
Arduino: An Open Electronics
Prototyping Platform

Abstract
Arduino is a platform for prototyping interactive objects
using electronics. It consists of both hardware and
software: a circuit board that can be purchased at low
cost or assembled from freely-available plans; and an
open-source development environment and library for
writing code to control the board. Arduino comes from
a philosophy of learning by doing and strives to make it
easy to work directly with the medium of interactivity.
It extends the principles of open source to the realm of
hardware, supporting a community of people working
with and extending the platform. It has been used in
universities around the world and in numerous works of
interactive art.

Keywords
open hardware, prototyping, microcontrollers, open-
source, education, interactive art

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—prototyping; C.5.3 [Computer System
Implementation]: Microcomputers—microprocessors;
K.5.1 [Legal Aspects of Computing]:
Hardware/Software Protection—open source; J.5 [Art
and Humanities]—designCopyright is held by the author/owner(s).

CHI 2007, April 28 – May 3, 2007, San Jose, USA

ACM 1-xxxxxxxxxxxxxxxxxx.

David A. Mellis

Copenhagen Institute of

Interaction Design

Njalsgade 88

2300 Copenhagen S, Denmark

dam@mellis.org

Massimo Banzi

Tinker.it!

Via Amendola, 2

20052 Monza (MI) Italy

m.banzi@tinker.it

David Cuartielles

School of Arts and Communication

Malmö University

20506 Malmö Sweden

david.cuartielles@k3.mah.se

Tom Igoe

ITP, Tisch School of the Arts, NYU

721 Broadway, 4th floor

New York, NY 10003 USA

tom.igoe@nyu.edu

2

Introduction
There are many tools for prototyping with electronics,
used for everything from new musical instruments to
intelligent rooms, custom input devices and interactive
art pieces. These tools attempt to reduce the difficulty
of working with electronics and expand the number of
people who can experiment with the medium. Many of
them, however, are either commercial products –
expensive and closed – or research projects unavailable
for use by most people. Others consist only of circuit
boards, providing no tools to simplify their
programming.

The open source movement, meanwhile, has shown
that useful and robust software can be created by a
distributed team of volunteers freely sharing the results
of their efforts. Open source projects often gather
strong communities of people working at many levels:
some work on the core code, others contribute small
extensions, still others write documentation or offer
support, with the majority simply making use of a
quality product.

Can we apply the principles of open source to hardware
and electronics? What does it mean to make a circuit
board which is open and extensible, but still usable with
little effort? How can we make working with electronics
easy, cheap, and quick? These are some of the
questions that led to the creation the Arduino
prototyping platform.

This paper discusses related work, the educational and
design context within which Arduino was developed, the
philosophy behind it, the platform itself, both hardware
and software, and the community that has formed
around Arduino.

Related Work
There are many different microcontroller development
tools available for use in teaching and prototyping.
Those that are most popular outside the electrical
engineering community work to offer some balance
between cost, expandability, and ease of use. Arduino
also seeks to balance these factors, while making up for
some of the shortcomings of existing platforms1. This
section presents a survey of a few of the more popular
tools on the market, followed by an analysis of how
their strengths and weaknesses affect on the design
choices behind Arduino.

At the highest level of abstraction are microcontroller
tools such as Infusion Systems’ MicroDig, Phidgets,
and Stanford’s d.tools. Modules at this level are
generally not programmable by the end user. Instead,
they are configured using a desktop tool. These tools
are generally not standalone devices, but must be
connected to a personal computer in order to be useful.

Infusion Systems’ MicroDig [5] is a sensor interface box
with a MIDI interface. Its hardware interface consists of
an analog-to-MIDI controller with 8 analog inputs, and
various sensor modules that mate with the controller.
Users attach pre-packaged sensors to the inputs, and
connect the controller to a MIDI output device. The
values of the sensors are output as MIDI values. The
MicroDig is handy for teaching students with some
knowledge of MIDI but little programming or electronics
knowledge how to design hardware interfaces, because
it requires little new knowledge. It is an expensive
platform, however, with the basic kit costing $399, and

1 For a more in-depth comparison, see [2].

3

requires that the connecting equipment be MIDI
compatible.

Phidgets [9] is a modular system of sensor controllers,
motor controllers, RFID readers, and other special
function devices, all united by a common USB interface
and a set of desktop software APIs. Each Phidget device
is a self-contained electronic device, whether it’s a
sensor, motor or LED controller, or a more complex
device like an LCD display. The user needs almost no
electronics knowledge to use Phidgets. Each device is
connected to a desktop computer in order to access its
sensor data or to control it. The development team has
released application programming interfaces for the
system in several languages, including Visual Basic,
VBA (Microsoft Access and Excel), LabView, Java,
Delphi, C , C++, and Max/MSP. The modules are
relatively inexpensive, ranging from $10 to $100. The
devices cannot be used as standalone units, however
and must be interfaced to a personal computer to use.
The learning curve for Phidgets is somewhat steeper
than for the MicroDig, but it’s useful for those familiar
with software development who want to begin making
hardware interfaces.

d.tools [11] is a high-level hardware and software tool
developed at Stanford University’s HCI group that
addresses some of the shortcomings of others in this
class. First, d.tools is a more flexible system. The
d.tools software can be used with other hardware
platforms, as long as that hardware is running a
firmware that can communicate in the d.tools protocol.
Wiring, Arduino and Phidgets hardware have been used
with d.tools. The software is is written in Java as a
plugin for the Eclipse universal tool platform, and can
theoretically run on any Java-capable operating

system. Like Phidgets, the hardware is made up of a
series of plug-and-play USB modules, each of which
communicates with the d.tools software. d.tools also
offers a suite of analysis tools which allow users to see
the results of their devices graphed on screen, and
time-indexed against a video of the person using the
device. d.tools is an open source platform, and as of
this writing, the hardware is not commercially available.

Moving down a level of abstraction, there are a number
of mid-level microcontrollers. Controllers in this range
feature a microcontroller with its necessary support
electronics (crystal, power regulator, etc.) on a small
module. These modules assume users can build input
and output circuits to attach to the module. They’re
usually programmed in BASIC, or some variation of C,
and attach to the programming environment on a
personal computer using a serial or USB connection.
Parallax’ BASIC stamp [8] is the most well-known of
these modules. Also in this family are NetMedia’s
BasicX [7], BASIC Micro’s Basic ATOM [4] processors.
Arduino most resembles these.

The main advantage offered by the mid-level
controllers is programmability in a high-level language,
with a simple programming interface. The
disadvantage is generally that the programming
languages are very limited, and the lower levels of the
controller itself are not accessible to the user at all.
Students taught to use these controllers generally
reach a problem beyond the module’s capability within
their first semester. The programming environments
are almost all available for Windows operating systems
only, though there are some exceptions.

4

The processors themselves are usually priced around
$50, and experimenter’s kits, including a processor,
power supply and prototyping board usually cost
between $75 and $100. Since they’re aimed at
beginners, this price, while less than the high-level
controllers, is still high. Users don’t often think about
using multiple modules in a project because the price of
multiples is prohibitive. It’s inevitable when learning
that a person will make mistakes. With mid-level
microcontrollers, the mistake of mis-wiring a circuit and
destroying the processor is high.

At the lowest level of abstraction are the
microcontrollers themselves. Two of the most popular
are Microchip’s PIC family of processors [6], and
Atmel’s AVR processors [1]. These are programmed in
C or Assembly or BASIC, and much of the programming
involves direct access to the processor’s registers. A
separate hardware programmer is usually needed to
communicate between the programming environment
and the processor. The developer must build the
necessary support circuitry for the processor in addition
to any sensor or actuator circuits. The learning curve
for this class of controllers is the steepest of any
mentioned here.

The advantage offered by lower level controllers is cost.
At $1 - $15 apiece, they can be used in multiples
easily. There is often some initial setup cost for the
development environment, however. Programmers
range from $30 - $100, and more fully-featured
programming environments can be in excess of $300.
This cost is amortized by continued use: the more
processors you use, the cheaper it gets. There are
some good open source development environments,
particularly for the AVR controllers, but they are not

designed for beginning users. The interfaces are
usually complex, or command-line interfaces, and the
code libraries require a working knowledge of C or
C++.

Finally there are Arduino’s predecessors, Programma
2003 and Wiring. One of the authors (Massimo)
developed in 2003 a simple micro-controller platform
called “Programma 2003” based on a PIC chip and the
open source language Jal. The design goal for this
platform was to have something as cheap as possible
which would be open source and run on Windows, Mac
OS X, and Linux. Programma 2003, however, lacked
good documentation, a wide community, and used a
relatively unknown programming language that lacked
certain key features.

Wiring [3] is a mid-level module, based on one of the
AVR microcontrollers. Wiring attempts to address the
programming interface limitations of the families of
processors above.

The programming environment for Wiring, on which the
Arduino environment is based, has its origins in
Processing [10], a multimedia programming
environment. Wiring, like Processing, was made to
teach design students about programming. The
environment itself is spare and simple to understand.
The language uses clear terms for command names like
analogRead() and digitalWrite() rather than the more
terse style usually associated with microcontroller
flavors of C. The interface for uploading programs to
the microcontroller is minimal, allowing users to focus
on the task of programming. Menu item names are
unambiguous, and kept to a minimum. The
environment is written in Java, and is available for

5

Windows, OSX, and Linux, unlike most other
microcontroller development environments. Its
availability for OSX alone has led to its increased use
by designers and artists who prefer that platform.

The Wiring module is a powerful tool, but it is limited in
that it cannot be constructed by a beginner. The
module as sold by the developers is priced in the range
of other mid-level modules, around $60 -$80, too
expensive to allow for easy experimentation or use of
many boards.

Context
Arduino was born out of the combination of many
prototyping cultures. It was developed at the
Interaction Design Institute Ivrea, a small school in
northern Italy offering a Masters degree in interaction
design. Interaction-Ivrea’s curriculum focused on
screen interfaces, physical objects, and services,
emphasized hands-on work, encouraging designers to
create rapid prototypes of their ideas, then repeatedly
test and refine them.

The institute also supported the creation of tools for
use in the prototyping process. It hosted for a number
of years Casey Reas, who worked on the development
of Processing. Courses at Interaction-Ivrea used
Processing for the creation of prototypes of software
interfaces. Programma 2003 was created while
Massimo was at Interaction-Ivrea and used in physical
interaction design courses. Wiring was developed as a
thesis project at the institute and also used in the
education program.

Interaction-Ivrea had a philosophy of learning by doing,
believing that skills such as programming or electronics

are best acquired in the course of more general
projects. Students are motivated to pick up the
practical knowledge they need to express their design
ideas. This, in turn, emphasizes tools that allow for
quick experimentation and rapid iteration. Although
they were created in educational environments, these
platforms were intended primarily to help people build
software or hardware prototypes, not as experimental
aids in a research investigation.

Philosophy
From the beginning we have been interested in the
dissemination of prototyping techniques within design
educations as a way of communicating the values of
new interactive devices. It has always been our aim to
encourage the traditional design disciplines to go
beyond the screen, trying to give meaning to human-
machine interactivity through actually designing the
machine itself.

It is unrealistic to expect designers to become
engineers. Instead we believe in prototyping, with
which designers can themselves build an object which
expresses the desired design intentions. This gives
them a valuable tool in communicating with engineers
in the further development and realization of an idea.
We seek to provide designers with the tools they need
to prototype interactions not just forms or materials –
turning interactivity itself into a medium for expression.

Dealing with education means making compromises
concerning the language to use when communicating,
the depth of the contents, etc. Arduino’s philosophy
avoids removing all the complexity behind electronics
as some other platforms do. Electronics are made of
components, which are physical devices representing

6

logical functions, and we believe that we should keep
that as part of the education process. Therefore we like
to speak about making things “easy enough” for
students to get an understanding of how things work by
trying them. Rather than trying to hide complexity
from users, we prefer to simplify it to the point where
they can deal with it directly. Later, they will have the
chance to deepen their knowledge by accessing existing
resources from disciplines like electric engineering.

Cost was an important consideration when designing
Arduino. If a hardware tool is not cheap, people are
hesitant to purchase it, slowing distribution and keeping
it inaccessible to many people. Further, if the board is
expensive, people will not use many of them, meaning
they may have to disassemble one work to build the
next. One unexpected factor is shipping costs, as a
piece of hardware that is cheap in the US may double
in price if it must be shipped to, say, China.

From the beginning, Arduino was born as a
collaborative project between different universities and
individuals. It has always been our goal to maximize
the impact within the academic world, trying to raise
questions about how we design interactive artifacts.
One of the main issues to address is the one related to
intellectual property. Physical interaction design is a
young discipline. We believe that a good way of making
it grow to accommodate society’s needs is to look for a
way of licensing our results that makes them available
for other people to use. We chose to make the whole
platform part of the free culture movement, release
them under permissive licenses.

Arduino has been left open in many different ways.
First, the system is ready to be hacked in different

ways both software and hardware-wise. Second the
licenses allow reusing the design in other contexts.
Third, the education process is not closed, people
generate their own materials, workshops, examples and
tutorials.

The Arduino Prototyping Platform
Arduino allows users to create working electronic
prototypes, either stand-alone objects or devices
tethered to a computer. It can read from a wide range
of sensors, control a broad spectrum of output devices,
and communicate with software running on a computer
or talking over a network.

There are many steps required to perform the most
basic of tasks with a microcontroller: picking a
particular microcontroller, figuring out the circuit
needed to use it, ordering the necessary parts,
assembling them, downloading the software needed to
program the microcontroller, figuring out a way for the
microcontroller to talk the computer, installing any
necessary drivers, buying or building an external device
to program the microcontroller, learning how to write
code for the microcontroller (which may require reading
a datasheet that is hundreds of pages long), writing
the code, working out the command line arguments
needed to compile and upload the code, etc.

Arduino attempts to eliminate or ease as many of the
steps as possible with a combination of hardware and
software.

Hardware
The Arduino board is a printed circuit board containing
a microcontroller (basically a low-power computer
squeezed into a single chip), and the components

7

needed to provide it with a stable power supply, to
connect it to other components, and to enable it to
communicate with the computer.

Figure 1. A serial Arduino board with removable Atmega8

microcontroller, one of the original versions of the Arduino

hardware.

There are many versions of the board, but the main
one (whose most recent version is entitled the Arduino
NG) is about the size of a playing card and costs €23 or
$32. It contains a removable ATmega8 microcontroller,
which can be easily replaced if broken or removed from
the board for use in a custom circuit. It includes extra
components that enable it to communicate with the
computer via USB, as the alternative interface, a serial
port, is no longer available on most machines. The
board can be powered directly from the USB connection
or using an external power supply.

This version of the board is manufactured in quantity to
keep costs low and allow people to get started without

needing to assemble their own board. Each board is
individually loaded with a special piece of software
(called a “bootloader”) that allows users to program it
without any extra devices, further lowering the total
cost to the user. By including the manufacturer in the
team we were able to engineer the board to higher
standards, adding functionalities but keeping the price
essentially unchanged. At the moment, assembled
boards can be purchased online from the manufacturer,
SmartProjects Snc of Chivasso, Italy and through a
distributor in the US (SparkFun Electronics). More
distributors are planned to provide easier access for
users across the world.

Other, compatible, versions of the board are designed
to be assembled by hand. They use components large
and simple enough to be soldered by beginners and
keep the number of parts to a minimum. Interested
users can purchase a blank PCB or etch their own from
a provided image of the layout, which can be printed
and used as a stencil. This means that Arduino boards
can be made by anyone with access to basic electronic
components, without relying on our manufacturer.
Making the hardware out of parts a beginner can use
serves another purpose as well: it means that users
can build the module on a prototyping board if they
wish. This can speed development and reduce the costs
of projects that use multiple processors. The
schematics and circuit diagrams are licensed under a
Creative Commons Attribution, Share-Alike license,
meaning that anyone can use them provided they share
their derivates with the world.

All versions of the Arduino board are designed to work
with standard electronic components. The board
provides a base platform but does not limit users to

8

pre-packaged sensors or actuators. This means that
users can use new or unusual components without
needing to wait for special Arduino versions of them.

Now that the basic design of the board has been in use
for nearly two years, we have begun to create
extensions and variations. There are extension
“shields,” other circuit boards that can be snapped on
top of the Arduino board to provide extra functionality
like circuitry for handling high power devices like
motors, an RFID reader, or a small breadboard that can
be used to mount circuits in a compact form. We have
also developed a board with a Bluetooth interface and a
mini-version that with the same footprint as the
BasicStamp. We plan to continue designing and
producing hardware as desired by our users.

Software
The Arduino software is an attempt to simplify the
process of writing code without unduly limiting the
user's flexibility. It builds on many other open-source
projects, adapting them to the Arduino hardware and
hiding their unneeded complexities. The Arduino
software consists of two main parts: the development
environment and a core library, both open-source.

The Arduino development environment is a minimal but
complete source code editor. It is a cross-platform
application written in Java and usable under Windows,
Mac OS X, and Linux. In it, users can manage, edit,
compile, and upload their programs (called sketches).
All functions can be accessed from a set of seven
toolbar buttons or a few drop-down menus. The user
need not fiddle with makefiles or command line
arguments, which can pose significant obstacles for the
beginner. The environment includes a serial monitor,

allowing the user to send data to and receive data from
the board, easing debugging without requiring
additional software. In fact, all programs required for
Arduino development are included in a single archive
downloaded from the Arduino website (except for Linux
users, who must install some packages with their
distribution's package management tool). The GUI
itself is based on the Processing development
environment, while sketches are compiled by avr-gcc,
and uploaded with uisp. The source code is distributed
under the GNU Public License (GPL).

The Arduino core library consists of AVR C/C++
functions that are compiled along with the user's
sketch. The combined binary file can then be uploaded
to the Arduino board. Using an API compatible with
Wiring, the Arduino core encapsulates low-level aspects
of microcontroller programming (e.g. register
manipulation), allowing users to concentrate on their
particular task. In particular, this saves users from
having to read the 300 page data-sheet for the
microcontroller, the only reliable source for information
on its low-level functionality. Users are still
programming in standard C/C++, however, so the
programming knowledge they acquire can be
transferred to many other situations. In fact, the full
source code to the Arduino core (licensed under the
LGPL) is included in the distribution, so that curious
users can learn how it works and modify it. Because of
the limited capacity of the microcontroller, some code is
split into separate libraries which can be specifically
included when required for a particular sketch. Anyone
can write an additional library, which can be installed
by simply moving it to the correct directory.

9

Figure 2. The Arduino environment, showing a simple

example of code designed to blink an LED.

The environment and core are closely integrated, so
that a single button press compiles a sketch, and
another uploads it to the board. The environment
performs some basic preprocessing on the user's code,
hiding some unimportant syntactical nuisances. The
core includes a list of keywords to be highlighted in the

environment. Available libraries are listed in a menu
within the environment, from which they can be
selected for inclusion in a particular sketch. The
environment comes with example sketches for basic
tasks, allowing users to try some things without writing
any code, but also providing simple and clear
references of the Arduino language and functions.

The hardware and software, too, are designed to work
together. The software need only support the few
possible hardware configurations and work only with
the bootloader that is pre-installed on the boards,
limiting the number of configurations options required.

Community
Arduino is about more than hardware and software.
From the beginning we have tried to encourage a
community to form around the project – we gave
boards to interested parties and taught workshops to
show people how to use them. Schools like ITP at New
York University, Goldsmiths in London, Fabrica in Italy,
and Universidad Politécnica de Catalunya in Spain saw
the potential of Arduino and committed to buying
boards, providing security and motivation for expanded
production. Arduino has since been used at schools
over the world, including the MIT Media Lab, Parsons
School of Design, the University of California Irvine,
Malmö University in Sweden, Keio University in Japan,
the Taipei National University of the Arts in Taiwan, and
more. We’ve discovered many of these cases only by
stumbling across them online, showing us that Arduino
is open and easy enough for anyone to start using,
without needing instruction from us.

Arduino has also proven popular among artists seeking
to incorporate electronics and interactivity into their

10

works. We started with a one-week workshop for
artists in October 2005 in Madrid, Spain. Since then we
have taught in Canada, UK, USA, Germany,
Switzerland, Netherlands, Norway, Italy, Austria,
Sweden, Slovenia, etc. Others have used our model
and given workshops in places such as Taiwan, China,
Japan, Finland, Mexico, Chile, Colombia, and Turkey.
Art pieces using Arduino have appeared in the Centre
Pompidou in Paris, France, at the Ars Electronica
Festival in Linz, Austria, at the Salone del Mobile in
Milan, Italy.

The main dissemination tool for Arduino is a website,
collaboratively edited by fifteen people from various
countries. A publicly-editable wiki provides a space for
Arduino users to write tutorials, provide example code,
upload circuit designs, and share what they’ve made
with Arduino. In the forum, users can ask for help with
a variety of issues: getting the board up-and-running,
debugging their code, figuring out which components to
use for a particular task, etc. The project is not limited
to English either. Twelve editors have worked on
creating a Spanish version of the Arduino site, and one
has written a long guide for teachers who wish to use
Arduino in their classes. There are Spanish, French and
Italian boards in the forum, and people have also
written tutorials in German, Japanese, Chinese, and
many other languages.

Perhaps most satisfying are the many contributions
that people have given back to the project. We’ve
already mentioned the publicly-written documentation
on the Arduino wiki and the many workshops run by
people unaffiliated with the project. Other
contributions include libraries of code for specific
hardware, custom shields for various circuits, patches

to the Arduino environment, even icons and color
schemes. While this sort of international collaboration
is common in the open-source world, Arduino’s dual
approach of cheap manufactured boards and open
plans have allowed it to flourish in the realm of
hardware.

Conclusions
We have presented Arduino, an open platform for
electronics prototyping. We hope that Arduino
demonstrates the potential of the open-source model to
apply to hardware as well as software and shows the
value of manufacturing a tool to be used by a wide
range of people, not confined to a research lab or those
who can afford expensive equipment.

Acknowledgements
Gianluca Martino is the remaining member of the
Arduino team, responsible for engineering and
manufacturing. Nicholas Zambetti has contributed to
Arduino since the beginning.

Citations
[1] Atmel Inc., "Atmel." Atmel. unknown. Atmel, Inc..
25 Jan 2007 <http://www.atmel.com/>.

[2] Barragán, Hernando. "Wiring: Prototyping Physical
Interaction Design." IDI Ivrea People. June 2004. IDI
Ivrea. 25 Jan 2007 <people.interaction-
ivrea.it/h.barragan/thesis/>.

[3] Barragán, Hernando. "Wiring." Wiring. unknown.
University de los Andes. 25 Jan 2007
<http://wiring.org.co/>.

[4] Basic Micro, Inc., "BASIC Micro." BASIC Micro
Home. unknown. Basic Micro, Inc.. 25 Jan 2007
<http://www.basicmicro.com/>.

[5] Infusion Systems, "MicroSystem." Infusion
Systems. Infusion Systems. 25 Jan 2007

11

<http://infusionsystems.com/catalog/product_info.php/
cPath/21/products_id/91>.

[6] Microchip, Inc., "Microchip." Microchip. unknown.
Microchip, Inc.. 25 Jan 2007
<http://www.microchip.com>.

[7] NetMedia, Inc., "The BasicX Family of Rapid
Development Microcontrollers." Basicx by NetMedia.
unknown. NetMedia, Inc.. 25 Jan 2007
<http://www.basicx.com/>.

[8] Parallax, Inc., "BASIC Stamps." Parallax. unknown.
Parallax, Inc.. 25 Jan 2007
<http://www.parallax.com/html_pages/products/basics
tamps/basic_stamps.asp>.

[9] Phidgets, "Phidgets - Unique and Easy to Use USB
INterfaces." Phidgets. unknown. Phidgets. 25 Jan 2007
<http://www.phidgets.com/>.

[10] Reas, Casey and Fry, Ben, "Processing.org: a
networked context for learning computer
programming." ACM SIGGRAPH, 2005.

[11] Stanford HCI group, "d.tools: Enabling rapid
prototyping for physical interaction design." HCI at
Stanford University: d.tools. unknown. Stanford
University. 25 Jan 2007
<http://hci.stanford.edu/dtools/>.

