

HELLO!

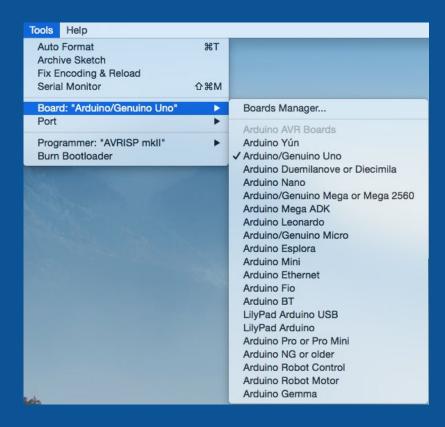
JENNIFER BROWN

Emerging Technologies Coordinator
Science and Engineering Libraries
ref-sci@columbia.edu
@CU_SEL or @jeninthelib

- ☐ General information about the Arduino hardware platform, relevant input devices, and the Arduino's programming language.
- ☐ Where to get help.
- ☐ From one another!

HARDWARE LIMITATIONS:

Two arduinos for the day


GETTING STARTED:

Downloading important software

Arduino IDE: bit.ly/1R2xniM

Initial Arduino IDE Setup:

This selection sets the parameters used when compiling (CPU / baud rate) and the file / fuse settings used by the bootloader.

UNDERSTANDING THE BASICS:


What is an Arduino?

- Open source microcontroller that serves as the brain behind hobbyist electronics projects.
- Designed with simplicity and rapid prototyping in mind.
- Driven by interaction design -- move away from focus on physical design to exploring how objects interact with things.

CULTURE OF MAKING

Sharing and learning together.

"SudoGlove"

BOARDS:

ENTRY LEVEL	ARDUINO UNO ARDUINO 101 ARDUINO PRO ARDUINO PRO MINI ARDUINO MICRO ARDUINO NANO ARDUINO STARTER KIT ARDUINO BASIC KIT ARDUINO MOTOR SHIELD
ENHANCED FEATURES	ARDUINO MEGA ARDUINO ZERO ARDUINO DUE ARDUINO PROTO SHIELD
INTERNET OF THINGS	ARDUINO YÚN ARDUINO MKR1000 ARDUINO ETHERNET SHIELD ARDUINO GSM SHIELD ARDUINO WIFI SHIELD 101
WEARABLE	ARDUINO GEMMA LILYPAD ARDUINO USB LILYPAD ARDUINO MAIN BOARD LILYPAD ARDUINO SIMPLE LILYPAD ARDUINO SIMPLE SNAP
3D PRINTING	MATERIA 101

HOW SOS

Turns input (touch, data, etc.) into output (turning on a motor, updating a social media feed, etc.)

DOES IT WORK?

THE LANGUAGE

Arduino Programming Language

Based on Wiring (C++)

Arduino IDE

Text editor-like program; based on Processing

```
sketch jan01a | Arduino 1.0.3
   sketch jan01a §
int ledPin = 13;
void setup()
  pinMode(ledPin, OUTPUT);
void loop()
  digitalWrite(ledPin, LOW);
Done uploading.
Binary sketch size: 872 bytes (of a 32,256 byte maximum)
```

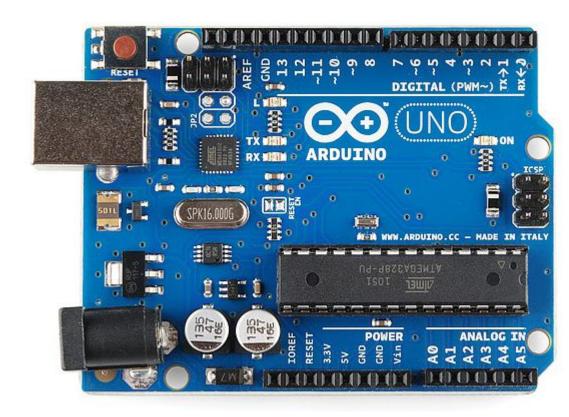

PROGRAMMING SYNTAX

bit.ly/1o3cBTL

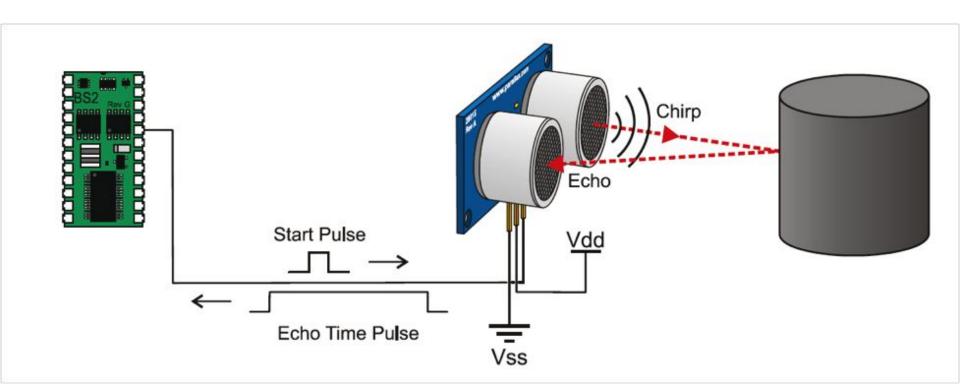
```
Programming_Language_Syntax | Arduino 1.6.5
Programming_Language_Syntax
//Basic syntax and structure for the Arduino programming language:
//<-- single line comment
/* <-- multi-line comment for use
   when writing long blocks of text.
//all non-commented code must have a semicolon (";") to run properly.
//Programs must have a "setup" and "loop" function to run properly.
void setup() {
 // put your setup code here, to run once:
void loop() {
 // put your main code here, to run repeatedly:
//Variable Examples:
int myX; //assigns variable type only.
//or
int myX = 1; //assigns variable type (interger) & sets variable equal to the value of 1.
//or
```

Done Savin

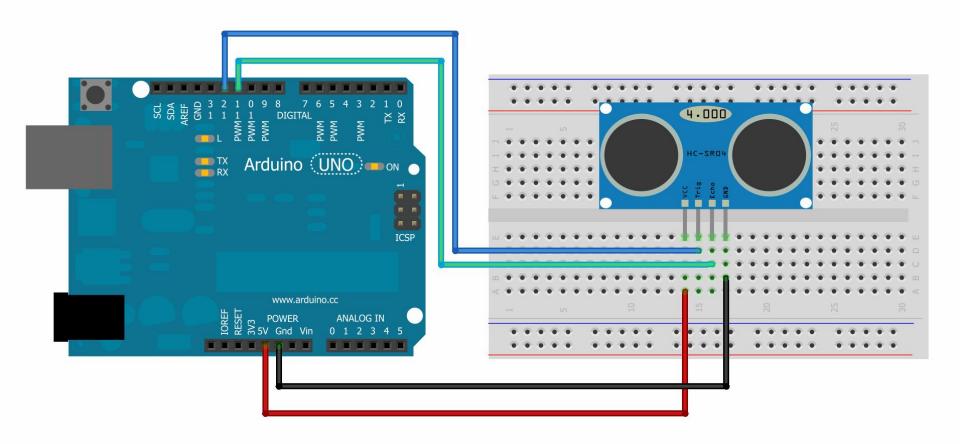
The sketch name had to be modified. Sketch names can only consist of ASCII characters and numbers (but cannot start with a number). They should also be less than 64 characters long.



Sensors and Servos


THE BOARD:

Important Parts:


- GND
- 5V & 3.3V
- Analog pins
- Digital pins
- Pulse Width Modulation (~)
- Reset Button
- TX and RX symbols
- Integrated Circuit
- Voltage Regulator

ULTRASONIC DISTANCE SENSOR

PROTOTYPE LAYOUT

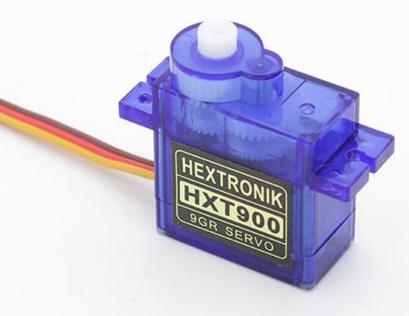
YOUR CHALLENGE:

```
UDS test | Arduino 1.6.5
UDS_test
int triaPin = 8;
int echoPin = 7;
void setup() {
 Serial.begin(9600);
void loop(){
 long duration;
 float cm;
 pinMode(echoPin, INPUT);
 pinMode(trigPin, OUTPUT);
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH):
  cm = microsecondsToCentimeters(duration):
 Serial.print(cm);
 Serial.print("cm");
 Serial.println();
 delay(100);
float microsecondsToCentimeters(long microseconds){
 return (microseconds*0.034029)/2;
```

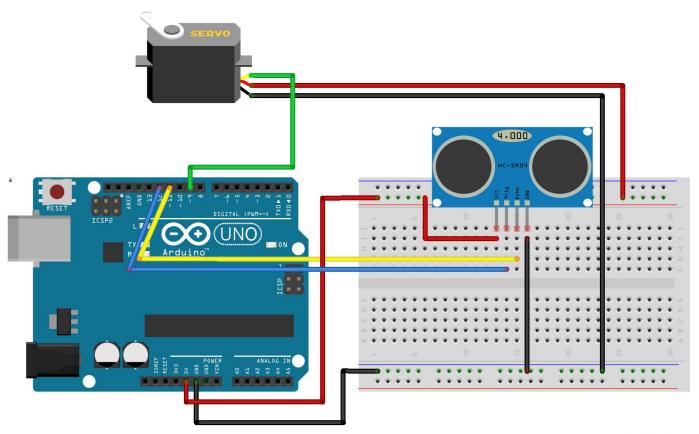
TEST OR MODIFY THIS CODE:

bit.ly/1nTOUgg

ARDUINO KIT COMPONENTS LIST:


bit.ly/1XiyTwu

SERVOS


Continuous Rotation Servo Motor

Microservo Motor

PROTOTYPE LAYOUT

YOUR CHALLENGE:

```
/* Sweep
by BARRAGAN <a href="http://barraganstudio.com">http://barraganstudio.com</a>
 This example code is in the public domain.
 modified 8 Nov 2013
by Scott Fitzgerald
http://www.arduino.cc/en/Tutorial/Sweep
#include <Servo.h>
Servo myservo; // create servo object to control a servo
                // twelve servo objects can be created on most boards
               // variable to store the servo position
int pos = 0:
void setup()
 myservo.attach(8); // attaches the servo on pin 9 to the servo object
void loop()
 for(pos = 0; pos <= 180; pos += 1) // goes from 0 degrees to 180 degrees</pre>
                                      // in steps of 1 degree
   myservo.write(pos):
                                      // tell servo to go to position in variable 'pos'
   delay(15):
                                      // waits 15ms for the servo to reach the position
                                      // goes from 180 degrees to 0 degrees
 for(pos = 180; pos>=0; pos-=1)
    myservo.write(pos):
                                      // tell servo to go to position in variable 'pos'
    delay(15):
                                      // waits 15ms for the servo to reach the position
```

TEST OR MODIFY THIS CODE:

File -> Examples -> Servo -> Sweep

OR go a step further:

bit.ly/1V3VA6i

RECOMMENDED READING:

- What is electricity?
- ☐ A First Lab in Circuits and Electronics
- ☐ All About Circuits
- ☐ Arduino "How To" e-books
- SparkFun PCB Basics Guide
- □ Software: <u>Fritzing</u> and <u>LTSpice</u>

GET HELP

Science and Engineering Libraries:

ref-sci@columbia.edu or jcb2257@columbia.edu

Arduino project guidance forum

Project books

Stack Exchange

Reddit forum

SURWEY

bit.ly/CUSELWorkshopSurvey

Other questions? Comments? You can find me at @jeninthelib & jcb2257@columbia.edu

THANK YOU!

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- Photographs by Unsplash