Arcs and Chords

Warm Up

Lesson Presentation

Lesson Quiz

Arcs and Chords

Warm Up

1. What percent of 60 is 18 ? 30 2. What number is 44% of 6 ? 2.64
2. Find $\mathrm{m} \angle W V X$.

$$
104.4^{\circ}
$$

Payment Methods

Arcs and Chords

Objectives

Apply properties of arcs. Apply properties of chords.

Arcs and Chords

Vocabulary

central angle arc
 minor arc semicircle adjacent arcs congruent arcs major arc

Arcs and Chords

A central angle is an angle whose vertex is the center of a circle. An arc is an unbroken part of a circle consisting of two points called the endpoints and all the points on the circle between them.

Arcs and Chords

Arcs and Their Measure

ARC	MEASURE

Arcs and Chords

Writing Math
 Minor arcs may be named by two points. Major arcs and semicircles must be named by three points.

Arcs and Chords

Example 1: Data Application

The circle graph shows the types of grass planted in the yards of one neighborhood. Find mKLF.

$$
\begin{aligned}
\mathrm{m} \overparen{K L F} & =360^{\circ}-\mathrm{m} \angle K J F \\
\mathrm{~m} \angle K J F & =0.35\left(360^{\circ}\right) \\
& =126^{\circ} \\
\mathrm{m} \overparen{K L F} & =360^{\circ}-126^{\circ} \\
& =234^{\circ}
\end{aligned}
$$

Arcs and Chords

Check It Out! Example 1

Use the graph to find each of the following.

a. $\mathrm{m} \angle F M C$

$$
\begin{aligned}
\mathrm{m} \angle F M C & =0.30\left(360^{\circ}\right) \\
& =108^{\circ}
\end{aligned}
$$

Central \angle is 30% of the \odot.

$$
\text { b. } \begin{aligned}
\mathrm{m} \widehat{A H B} & =360^{\circ}-\mathrm{m} \angle A M B \\
\mathrm{~m} \angle A H B & =360^{\circ}-0.25\left(360^{\circ}\right) \\
& =270^{\circ}
\end{aligned}
$$

$$
\text { c. } \mathrm{m} \angle E M D=0.10\left(360^{\circ}\right)
$$

$$
=36^{\circ}
$$

Central \angle is 10% of the \odot.

Arcs and Chords

Adjacent arcs are arcs of the same circle that intersect at exactly one point. $\overparen{R S}$ and $S T$ are adjacent arcs.

Postulate 11-2-1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

$$
\mathrm{m} \overparen{A B C}=\mathrm{m} \overparen{A B}+\mathrm{m} \overparen{B C}
$$

Arcs and Chords

Example 2: Using the Arc Addition Postulate

Find $m B D$.
$\mathrm{m} \overparen{B C}=97.4^{\circ}$
Vert. $\angle \mathrm{s}$ Thm.
$\mathrm{m} \angle C F D=180^{\circ}-\left(97.4^{\circ}+52^{\circ}\right)$

$$
=30.6^{\circ} \quad \Delta \text { Sum Thm. }
$$

$\mathrm{m} \overparen{C D}=30.6^{\circ} \quad m \angle C F D=30.6^{\circ}$

$\mathrm{m} \overparen{B D}=\mathrm{m} \overparen{B C}+\mathrm{m} \overparen{C D} \quad$ Arc Add. Post.
$=97.4^{\circ}+30.6^{\circ}$ Substitute .
$=128^{\circ}$ Simplify.

Arcs and Chords

Check It Out! Example 2a

Find each measure.
mJKL

$$
\begin{aligned}
\mathrm{m} \angle K P L & =180^{\circ}-(40+25)^{\circ} \\
\widetilde{\mathrm{m} \overparen{K L}} & =115^{\circ} \\
\mathrm{mJKL} & =\mathrm{m} \overparen{J K}+\mathrm{m} \overparen{K L} \\
& =25^{\circ}+115^{\circ} \\
& =140^{\circ}
\end{aligned}
$$

Arc Add. Post.

Substitute.
Simplify.

Arcs and Chords

Check It Out! Example 2b

Find each measure.
$\begin{aligned} & \widehat{\mathbf{M L J N}} \\ & \overparen{m} \overparen{L J N}=360^{\circ}-(40+25)^{\circ} \\ &=295^{\circ}\end{aligned}$

Arcs and Chords

Within a circle or congruent circles, congruent arcs are two arcs that have the same measure. In the figure $\overparen{S T} \cong \overparen{U V}$.

Arcs and Chords

Theorem 11-2-2

THEOREM	HYPOTHESIS	CONCLUSION
In a circle or congruent circles:	$\angle E A D \cong \angle B A C$	$\overline{D E} \cong \overline{B C}$
(1) Congruent central angles have congruent chords.		
(2) Congruent chords have congruent arcs.	$\overline{E D} \cong \overline{B C}$	$\overparen{D E} \cong \overparen{B C}$
(3) Congruent arcs have congruent central angles.	$\overparen{E D} \cong \overparen{B C}$	$\angle D A E \cong \angle B A C$

Arcs and Chords

Example 3A: Applying Congruent Angles, Arcs, and Chords

$\overline{T V} \cong \overline{W S}$. Find m $\widetilde{W S}$.

$\overparen{T V} \cong \overparen{W S}$
$\mathrm{mTV}=\mathrm{mWS}$
$9 n-11=7 n+11$

$$
2 n=22
$$

$$
n=11
$$

$$
\mathrm{m} \overparen{W S}=7(11)+11 \text { Substitute } 11 \text { for } n .
$$

$$
=88^{\circ}
$$

\cong chords have \cong arcs.
Def. of $\cong \operatorname{arcs}$
Substitute the given measures.
Subtract 7n and add 11 to both sides.
Divide both sides by 2.

Simplify.

Arcs and Chords

Example 3B: Applying Congruent Angles, Arcs, and Chords

$\odot C \cong \odot J$, and $\mathbf{m} \angle \mathbf{G C D} \cong \mathbf{m} \angle \mathbf{N J M}$. Find $N M$.

$$
\begin{array}{ll}
\overparen{G D} \cong \overparen{N M} & \angle G C D \cong \angle N J M \\
\overline{G D} \cong \overline{N M} & \cong \text { arcs have } \cong c h \\
G D=N M & \text { Def. of chords }
\end{array}
$$

Arcs and Chords

Example 3B Continued

$\odot C \cong \odot J$, and $\mathbf{m} \angle G C D \cong \mathbf{m} \angle N J M$. Find $N M$.

$14 t-26=5 t+1 \quad$ Substitute the given measures.

$$
\begin{aligned}
9 t & =27 & & \text { Subtract 5t and add } 26 \text { to both sides. } \\
t & =3 & & \text { Divide both sides by } 9 . \\
N M & =5(3)+1 & & \text { Substitute } 3 \text { for } t . \\
& =16 & & \text { Simplify. }
\end{aligned}
$$

Arcs and Chords

Check It Out! Example 3a

$\overrightarrow{P T}$ bisects $\angle R P S$. Find $R T$.

$$
\begin{aligned}
& \angle R P T \cong \angle S P T \\
& \mathrm{~m} \overparen{R T} \cong \mathrm{~m} \overparen{T S} \\
& R T=T S \\
& 6 x=20-4 x
\end{aligned}
$$

$$
10 x=20 \quad \text { Add } 4 x \text { to both sides. }
$$

$$
x=2
$$

Divide both sides by 10.

$$
R T=6(2)
$$

Substitute 2 for x.

$$
R T=12
$$

Simplify.

Arcs and Chords

Check It Out! Example 3b

Find each measure.

$\odot A \cong \odot B$, and $\overline{\boldsymbol{C D}} \cong \overline{\boldsymbol{E F}}$. Find $\mathbf{m C D}$.

$$
\mathrm{mCD}=\mathrm{m} \overparen{E F} \quad \cong \text { chords have } \cong \text { arcs }
$$

$25 y^{\circ}=(30 y-20)^{\circ} \quad$ Substitute.

$$
20=5 y
$$

$$
4=y
$$

Divide both sides by 5 .
$C D=25(4) \quad$ Substitute 4 for y.
$\mathrm{mCD}=100^{\circ} \quad$ Simplify.

Arcs and Chords

Theorems

THEOREM
 HYPOTHESIS \quad CONCLUSION

11-2-3 In a circle, if a radius (or diameter) is perpendicular to a chord, then it bisects the chord and its arc.

$$
\overline{C D} \perp \overline{E F}
$$

11-2-4 In a circle, the perpendicular bisector of a chord is a radius (or diameter).

HYPOTHESIS	CONCLUSION
$\overline{J K}$ is \perp bisector of $\overline{G H}$.	

Arcs and Chords

Example 4: Using Radii and Chords

Find N.
Step 1 Draw radius $\overline{R N}$.
$R N=17$ Radii of a \odot are \cong.
Step 2 Use the Pythagorean Theorem.

$S N^{2}+R S^{2}=R N^{2}$
$S N^{2}+8^{2}=17^{2}$
$S N^{2}=225$
$S N=15$
Step 3 Find $N P$.
$N P=2(15)=30 \quad \overline{R M} \perp \overline{N P}$, so $\overline{R M}$ bisects $\overline{N P .}$

Arcs and Chords

Check It Out! Example 4

Find QR to the nearest tenth.
Step 1 Draw radius $\overline{P Q}$.
$P Q=20$ Radii of a \odot are \cong.
Step 2 Use the Pythagorean Theorem.

$T Q^{2}+P T^{2}=P Q^{2}$
$T Q^{2}+10^{2}=20^{2} \quad$ Substitute 10 for $P T$ and 20 for $P Q$.
$T Q^{2}=300 \quad$ Subtract 10^{2} from both sides.
$T Q \approx 17.3$ Take the square root of both sides.
Step 3 Find $Q R$.
$Q R=2(17.3)=34.6 \quad \overline{P S} \perp \overline{Q R}$, so $\overline{P S}$ bisects $\overline{Q R}$.

Arcs and Chords

Lesson Quiz: Part I

1. The circle graph shows the types of cuisine available in a city. Find mTRQ.

Types of Food

Arcs and Chords

Lesson Quiz: Part II

Find each measure.

2. $\widehat{N G H} 139^{\circ}$
3. HL 21

Arcs and Chords

Lesson Quiz: Part III

4. $\odot T \cong \odot U$, and $A C=47.2$. Find $P L$ to the nearest tenth.

$$
\approx 12.9
$$

