether express or implied. This document does

not create any warranties, representations, contractual commitments,

conditions or assurances from AWS, its affiliates, suppliers or licensors. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 3

Contents

Introduction 5

Oracle WebLogic on AWS 6

Oracle WebLogic Components 6

Oracle WebLogic Architecture on AWS 8

Auto Scaling your Oracle WebLogic Cluster 15

Monitoring your Infrastructure 19

AWS Security and Compliance 20

Oracle WebLogic on AWS Use Cases 23

Conclusion 24

Contributors 25

Document Revisions 25

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 4

Abstract

This whitepaper provides guidance on how to deploy Oracle WebLogic Server

12c-based applications on AWS. This paper provides a reference architecture

and information about best practices for high availability, security, scalability,

and performance when you deploy Oracle WebLogic Server 12c-based

applications on AWS. Also included is information about cost optimization

using AWS Auto Scaling.

The target audience of this whitepaper is Solution Architects, Systems

Architects, and System Administrators with a basic understanding of cloud

computing, AWS, and Oracle WebLogic 12c.

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 5

Introduction
Many enterprises today rely on J2EE application servers for deploying their

mission critical applications. Oracle WebLogic Server is a popular Java

application server for deploying such applications.

You can use various AWS services to deploy Oracle WebLogic Server 12c-based

applications on AWS in a secure, highly available, and cost-effective manner.

With auto scaling, you can dynamically scale the compute resources required for

your application, thereby keeping your costs low, and using Amazon Elastic File

System (EFS) for shared storage.

This whitepaper assumes that you have a basic understanding of Amazon Web

Services. For an overview of AWS Services, see Overview of Amazon Web

Services.

https://docs.aws.amazon.com/aws-technical-content/latest/aws-overview/aws-overview.pdf
https://docs.aws.amazon.com/aws-technical-content/latest/aws-overview/aws-overview.pdf

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 6

Oracle WebLogic on AWS
It is important to have a good understanding of the architecture of Oracle

WebLogic Server 12c (Oracle WebLogic) and the major WebLogic components

to successfully deploy and configure it on AWS.

Oracle WebLogic Components

This diagram shows the major components of Oracle WebLogic Application

Server.

Each WebLogic deployment has a WebLogic Domain, which typically contains

multiple WebLogic Server instances. A WebLogic domain is the basic unit of

administration for WebLogic Server instances: it is a group of logically related

WebLogic Server resources. For example, you can have one WebLogic domain

for each application.

There are two types of WebLogic Server instances in a domain: a single

Administration Server and one or more Managed Servers. Each WebLogic

Server instance runs its own Java Virtual Machine (JVM) and can be configured

individually. You deploy and run your web applications, EJBs, and other

resources on the Managed Server instances. The Administration Server is used

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 7

to configure, manage, and monitor the resources in the domain, including the

Managed Server instances.

WebLogic Server instances, referred to as WebLogic Server Machines, can run

on physical or virtual servers (such as Amazon EC2) or in containers. The Node

Manager is a utility used to start, stop, or restart the Administration server or

Managed Server instances. You can create a group of multiple WebLogic

Managed Servers, which is known as a WebLogic cluster. WebLogic clusters

support load balancing and failover and are required for high availability and

scalability of your production deployments. You should deploy your WebLogic

cluster across multiple WebLogic Machines so that the loss of a single WebLogic

Machine does not impact the availability of your application.

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 8

Oracle WebLogic Architecture on AWS

This reference architecture diagram shows how you can deploy a web

application on Oracle WebLogic on AWS.

This is a basic, combined-tier architecture, with static HTTP pages, servlets, and

EJBs that are deployed together in a single WebLogic cluster. You can also

deploy the static HTTP pages and servlets to a separate WebLogic cluster, and

the EJBs to another WebLogic cluster. For more information about WebLogic

architectural patterns, see the Oracle WebLogic Server documentation.

This reference architecture includes a WebLogic domain with one

Administrative Server and multiple Managed Servers. These Managed Servers

are part of a WebLogic cluster and are deployed on EC2 instances (WebLogic

Machines) across two Availability Zones for high availability. The application is

deployed to the Managed Servers in the cluster that spans the two Availability

Zones. Amazon EFS is used for shared storage.

https://docs.oracle.com/middleware/12212/wls/CLUST/planning.htm

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 9

AWS Availability Zones

The AWS Cloud infrastructure is built around AWS Regions and Availability

Zones. AWS Regions provide multiple, physically separated and isolated

Availability Zones which are connected with low latency, high throughput, and

highly redundant networking. Availability Zones consist of one or more discrete

data centers, each with redundant power, networking, and connectivity, and

housed in separate facilities as shown in the following diagram.

These Availability Zones enable you to operate production applications and

databases that are more highly available, fault tolerant, and scalable than is

possible from a single data center. You can deploy your application on EC2

instances across multiple zones. In the unlikely event of failure of one

Availability Zone, user requests are routed to your application instances in the

second zone. This ensures that your application continues to remain available at

all times.

Traffic Distribution and Load Balancing

Amazon Route 53 DNS is used to direct users to your application deployed on

Oracle WebLogic on AWS. Elastic Load Balancing (ELB) is used to distribute

incoming requests across the WebLogic Managed Servers deployed on Amazon

EC2 instances in multiple Availability Zones. The load balancer serves as a

single point of contact for client requests, which enables you to increase the

availability of your application.

You can add and remove WebLogic Managed Server instances from your load

balancer as your needs change, either manually or with Auto Scaling, without

disrupting the overall flow of information. ELB ensures that only healthy

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 10

instances receive traffic by detecting unhealthy instances and rerouting traffic

across the remaining healthy instances. If an instance fails, ELB automatically

reroutes the traffic to the remaining running instances. If a failed instance is

restored, ELB restores the traffic to that instance.

Use Multiple Availability Zones for High Availability

Each Availability Zone is isolated from other Availability Zones and runs on its

own physically distinct, independent infrastructure. The likelihood of two

Availability Zones experiencing a failure at the same time is relatively small. To

ensure high availability of your application, you can deploy your WebLogic

Managed Server instances across multiple Availability Zones.

You then deploy your application on the Managed Servers in the WebLogic

cluster, which spans two Availability Zones. In the unlikely event of an

Availability Zone failure, user requests to the zone with the failure are routed by

Elastic Load Balancing to the Managed Servers deployed in the second

Availability Zone. This ensures that your application continues to remain

available, regardless of a zone failure.

You can configure WebLogic to replicate the HTTP session state in memory to

another Managed Server in the WebLogic cluster. WebLogic tracks the location

of the Managed Servers hosting the primary and the replica of the session state

using a cookie. If the Managed Server hosting the primary copy of the session

state fails, WebLogic can retrieve the HTTP session state from the replica. For

more information about HTTP session state replication, see the Oracle

WebLogic documentation.

For shared storage, you can use Amazon EFS, which is designed to be highly

available and durable. Your data in Amazon EFS is redundantly stored across

multiple Availability Zones, which means that your data is available if there is

an Availability Zone failure. For information about how to use Amazon EFS for

shared storage, see the Shared Storage section.

Administration Server High Availability

The Administration Server is used to configure, manage, and monitor the

resources in the domain, including the Managed Server instances. Because the

failure of the Administration Server does not affect the functioning of the

Managed Servers in the domain, the Managed Servers continue to run, and your

https://docs.oracle.com/cd/E24329_01/web.1211/e24425/failover.htm#CLUST206
https://docs.oracle.com/cd/E24329_01/web.1211/e24425/failover.htm#CLUST206

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 11

application is still available. However, if the Administration Server fails, the

WebLogic administration console is unavailable and you cannot make changes

to the domain configuration.

If the underlying host for the Administration Server experiences a failure, you

can use the Amazon EC2 Auto Recovery feature to recover the failed server

instances. When using Amazon EC2 Auto Recovery, several system status

checks monitor the instance and the other components that need to be running

for your instance to function as expected. Among other things, the system status

checks look for loss of network connectivity, loss of system power, software

issues on the physical host, and hardware issues on the physical host. If a

system status check of the underlying hardware fails, the instance will be

rebooted (on new hardware if necessary) but will retain its instance ID, IP

address, Elastic IP addresses, EBS volume attachments, and other configuration

details.

Another option is to put the Administration Server instances in an Auto Scaling

group that spans multiple Availability Zones, and set the minimum and

maximum size of the group to one. Auto Scaling ensures that an instance of the

Administration Server is running in the selected Availability Zones. This

solution ensures high availability of the Administration Server if a zone failure

occurs.

Storage

If you use file-based persistence, you must have storage for the WebLogic

product binaries, common files and scripts, the domain configuration files, logs,

and persistence stores for JMS and JTA. You can either use shared storage or

Amazon EBS volumes to store these files.

Shared Storage

To store the shared files related to your WebLogic deployment, you can use

Amazon EFS, which supports NFSv4 and will be mounted by all the instances

that are part of the WebLogic cluster. In the reference architecture, we use

Amazon EFS for shared storage. The WebLogic product binaries, common files

and scripts, the domain configuration files, and logs are stored in Amazon EFS,

which includes the commons, domains, middleware, and logs file systems. This

table describes each of these file systems.

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 12

File System Description

commons For common files, such as installation files, response files, and scripts.

domains For WebLogic Domain files, such as configuration, runtime, and temporary files.

middleware For binaries, such as Java VM and Oracle WebLogic installation.

logs For log files.

Amazon EFS has two throughput modes for your file system: Bursting

Throughput and Provisioned Throughput. With Bursting Throughput mode,

throughput on Amazon EFS scales as your file system grows. With Provisioned

Throughput mode, you can instantly provision the throughput of your file

system in MiB/s independent of the amount of data stored. For better

performance, we recommend you select Provisioned Throughput mode while

using Amazon EFS. With Provisioned Throughput mode, you can provision up

to 1024 MiB/s of throughput for your file system. You can change the file system

throughput in Provisioned Throughput mode at any time after you create the

file system.

If you are deploying your application in a region where Amazon EFS is not yet

available, there are several third-party products by vendors such as NetApp and

SoftNAS available on the AWS Marketplace that offer a shared storage solution

on AWS.

Amazon EBS Volumes

In this reference architecture, we use Amazon EFS for shared storage. You can

also deploy Oracle WebLogic on AWS without using shared storage. Instead,

you can use Amazon EBS volumes attached to your Amazon EC2 instances for

storage. Make sure to select the General Purpose (gp2) volume type for storing

the WebLogic product binaries, common files and scripts, the domain

configuration files, and logs. GP2 volumes are backed by solid-state drives

(SSDs) designed to offer single-digit millisecond latencies and are suitable for

use with Oracle WebLogic.

https://aws.amazon.com/marketplace/b/2649337011?ref_=hmpg_categories_2649337011

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 13

Scalability

When you use AWS, you can scale your application easily because of the elastic

nature of the cloud. You can scale your application vertically and horizontally.

Vertical Scaling

You can vertically scale, or scale up, your application simply by changing the

EC2 instance type on which your WebLogic Managed Servers are deployed to a

larger instance type, and then increasing the WebLogic JVM heap size. You can

modify the Java heap size with the - Xms (initial heap size) and - Xmx

(maximum heap size) parameters. Ideally, you should set both the initial heap

size (-Xms) and the maximum heap size (-Xmx) to the same value to minimize

garbage collections and optimize performance.

For example, you can start with an r4.large instance with 2 vCPUs and 15 GiB

RAM, and scale up all the way to an x1e.32xlarge instance with 128 vCPUs and

3,904 GiB RAM. For the most updated list of Amazon EC2 instance types, see

the Amazon EC2 Instance Types page on the AWS website.

After you select a new instance type, you simply restart the instance for the

changes to take effect. Typically, the resizing operation is completed in a few

minutes, the Amazon EBS volumes remain attached to the instances, and no

data migration is required.

Horizontal Scaling

You can horizontally scale, or scale out, your application by adding more

Managed Servers to your WebLogic cluster depending on the user traffic or on a

particular schedule. You launch new EC2 instances to deploy, and configure

additional Managed Servers, add them to the WebLogic cluster, and register

your instances with the ELB.

You can automate this process with AWS Auto Scaling and WebLogic scripting.

For more information, see the Auto Scaling your Oracle WebLogic Cluster

section.

AWS Auto Scaling for scaling out your WebLogic cluster also requires scripting,

which can be an additional technical investment. While we recommend that you

use AWS Auto Scaling, sometimes you might not have the time or the technical

resources to implement it while migrating your WebLogic application to AWS.

A simpler alternative might be to use standby instances.

https://aws.amazon.com/ec2/instance-types/

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 14

Standby Instances

To meet extra capacity requirements, additional instances of the WebLogic

Managed Servers are preinstalled and configured on EC2 instances. These

standby instances can be shut down until the extra capacity is required. You do

not incur compute charges when instances are shut down, you incur only

Amazon Elastic Block Store (Amazon EBS) storage charges. These preinstalled

standby instances provide you the flexibility to meet additional capacity when

you need it.

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 15

Auto Scaling your Oracle WebLogic Cluster

You can use AWS Auto Scaling to horizontally scale your applications based on

demand. This helps you to maintain steady, predictable performance at the

lowest possible cost. For example, you can configure AWS Auto Scaling to

automatically create and add more Managed Servers to your WebLogic cluster

as the traffic increases, and to stop and remove Managed Servers from the

WebLogic cluster as the traffic decreases. For more information about Auto

Scaling, see the Amazon EC2 Auto Scaling documentation.

This diagram shows how AWS Auto Scaling works with Oracle WebLogic. In

this example, we use Amazon EFS for shared storage.

https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 16

To Auto Scale your WebLogic cluster on AWS you must complete these major

steps.

1. Install and configure WebLogic – The first step is to configure Amazon

EFS for shared storage, install Oracle WebLogic, and configure the

WebLogic Domain and the WebLogic cluster. Amazon EFS is used to

store the WebLogic product binaries, common files and scripts, the

domain configuration files and logs.

2. Configure AWS Auto Scaling – Next, you have to configure AWS Auto

Scaling to launch and terminate EC2 instances—or WebLogic

Machines—based on the application workload.

3. Configure WebLogic scaling scripts – Finally, you create WebLogic

Scripting Tool (WLST) scripts. These scripts create and add or remove

the Managed Servers from the WebLogic cluster when AWS Auto Scaling

launches or terminates EC2 instances in the auto scaling group.

Configure Oracle WebLogic

To configure Oracle WebLogic and setup shared storage, you must complete

these high-level steps.

1. Create the commons, domains, middleware, and logs file systems on

Amazon EFS, as described in the Shared Storage section.

2. Create an EC2 instance for deploying the WebLogic Administration

Server and mount the EFS file systems. In the reference architecture, we

have created the following directory structure to store the WebLogic

binaries, domain configurations, common scripts and logs.

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 17

3. Install Oracle WebLogic. The ORACLE_HOME directory should be

located on a shared folder (/middleware) on EFS.

4. Create the WebLogic domain. You can use the Basic WebLogic Server

Domain Template in the /templates/wls/wls.jar' directory to create the

domain.

5. Create a WebLogic cluster in the domain and set the cluster messaging

mode to Unicast.

Configure AWS Auto Scaling

To configure AWS Auto Scaling to launch and terminate EC2 instances (or

WebLogic Machines) based on the application load, you must complete the

following high-level steps. For more details on Auto Scaling, see the Amazon

EC2 Auto Scaling documentation on the AWS website.

1. Create a launch configuration and an Auto Scaling group.

2. Create the scale in and scale out policies. For example, you can create a

scaling policy to add an instance when the CPU utilization is >80 % and

to remove an instance when the CPU utilization is <60 %.

3. If you are using in-memory session persistence, Oracle WebLogic

replicates the session data to another Managed Server in the cluster. You

should ensure that the Auto Scaling scale down process terminates only

one Managed Server at a time, to make sure you do not destroy the

master and the replica of the session at the same time.

For detailed, step-by-step instructions on how to configure Auto Scaling, see the

Amazon EC2 Auto Scaling documentation on the AWS website.

Configure WebLogic Scaling Scripts

Based on the traffic to your application, Auto Scaling can create and add new

EC2 instances (scaling out), or remove existing EC2 instances (scaling in) from

your auto scaling group. You must create the following scripts to automate the

configuration of WebLogic in an auto-scaled environment.

• EC2 configuration scripts – These scripts mount the EFS filesystems,

invoke the WLST scripts to configure and start the WebLogic Managed

Server on the startup of the EC2 instance, and invoke the WLST scripts

to stop the WebLogic Managed Server on shutdown of the EC2 instance.

https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/GettingStartedTutorial.html

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 18

You can pass this script with the EC2 user data. For detailed

information, see the Amazon EC2 documentation on the AWS website.

• WebLogic Scripting Tool (WLST) scripts – WLST is a command-line

scripting interface used to manage WebLogic Server instances and

domains. These scripts create and add the Managed Server to your

WebLogic cluster when Auto Scaling adds a new EC2 instance to the

Auto Scaling group. These scripts also stop and remove the Managed

Server from your WebLogic cluster when Auto Scaling removes the EC2

instance from the Auto Scaling group. For more information, see the

Oracle WLST documentation.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://docs.oracle.com/cd/E24329_01/web.1211/e24491/toc.htm

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 19

Monitoring your Infrastructure

After you migrate your Oracle WebLogic applications to AWS, you can continue

to use the monitoring tools you are familiar with to monitor your Oracle

WebLogic environment and the application you deployed on WebLogic.

You can use Fusion Middleware Control, the Oracle WebLogic Server

Administration Console or the command line (using the WSLT state command)

to monitor your Oracle WebLogic infrastructure components. This includes

WebLogic domains, Managed Servers, and clusters. You can also monitor the

Java applications deployed and get information such as the state of your

application, the number of active sessions, and response times.

For more information about how to monitor Oracle WebLogic, see the Oracle

WebLogic documentation.

You can also use Amazon CloudWatch to monitor AWS Cloud resources and the

applications you run on AWS. Amazon CloudWatch enables you to monitor your

AWS resources in near real-time, including Amazon EC2 instances, Amazon

EBS volumes, Amazon EFS, ELB load balancers, and Amazon RDS DB

instances. Metrics such as CPU utilization, latency, and request counts are

provided automatically for these AWS resources. You can also supply your own

logs or custom application and system metrics, such as memory usage,

transaction volumes, or error rates, which Amazon CloudWatch will also

monitor.

With Amazon CloudWatch alarms, you can set a threshold on metrics and

trigger an action when that threshold is exceeded. For example, you can create

an alarm that is triggered when the CPU utilization on an EC2 instance crosses a

threshold. You can also configure a notification of the event to be sent through

SMS or email. Real-time alarms for metrics and events enable you to minimize

downtime and potential business impact.

If your application uses a database deployed on Amazon RDS, you can use the

Enhanced Monitoring feature of Amazon RDS to monitor your database.

Enhanced Monitoring gives you access to over 50 metrics, including CPU,

memory, file system, and disk I/O. You can also view the processes running on

the DB instance and their related metrics, including percentage of CPU usage

and memory usage.

https://docs.oracle.com/middleware/1212/core/ASADM/monitor.htm#ASADM206
https://docs.oracle.com/middleware/1212/core/ASADM/monitor.htm#ASADM206

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 20

AWS Security and Compliance

The AWS Cloud security infrastructure has been architected to be one of the

most flexible and secure cloud computing environments available today.

Security on AWS is very similar to security in your on-premises data center, but

without the costs and complexities involved in protecting facilities and

hardware. AWS provides a secure global infrastructure, plus a range of features

that you can use to help secure your systems and data in the cloud. To learn

more about AWS Security, see the AWS Security Center.

AWS Compliance enables customers to understand the robust controls in place

at AWS to maintain security and data protection in the cloud. AWS engages with

external certifying bodies and independent auditors to provide customers with

extensive information regarding the policies, processes, and controls

established and operated by AWS. To learn more about AWS Compliance, see

the AWS Compliance Center.

The AWS Security Model

The AWS infrastructure has been architected to provide an extremely scalable,

highly reliable platform that enables you to deploy applications and data quickly

and securely.

Security in the cloud is different than security in your on-premises data centers.

When you move computer systems and data to the cloud, security

responsibilities become shared between you and your cloud service provider. In

the AWS cloud model, AWS is responsible for securing the underlying

infrastructure that supports the cloud, and you are responsible for securing

workloads that you deploy in AWS. This shared security responsibility model

can reduce your operational burden in many ways, and gives you the flexibility

you need to implement the most applicable security controls for your business

functions in the AWS environment.

https://aws.amazon.com/security/
https://aws.amazon.com/compliance/

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 21

Figure 6: The AWS shared responsibility model

When you deploy Oracle WebLogic applications on AWS, we recommend that

you take advantage of the various security features of AWS, such as AWS

Identity and Access Management, monitoring and logging, network security,

and data encryption.

AWS Identity and Access Management

With AWS Identity and Access Management (IAM), you can centrally manage

your users and their security credentials, such as passwords, access keys, and

permissions policies, which control the AWS services and resources that users

can access. IAM supports multifactor authentication (MFA) for privileged

accounts, including options for hardware-based authenticators and support for

integration and federation with corporate directories to reduce administrative

overhead and improve end-user experience.

Monitoring and Logging

AWS CloudTrail is a service that records AWS API calls for your account and

delivers log files to you. The recorded information in the log files includes the

identity of the API caller, the time of the API call, the source IP address of the

API caller, the request parameters, and the response elements returned by the

AWS service. This provides deep visibility into API calls, including who, what,

when, and from where calls were made. The AWS API call history produced by

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 22

CloudTrail enables security analysis, resource change tracking, and compliance

auditing.

Network Security and Amazon Virtual Private Cloud

In each Amazon Virtual Private Cloud (VPC), you create one or more subnets.

Each instance you launch in your VPC is connected to one subnet. Traditional

layer 2 security attacks, including MAC spoofing and ARP spoofing, are blocked.

You can configure network ACLs, which are stateless traffic filters that apply to

all inbound or outbound traffic, from a subnet within your VPC.

These ACLs can contain ordered rules to allow or deny traffic based on IP

protocol, by service port, and by source and destination IP address.

Security groups are a complete firewall solution that enable filtering on both

ingress and egress traffic from an instance. Traffic can be restricted by any IP

protocol, by service port, as well as source and destination IP address

(individual IP address or classless inter-domain routing (CIDR) block).

Data Encryption

AWS offers you the ability to add a layer of security to your data at rest in the

cloud, by providing scalable and efficient encryption features. Data encryption

capabilities are available in AWS storage and database services, such as Amazon

EBS, Amazon S3, Amazon Glacier, Amazon RDS for Oracle, Amazon RDS for

SQL Server, and Amazon Redshift. Flexible key management options allow you

to choose whether to have AWS manage the encryption keys using the AWS Key

Management Service o (AWS KMS) or to maintain complete control over your

keys. Dedicated, hardware-based cryptographic key storage options (AWS

CloudHSM) are available to help you satisfy compliance requirements.

For more information, see the Introduction to AWS Security and AWS Security

Best Practices whitepapers.

http://d0.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 23

Oracle WebLogic on AWS Use Cases

Oracle WebLogic customers use AWS for a variety of use cases, including these

environments:

• Migration of existing Oracle WebLogic production environments

• Implementation of new Oracle WebLogic production environments

• Implementing disaster recovery environments

• Running Oracle WebLogic development, test, demonstration, proof of

concept (POC), and training environments

• Temporary environments for migrations and testing upgrades

• Temporary environments for performance testing

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 24

Conclusion
AWS can be an extremely cost-effective, secure, scalable, high-performing, and

flexible option for deploying Oracle WebLogic applications. By deploying Oracle

WebLogic applications on the AWS Cloud, you can reduce costs and

simultaneously enable capabilities that might not be possible or cost-effective if

you deployed your application in an on-premises data center.

Some of the benefits of deploying Oracle WebLogic on AWS include:

• Low cost – Resources are billed by the hour and only for the duration

they are used.

• Eliminate the need for large capital outlays – Replace large, upfront

expenses with low variable payments that only apply to what you use.

• High availability – Achieve high availability by deploying Oracle

WebLogic in a Multi-AZ configuration.

• Flexibility –Add compute capacity elastically to cope with demand.

• Testing – Add test environments, use them for short durations, and pay

only for the duration they are used.

Archived

Amazon Web Services – Oracle WebLogic 12c on AWS

Page 25

Contributors
The following individuals and organizations contributed to this document:

Ashok Sundaram, Solutions Architect, Amazon Web Services

Document Revisions

Date Description

December 2018 First publication

	Introduction
	Oracle WebLogic on AWS
	Oracle WebLogic Components
	Oracle WebLogic Architecture on AWS
	AWS Availability Zones
	Traffic Distribution and Load Balancing
	Use Multiple Availability Zones for High Availability
	Administration Server High Availability
	Storage
	Shared Storage
	Amazon EBS Volumes

	Scalability
	Vertical Scaling
	Horizontal Scaling
	Standby Instances

	Auto Scaling your Oracle WebLogic Cluster
	Configure Oracle WebLogic
	Configure AWS Auto Scaling
	Configure WebLogic Scaling Scripts

	Monitoring your Infrastructure
	AWS Security and Compliance
	The AWS Security Model
	AWS Identity and Access Management
	Monitoring and Logging
	Network Security and Amazon Virtual Private Cloud
	Data Encryption

	Oracle WebLogic on AWS Use Cases

	Conclusion
	Contributors
	Document Revisions

