

Warm Up

Lesson Presentation

Lesson Quiz

Holt McDougal Geometry

Warm Up

- **1.** What percent of 60 is 18? 30
- 2. What number is 44% of 6? 2.64

Holt McDougal Geometry

Apply properties of arcs.

Apply properties of chords.

Holt McDougal Geometry

Vocabulary

central angle semicircle arc adjacent arcs minor arc congruent arcs major arc

Holt McDougal Geometry

A <u>central angle</u> is an angle whose vertex is the center of a circle. An <u>arc</u> is an unbroken part of a circle consisting of two points called the endpoints and all the points on the circle between them.

Arcs and Their Measure				
ARC	MEASURE	DIAGRAM		
A minor arc is an arc whose points are on or in the interior of a central angle.	The measure of a minor arc is equal to the measure of its central angle. $\widehat{MAC} = M \angle ABC = x^\circ$	B x° C		
A major arc is an arc whose points are on or in the exterior of a central angle.	The measure of a major arc is equal to 360° minus the measure of its central angle. $\overrightarrow{ADC} = 360^\circ - \underline{m}\angle ABC$ $= 360^\circ - x^\circ$			
If the endpoints of an arc lie on a diameter, the arc is a semicircle .	The measure of a semicircle is equal to 180°. m EFG = 180°	E G G		

Holt McDougal Geometry

Writing Math

Minor arcs may be named by two points. Major arcs and semicircles must be named by three points.

Holt McDougal Geometry

Example 1: Data Application

The circle graph shows the types of grass planted in the yards of one neighborhood. Find $m\tilde{KLF}$.

Check It Out! Example 1

Use the graph to find each of the following.

a. m∠*FMC* m∠*FMC* = $0.30(360^{\circ})$ = 108° *Central* ∠ *is* 30% of the •.

Holt McDougal Geometry

<u>Adjacent arcs</u> are arcs of the same circle that intersect at exactly one point. \overrightarrow{RS} and \overrightarrow{ST} are adjacent arcs.

Postulate 11-2-1 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

$$\mathbf{m}\widehat{ABC} = \mathbf{m}\widehat{AB} + \mathbf{m}\widehat{BC}$$

Arcs and Chords

Example 2: Using the Arc Addition Postulate

Find mBD.

$$\widehat{mBC} = 97.4^{\circ}$$
 Vert. $\angle s$ Thm.
 $m\angle CFD = 180^{\circ} - (97.4^{\circ} + 52^{\circ})$
 $= 30.6^{\circ}$ \triangle Sum Thm.
 $\widehat{mCD} = 30.6^{\circ}$ $m\angle CFD = 30.6^{\circ}$
 $\widehat{mBD} = \widehat{mBC} + \widehat{mCD}$ Arc Add. Post.
 $= 97.4^{\circ} + 30.6^{\circ}$ Substitute.
 $= 128^{\circ}$ Simplify.

Check It Out! Example 2a

Check It Out! Example 2b

Holt McDougal Geometry

Within a circle or congruent circles, <u>congruent arcs</u> are two arcs that have the same measure. In the figure $ST \cong UV$.

Arcs and Chords

Theorem 11-2-2				
THEOREM	HYPOTHESIS	CONCLUSION		
In a circle or congruent circles:	D C			
(1) Congruent central angles have congruent chords.	$E \land B \land C \models A \land C \land$	<u>DE</u> ≅ <u>BC</u>		
(2) Congruent chords have congruent arcs.	$\overrightarrow{ED} \cong \overrightarrow{BC}$	DE ≅ BC		
(3) Congruent arcs have congruent central angles.	\overrightarrow{E}	∠DAE ≅ ∠BAC		

Holt McDougal Geometry

Arcs and Chords

Example 3A: Applying Congruent Angles, Arcs, and Chords

$TV \cong \overline{WS}$. Find \widehat{mWS} .

- $\widehat{TV} \cong \widehat{WS}$ mTV = mWS
- 9n 11 = 7n + 11
 - 2n = 22
 - n = 11

 $= 88^{\circ}$

- \cong chords have \cong arcs. Def. of \cong arcs
- Substitute the given measures.
- Subtract 7n and add 11 to both sides. Divide both sides by 2.

(9*n* – 11)°

W

 $\widehat{WS} = 7(11) + 11$ Substitute 11 for n.

Simplify.

Example 3B: Applying Congruent Angles, Arcs, and Chords

$\odot C \cong \odot J$, and m $\angle GCD \cong m \angle NJM$. Find *NM*.

- $\angle GCD \cong \angle NJM$
- $\overline{GD} \cong \overline{NM}$

GD = NM

 $\widehat{GD} \simeq \widehat{NM}$

- \cong arcs have \cong chords.
- Def. of \cong chords

Holt McDougal Geometry

Example 3B Continued

$\odot C \cong \odot J$, and m $\angle GCD \cong m \angle NJM$. Find *NM*.

14t - 26 = 5t + 1 Substitute the given measures.

- 9t = 27 Subtract 5t and add 26 to both sides.
- t = 3 Divide both sides by 9.
- NM = 5(3) + 1 Substitute 3 for t. = 16 Simplify.

Check It Out! Example 3a

 $\angle RPT \cong \angle SPT$

- $\mathsf{m}\widehat{RT}\cong\mathsf{m}\widehat{TS}$
- RT = TS

$$6x = 20 - 4x$$

- 10x = 20
 - *x* = 2
 - RT = 6(2)
 - RT = 12

Add 4x to both sides.

- Divide both sides by 10.
 - Substitute 2 for x.
 - Simplify.

Holt McDougal Geometry

Check It Out! Example 3b

Find each measure. $\odot A \cong \odot B$, and $\overline{CD} \cong \overline{EF}$. Find \widehat{mCD} . $\widehat{mCD} = \widehat{mEF} \cong Chords have \cong arcs.$ $25v^{\circ} = (30v - 20)^{\circ}$ Substitute.

mCD = mEF $25y^{\circ} = (30y - 20)^{\circ}$ 20 = 5y 4 = y CD = 25(4) $m\widehat{CD} = 100^{\circ}$

≅ chords have ≅ arcs.
Substitute.
Subtract 25y from both sides. Add
20 to both sides.
Divide both sides by 5.
Substitute 4 for y.
Simplify.

	THEOREM	HYPOTHESIS	CONCLUSION
11-2-3	In a circle, if a radius (or diameter) is perpendicular to a chord, then it bisects the chord and its arc.	$ \begin{array}{c} \hline C \bullet \\ \hline D \\ \hline D \\ \hline \hline D \\ \hline \hline D \\ \hline \hline \overline{CD} \\ \downarrow \overline{EF} \end{array} $	CD bisects EF and EF .
11-2-4	In a circle, the perpendicular bisector of a chord is a radius (or diameter).	$\int_{K} \int_{K} \int_{K$	<mark>JK</mark> is a diameter of ⊙A.

Holt McDougal Geometry

Arcs and Chords

Example 4: Using Radii and Chords

Find NP.

- **Step 1** Draw radius *RN*.
- RN = 17 Radii of $a \odot are \cong$.

Step 2 Use the Pythagorean Theorem.

$SN^2 + RS^2 = RN^2$

- $SN^2 + 8^2 = 17^2$
 - $SN^2 = 225$ Subtract 8² SN = 15 Take the set
- Substitute 8 for RS and 17 for RN. Subtract 8² from both sides.
 - Take the square root of both sides.
- Step 3 Find NP.
- NP = 2(15) = 30
- $\overline{RM} \perp \overline{NP}$, so \overline{RM} bisects \overline{NP} .

Holt McDougal Geometry

Check It Out! Example 4

Find QR to the nearest tenth.

Step 1 Draw radius \overline{PQ} .

 $TQ \approx 17.3$

PQ = 20 Radii of a • are \cong .

Step 2 Use the Pythagorean Theorem.

$TQ^2 + PT^2 = PQ^2$ $TQ^2 + 10^2 = 20^2$ $TQ^2 = 300$

- Substitute 10 for PT and 20 for PQ. Subtract 10² from both sides.
- Take the square root of both sides.

Step 3 Find *QR*.

QR = 2(17.3) = 34.6 $\overline{PS} \perp \overline{QR}$, so \overline{PS} bisects \overline{QR} .

Lesson Quiz: Part I

1. The circle graph shows the types of cuisine available in a city. Find mTRQ.

Holt McDougal Geometry

Lesson Quiz: Part II

Find each measure.

2. *NGH* 139°

3. *HL* **21**

Lesson Quiz: Part III

4. $\odot T \cong \odot U$, and AC = 47.2. Find *PL* to the nearest tenth.

Holt McDougal Geometry