ARE SCALE LATTICE PHYSICS CODES PERFECT ENOUGH?

Ugur Mertyurek Matthew A. Jessee Benjamin R. Betlzer

ORNL is managed by UT-Battelle for the US Department of Energy

- Complete a comprehensive LWR lattice physics code performance assessment for SCALE 6.2
- Document a set of PWR and BWR benchmarks to be modeled with both TRITON/NEWT and Polaris, as well as continuous-energy TRITON/(CE) KENO for reference solutions

- LWR assemblies beginning of life (BOL) baseline
- Control elements
- Mixed oxide (MOX) fuel
- Reactivity worth of depleted fuel
- Depletion calculations
- Boron injection
- Enrichment
- Fuel temperature

- Burnable poison (BP) loading
- BP spatial variations
- PARCS quantities of interest (QOI) parameters

ational Laboratory

- Fuel reflector models
- International numerical benchmarks
- BWR vanished zone patterns
- RCA measurement comparisons

SCALE Lattice Physics Capabilities

- NEWT Sequence
 - CENTRM (2D MoC) based cross section processing with user specified Dancoff factors
 - Slice balance transport method
 - Generalized geometry
- MG Keno Sequence
 - CENTRM (2D MoC) based cross section processing with user specified Dancoff factors
 - Monte Carlo transport method
 - Generalized geometry

CE Keno Sequence

- Continuous Energy cross section processing
- Monte Carlo transport method
- Generalized geometry
- Polaris Sequence
 - ESSM (Embedded Self Shielding) based cross section process
 - MoC transport method
 - Flexible geometry with LWR applications in mind

National Laboratory

SCALE Lattice Physics V&V Strategy

Assess accuracy of CE KENO calculations

- Compare k-eff for Evaluated Criticality Safety Benchmark Experiments (ICSBEP) and the International Reactor Physics Experiments (IRPhE)
- Compare predicted isotopic distributions of depleted fuel with RCA measurements

Asses accuracy of TRITON and Polaris calculations

- Compare k-eff and pin powers with reference CE KENO values for a set of numerical benchmarks covering common lattice types for a wide range of state points
- Model international benchmarks and compare k-eff and isotopic distributions.
- Compare predicted isotopic distributions of depleted fuel with RCA measurements

SCALE Lattice Physics V&V Strategy

- CE KENO Validation (Criticals)
- NEWT, Polaris Numerical Validation (14 Test Suites)
- RCA Measurements (UOX, MOX)

Geometry

BWR

- 8×8 General Electric (GE)
 - Two small water rods (GE5)
- 9×9 GE
 - Two water rods (GE11)
 - Large water rod
 - Off-centered water box (Atrium9)
- 10×10
 - Two water rods (GE12, GE14, GNF1)
 - Off-centered water box (Atrium10)
 - Water diamond and wings (SVEA96-optima)

PWR

- 14×14 Westinghouse (WE) (small guide tubes)
- 15×15 WE
- 16×16 Combustion Engineering (CE) (large GT)
- 17×17
 - Standard WE
 - Optimized Fuel Assembly (OFA) WE
- 18×18 WE

Burnable Poisons

- Gadolinia (Gd₂O₃):
 - 0 wt % to 10 wt % natural gadolinia
 - 4 and 12 rod patterns

• Wet Annular Burnable Absorber (WABA):

- 14.0 wt % B_4C content in an AI_2O_3 - B_4C mixture

• Burnable Poison Rod Assembly (BPRA):

- 1 g/cm3, 2 g/cm3 and 4 g/cm3 B₄C densities
- 4, 12, and 24 rod patterns

• Borosilicate Glass (PYREX):

- 12.5 wt % B₂O₃ content
- 4, 12, and $2\overline{4}$ rod patterns
- Integral Fuel Absorber (IFBA):
 - 1.5 and 4 mg $^{10}B/inch$ boron loadings with 3.1 wt % ^{235}U
 - 80, 104, and 120 rod patterns with 3.1 wt % ²³⁵U enrichment

Control Rod/Control Blade Types:

PWR

- Ag-In-Cd (AIC),
- B_4C , and
- Inconel absorber.

BWR:

- Standard OEM (B₄C),
- Marathon, and
- Standard OEM (hafnium).

- Bias: Systematic difference between two sets of data.
- Trend: A pattern of gradual change in difference between two sets of data.
- Acceptance Accuracy: Minimum acceptable accuracy in the test results before further methodology and modeling improvements are considered necessary (e.g., 400 pcm k_{inf}, 1.5% RMS)
- Target Accuracy: Intended long-term accuracy in the test results; test results that do not satisfy this accuracy will be considered for future methodology improvements (e.g., 200 pcm k_{inf}, 1/0.5% RMS)
- Significant: Differences that are greater than or equal to the target accuracy

CE KENO CRITICALITY BENCHMARK ASSESSMENT

MIX-COMP-THERM C/E

1.0100 1.009 1.0075 1.006 1.0050 1.003 1.0025 **5** 1.0000 ₩1.000 0.9975 0.997 0.9950 0.994 0.9925 0.9900 0.991 **♦** CE KENO MG KENO MG XS Unc. ٥ CE KENO 0 MG KENO ••••• Exp. Unc. 0 ••••• Exp. Unc. MG XS Unc.

LEU-COMP-THERM C/E

✓ A set of critical experiments applicable to LWRs, flux spectra, and fuel materials are used to validate 3D CE KENO for LWR fuel.

- ✓ The k_{eff} biases from these experiments provide a basis for the accuracy of the CE KENO results
- A detailed explanation of uncertainties and discussion on individual experimental sets can be found in a recent paper by Marshall et al., "Validation of SCALE 6.2 Criticality Calculations Using KENO V.a and KENO-VI," ICNC 2015, Charlotte, North Carolina, 13–17 Sep (2015).

Trends in Lattice Geometry (BWR)

- The largest differences are observed for natural enrichment zones
- No significant bias for rodded configurations except Polaris
 - ✓ Polaris uncontrolled: △k average +150 pcm
 - ✓ Polaris controlled: △k average -100 pcm

- NEWT differences are generally lower than the MG KENO differences
- NEWT results can be improved further by increasing quadrature set (not practical in the current implementation)

8

Trends in Void Fraction and Fuel Temperature (GE14)

- Consistent void trends in Polaris and NEWT results (0% through 70% void fraction)
- No significant trend with increasing fuel temperature
- ✓ Control blades introduce bias for Polaris
 - ✓ Polaris: Controlled $\triangle k$ Uncontrolled $\triangle k$ ~ -200 pcm
 - ✓ NEWT: Controlled △k Uncontrolled △k ~ 40 pcm
- ✓ NEWT 90% void case show more bias than other void fractions for controlled cases

Uncontrolled Pin Powers (GE14 BWR)

NEWT 0% Void (RMS=0.40%, MAX=0.98%)

0.95%	0.83%	0.55%	0.36%	0.47%	0.20%	0.55%	0.32%	0.65%	0.98%
0.83%	0.16%	-0.30%	0.03%	-0.18%	-0.12%	-0.47%	-0.04%	-0.36%	0.30%
0.55%	-0.30%	-0.20%	-0.85%	-0.16%	-0.41%	-0.10%	-0.74%	-0.11%	-0.05%
0.36%	0.03%	-0.85%	-0.02%	-0.22%	N/A	N/A	-0.07%	-0.39%	0.07%
0.47%	-0.18%	-0.16%	-0.22%	0.61%	N/A	N/A	-0.16%	-0.27%	0.01%
0.20%	-0.12%	-0.41%	N/A	N/A	0.43%	-0.08%	-0.51%	-0.13%	0.02%
0.55%	-0.47%	-0.10%	N/A	N/A	-0.08%	-0.31%	-0.14%	-0.53%	-0.04%
0.32%	-0.04%	-0.74%	-0.07%	-0.16%	-0.51%	-0.14%	-0.62%	-0.07%	0.07%
0.65%	-0.36%	-0.11%	-0.39%	-0.27%	-0.13%	-0.53%	-0.07%	-0.17%	0.33%
0.98%	0.30%	-0.05%	0.07%	0.01%	0.02%	-0.04%	0.07%	0.33%	0.62%

Polaris 0% Void (RMS=0.32%, MAX=1.07%)

1.07%	0.71%	0.14%	-0.25%	-0.31%	-0.48%	-0.15%	-0.10%	0.36%	1.00%
0.71%	0.39%	-0.01%	0.13%	0.00%	-0.11%	-0.29%	-0.02%	-0.06%	0.11%
0.14%	-0.01%	-0.12%	-0.38%	-0.16%	-0.21%	-0.11%	-0.49%	-0.07%	-0.15%
-0.25%	0.13%	-0.38%	0.01%	0.03%	N/A	N/A	0.10%	-0.12%	-0.10%
-0.31%	0.00%	-0.16%	0.03%	0.70%	N/A	N/A	0.04%	-0.08%	-0.16%
-0.48%	-0.11%	-0.21%	N/A	N/A	0.70%	0.11%	-0.27%	-0.11%	-0.12%
-0.14%	-0.29%	-0.11%	N/A	N/A	0.11%	0.10%	-0.10%	-0.21%	-0.19%
-0.10%	-0.02%	-0.49%	0.10%	0.04%	-0.27%	-0.10%	-0.24%	-0.05%	0.01%
0.36%	-0.06%	-0.06%	-0.11%	-0.08%	-0.11%	-0.21%	-0.05%	0.24%	0.32%
1.00%	0.11%	-0.14%	-0.10%	-0.16%	-0.12%	-0.19%	0.01%	0.32%	0.77%

1.6% 1.4% L.2% 1.0% 0.8% 0.6% 0.4% 0.2% 0.0% -0.2% -0.4% -0.6% -0.8% 1.0% 1.2% 1.4%

NEWT 90% Void (RMS=0.54%, MAX=1.15%)

1.09%	1.15%	0.95%	0.36%	0.56%	-0.13%	0.32%	0.37%	0.95%	0.71%
1.15%	0.82%	0.34%	0.37%	-0.06%	-0.09%	-0.01%	0.10%	0.79%	0.96%
0.95%	0.34%	-0.07%	-0.14%	0.05%	-0.47%	-0.06%	-0.29%	0.07%	0.25%
0.36%	0.37%	-0.14%	-0.20%	-1.10%	N/A	N/A	-0.62%	-0.28%	-0.22%
0.56%	-0.06%	0.05%	-1.10%	-0.50%	N/A	N/A	-1.04%	-0.07%	-0.64%
-0.13%	-0.09%	-0.47%	N/A	N/A	-1.01%	-0.63%	-0.68%	-0.15%	-0.50%
0.32%	-0.01%	-0.06%	N/A	N/A	-0.63%	-0.73%	-0.25%	-0.35%	-0.35%
0.37%	0.10%	-0.29%	-0.62%	-1.04%	-0.68%	-0.25%	-0.40%	-0.10%	-0.25%
0.95%	0.79%	0.07%	-0.28%	-0.07%	-0.15%	-0.35%	-0.10%	0.22%	0.42%
0.71%	0.96%	0.25%	-0.22%	-0.64%	-0.50%	-0.35%	-0.25%	0.42%	0.36%

Polaris 90% Void (RMS=0.19%, MAX=0.57%)

0.57%	0.42%	0.12%	-0.05%	-0.09%	-0.26%	-0.29%	0.06%	0.24%	0.37%
0.42%	0.35%	0.22%	0.13%	0.03%	-0.18%	-0.07%	-0.15%	0.41%	0.37%
0.12%	0.22%	-0.21%	0.16%	-0.08%	0.05%	-0.14%	-0.04%	-0.09%	0.11%
-0.05%	0.13%	0.16%	-0.22%	-0.02%	N/A	N/A	-0.13%	0.02%	-0.01%
-0.09%	0.03%	-0.09%	-0.02%	0.12%	N/A	N/A	-0.17%	-0.04%	-0.07%
-0.26%	-0.18%	0.05%	N/A	N/A	-0.09%	-0.08%	-0.16%	-0.23%	-0.04%
-0.29%	-0.07%	-0.14%	N/A	N/A	-0.08%	-0.09%	-0.25%	-0.08%	-0.13%
0.06%	-0.15%	-0.04%	-0.14%	-0.17%	-0.16%	-0.25%	-0.14%	-0.22%	-0.08%
0.23%	0.40%	-0.10%	0.02%	-0.04%	-0.23%	-0.08%	-0.22%	0.06%	0.17%
0.37%	0.36%	0.10%	-0.02%	-0.07%	-0.04%	-0.13%	-0.08%	0.17%	0.32%

✓ The largest differences are observed at wide-wide gap and around water rods (NEWT only)

✓ Polaris pin power results show better agreement with increasing void

Controlled Pin Powers (GE14 BWR)

NEWT 40% Void (RMS=0.37%, MAX=0.90%)

YXXXX	0.84%	0.90%	0.64%	0.51%	0.45%	0.30%	0.37%	0.21%	0.87%	0.78%
WV.	0.90%	0.30%	-0.05%	-0.02%	-0.31%	-0.08%	-0.23%	-0.02%	0.01%	0.35%
1 1	0.64%	-0.05%	-0.13%	-0.49%	-0.14%	-0.40%	-0.08%	-0.59%	-0.12%	0.06%
1 1	0.51%	-0.02%	-0.49%	-0.13%	-0.35%	N/A	N/A	-0.19%	-0.43%	0.08%
1 1	0.45%	-0.31%	-0.14%	-0.35%	0.04%	N/A	N/A	-0.37%	-0.22%	-0.12%
1	0.30%	-0.08%	-0.40%	N/A	N/A	-0.01%	-0.03%	-0.36%	-0.14%	-0.19%
1	0.37%	-0.23%	-0.08%	N/A	N/A	-0.03%	-0.44%	-0.20%	-0.43%	-0.23%
1	0.21%	-0.02%	-0.59%	-0.19%	-0.37%	-0.36%	-0.20%	-0.60%	-0.05%	0.03%
	0.87%	0.01%	-0.12%	-0.43%	-0.22%	-0.14%	-0.43%	-0.05%	-0.26%	0.19%
	0.78%	0.35%	0.06%	0.08%	-0.12%	-0.19%	-0.23%	0.03%	0.19%	0.52%

Polaris 40% Void (RMS=0.26 %, MAX=0.84%)

0.84%	0.67%	0.11%	-0.10%	-0.36%	-0.31%	-0.32%	-0.19%	0.51%	0.75%
0.67%	0.45%	0.18%	0.00%	-0.16%	-0.08%	-0.08%	-0.03%	0.23%	0.14%
0.11%	0.18%	-0.07%	-0.09%	-0.17%	-0.14%	-0.10%	-0.32%	-0.09%	-0.02%
-0.10%	0.00%	-0.09%	-0.10%	0.05%	N/A	N/A	0.00%	-0.17%	-0.01%
-0.36%	-0.16%	-0.16%	0.05%	0.17%	N/A	N/A	-0.09%	-0.10%	-0.18%
-0.30%	-0.08%	-0.14%	N/A	N/A	0.32%	0.19%	-0.08%	-0.13%	-0.22%
-0.32%	-0.08%	-0.10%	N/A	N/A	0.19%	0.04%	-0.16%	-0.13%	-0.31%
-0.18%	-0.03%	-0.31%	0.00%	-0.09%	-0.08%	-0.16%	-0.23%	-0.03%	0.05%
0.52%	0.24%	-0.09%	-0.17%	-0.10%	-0.13%	-0.13%	-0.03%	0.07%	0.18%
0.76%	0.15%	-0.02%	-0.01%	-0.18%	-0.22%	-0.31%	0.05%	0.18%	0.66%

1.6% 1.4% 1.2% 1.0% 0.8% 0.6% 0.6% 0.2% 0.0% -0.2% -0.4% -0.6% -0.6% -1.0% -1.2% -1.4% -1.6%

NEWT 40% Void Controlled (RMS=0.37%, MAX=0.99%)

-0.08%	-0.22%	-0.42%	-0.40%	-0.24%	-0.36%	-0.14%	-0.18%	0.73%	0.76%
-0.22%	-0.35%	-0.35%	-0.15%	-0.41%	-0.11%	-0.41%	-0.04%	0.05%	0.59%
-0.42%	-0.35%	-0.26%	-0.46%	-0.08%	-0.27%	-0.03%	-0.24%	0.02%	0.66%
-0.40%	-0.15%	-0.46%	-0.24%	-0.25%	N/A	N/A	-0.10%	-0.16%	0.33%
-0.24%	-0.41%	-0.08%	-0.25%	-0.07%	N/A	N/A	-0.13%	0.11%	0.50%
-0.36%	-0.11%	-0.27%	N/A	N/A	0.50%	0.00%	-0.19%	0.06%	-0.01%
-0.14%	-0.41%	-0.03%	N/A	N/A	0.00%	-0.51%	-0.09%	-0.31%	0.44%
-0.18%	-0.04%	-0.24%	-0.10%	-0.13%	-0.19%	-0.09%	-0.27%	-0.01%	0.62%
0.73%	0.05%	0.02%	-0.16%	0.11%	0.06%	-0.31%	-0.01%	0.16%	0.99%
0.76%	0.59%	0.66%	0.33%	0.50%	-0.01%	0.44%	0.62%	0.99%	0.90%

Polaris 40% Void Controlled (RMS=0.43%, MAX=1.71%)

0.29%	0.33%	0.45%	0.26%	0.15%	0.01%	-0.17%	-0.67%	-1.71%	-1.30%
0.33%	0.38%	0.22%	0.12%	0.19%	0.14%	0.07%	0.05%	-0.70%	-0.87%
0.45%	0.22%	0.27%	0.21%	0.19%	0.24%	0.15%	0.00%	0.04%	-0.74%
0.26%	0.12%	0.21%	0.29%	0.16%	N/A	N/A	0.15%	0.17%	-0.13%
0.15%	0.19%	0.19%	0.16%	0.44%	N/A	N/A	0.23%	0.12%	-0.13%
0.01%	0.14%	0.24%	N/A	N/A	-0.29%	0.22%	0.21%	0.11%	0.43%
-0.17%	0.07%	0.15%	N/A	N/A	0.22%	0.32%	0.25%	0.27%	0.14%
-0.67%	0.05%	0.00%	0.15%	0.23%	0.21%	0.25%	0.13%	0.20%	-0.02%
-1.71%	-0.70%	0.04%	0.17%	0.12%	0.11%	0.27%	0.20%	0.09%	-0.08%
-1.30%	-0.87%	-0.74%	-0.13%	-0.13%	0.43%	0.14%	-0.02%	-0.08%	0.10%

✓ The largest differences shift to narrow-narrow gap and around blade tips

Trends in Lattice Geometry (PWR)

- NEWT and Polaris results are consistent for controlled cases (except 18x18 geometry)
- ✓ There is a bias between MG KENO and NEWT/Polaris results
 - ✓ Average $\triangle k(MG \text{ KENO}) = 0 \text{ pcm Average } \triangle k(NEWT/Polaris) =-200 \text{ pcm}$

- ✓ NEWT and MG KENO results are consistent
- ✓ There are outliers in MG KENO results for 16x16 CE geometry

Trend in Boron Concentration (17x17 PWR)

1

2

3

4

5

Uncontrolled

13

- Boron bias in Polaris results disappears for controlled cases
- MG-KENO demonstrates a small bias in the opposite direction
 - ✓ Controlled △k Uncontrolled △k ~ 100 pcm

- Similar Polaris boron trend and bias are observed across different geometries
- Boron trend and bias in Polaris results are significant for cold cases

National Laboratory

Uncontrolled and Controlled Pin Powers (17x17 PWR)

NEWT (RMS= 0.10%, MAX=0.23%)

N/A								
0.08%	-0.07%							
0.09%	-0.05%	-0.13%		_				
N/A	-0.06%	0.01%	N/A					
-0.01%	0.04%	0.00%	0.05%	0.19%				
0.17%	-0.09%	-0.04%	0.09%	0.13%	N/A			
N/A	0.16%	0.23%	N/A	0.10%	0.12%	0.01%		_
-0.01%	-0.07%	0.00%	0.06%	0.06%	0.03%	-0.06%	-0.16%	
-0.07%	-0.10%	-0.03%	-0.10%	-0.04%	-0.12%	-0.13%	-0.13%	-0.20%

Polaris (RMS= 0.07%, MAX=0.19%)

N/A								
0.07%	-0.09%							
0.08%	-0.07%	-0.16%		_				
N/A	-0.07%	-0.02%	N/A		_			
-0.04%	0.01%	-0.04%	0.01%	0.11%		_		
0.16%	-0.11%	-0.06%	0.07%	0.04%	N/A		_	
N/A	0.13%	0.19%	N/A	0.03%	0.07%	0.03%		
-0.01%	-0.08%	0.00%	0.04%	0.05%	0.07%	0.00%	-0.11%	
0.00%	-0.05%	0.02%	-0.03%	0.00%	-0.05%	-0.05%	-0.06%	-0.11%

2.0%
1.6%
1.2%
0.8%
0.4%
0.0%
-0.4%
-0.8%
-1.2%
-1.6%

NEWT [Controlled] (RMS=0.22%, MAX=0.54%)

N/A								
0.13%	-0.07%		_					
-0.14%	-0.03%	0.06%						
N/A	-0.10%	-0.27%	N/A		_			
-0.46%	-0.08%	-0.15%	-0.26%	-0.09%		_		
-0.05%	-0.16%	-0.12%	-0.36%	-0.10%	N/A		_	
N/A	-0.21%	-0.28%	N/A	-0.18%	-0.03%	0.20%		_
0.00%	-0.11%	-0.02%	-0.06%	0.23%	0.38%	0.29%	0.45%	
0.07%	0.09%	0.12%	0.07%	0.01%	0.35%	0.27%	0.38%	0.54%

Polaris [Controlled] (RMS=0.11%, MAX=0.27%)

N/A		_						
-0.03%	-0.07%		_					
-0.03%	0.08%	0.26%		_				
N/A	0.08%	-0.01%	N/A		_			
-0.27%	0.11%	0.10%	0.00%	0.20%		_		
0.08%	0.01%	0.04%	-0.20%	0.08%	N/A		_	
N/A	-0.10%	-0.19%	N/A	-0.11%	-0.07%	-0.02%		_
0.20%	-0.03%	0.02%	-0.10%	0.16%	0.19%	0.06%	0.01%	
0.00%	0.05%	0.01%	-0.10%	-0.14%	0.03%	-0.07%	-0.07%	0.06%

✓ Large differences are observed around guide tubes for both geometries

✓ Polaris and NEWT demonstrate good agreement

Trends in Enrichment

- No significant trends in enrichment for all codes (beyond currently allowed enrichments, Polaris exhibits a trend)
- ✓ Consistent control element bias
- Consistent void fraction trend

Trends in BP Loading

17x17 PWR

✓ As Gd concentration increases, void trends become consistent

✓ No significant trends in BP loadings from PWR (except NEWT IFBA)

Trends in Control Elements

10x10 BWR (NEWT)

17

17x17 PWR

- ✓ The largest difference between different control blades (B_4 C-Hafnium) and control rods (B_4 C-Inconel) is ~100 pcm
- ✓ Consistent void fraction trend

Trends in BP Spatial Variations

Edge gadolinia rod lumping

National Laboratory

18

Trends in MOX Fuel

✓ Shape of the trends in void fraction, fuel temperature and controlled cases are consistent with UOX fuel while the max and min values are larger.

Depletion Calculations

- ✓ Void fraction trends change with depletion.
- NEWT requires fine depletion steps (0.25 GWd/MTU) to resolve Gd depletion.
- Polaris and CE KENO agreement is ~200 pcm for both PWR and BWR depletion calculations.
- Although magnitudes are different, all codes show similar trends in PWR depletion.

International Benchmarks (BWR EGUNF Phase II)

40 % Void

- ✓ Good agreement with Serpent depletion results
- ✓ ~300 pcm difference between Serpent and CE KENO results at Gd peak at 8 GWd/MTU

RCA Measurement Comparisons

Calvert Cliffs-1 MKP 109-2 (PWR)

Gundremmingen GRM-1 (BWR MOX)

- In general good agreement among all three codes is observed for all isotopes
- Discrepancy with measurements is less than 5% for most major actinides
- More RCA comparisons are needed to determine any biases in depletion calculations

- With some exceptions, test results satisfy acceptance criteria for each test (96.7% for NEWT, 99.7% for Polaris).
- We would like all of our test cases to satisfy target criteria (75% NEWT, 87% Polaris). To get there:
 - Investigate void fraction trends (cross section processing for all MG codes)
 - Implement a better quadrature set for NEWT
 - Investigate biases observed for MOX cases
 - More international numerical benchmark comparisons
 - More RCA measurement comparisons

Standard Case Matrix

BWR					
					Control
Case	Tf (K)	Tc(K)	Void Fraction	Pc (ppm)	Blade
Cold Zero Power	293	293	0	0	0
Cold Zero Power	500	293	0	0	0
Cold Zero Power	950	293	0	0	0
Hot Zero Branch	500	560	0	0	0
Hot Zero Branch	500	560	40	0	0
Hot Zero Branch	500	560	70	0	0
Hot Zero Branch	500	560	90	0	0
Hot Full Power	950	560	0	0	0
Hot Full Power	950	560	40	0	0
Hot Full Power	950	560	70	0	0
Hot Full Power	950	560	90	0	0
Hot Full Power	1500	560	0	0	0
Hot Full Power	1500	560	40	0	0
Hot Full Power	1500	560	70	0	0
Hot Full Power	1500	560	90	0	0
Cold Zero Power	293	293	0	0	1
Cold Zero Power	500	293	0	0	1
Cold Zero Power	950	293	0	0	1
Hot Zero Branch	500	560	0	0	1
Hot Zero Branch	500	560	40	0	1
Hot Zero Branch	500	560	70	0	1
Hot Zero Branch	500	560	90	0	1
Hot Full Power	950	560	0	0	1
Hot Full Power	950	560	40	0	1
Hot Full Power	950	560	70	0	1
Hot Full Power	950	560	90	0	1
Hot Full Power	1500	560	0	0	1
Hot Full Power	1500	560	40	0	1
Hot Full Power	1500	560	70	0	1
Hot Full Power	1500	560	90	0	1

PWR				
Case	Tf (K)	Tc(K)	Pc (ppm)	Control Rod
Cold Zero Power	293	293	0	0
Cold Zero Power	293	293	1000	0
Cold Zero Power	293	293	1300	0
Cold Zero Power	293	293	2000	0
Cold Zero Power	293	293	2500	0
Hot Zero Power	560	560	C	0
Hot Zero Power	560	560	1000	0
Hot Zero Power	560	560	1300	0
Hot Zero Power	560	560	2000	0
Hot Zero Power	560	560	2500	0
Hot Full Power	900	550	1300	0
Hot Full Power	900	560	1300	0
Hot Full Power	900	600	1300	0
Hot Full Power	1773	560	1300	0
Cold Zero Power	293	293	C	1
Cold Zero Power	293	293	1000	1
Cold Zero Power	293	293	1300	1
Cold Zero Power	293	293	2000	1
Cold Zero Power	293	293	2500	1
Hot Zero Power	560	560	0	1
Hot Zero Power	560	560	1000	1
Hot Zero Power	560	560	1300	1
Hot Zero Power	560	560	2000	1
Hot Zero Power	560	560	2500	1
Hot Full Power	900	550	1300	1
Hot Full Power	900	560	1300	1
Hot Full Power	900	600	1300	1
Hot Full Power	1773	560	1300	1

