Umea University
Department of Computing Science
Master’s Thesis Project D, 20 credits

ARIA and Matlab Integration With Applications
Jonas Borgstrém cO0jbm@cs.umu.se
3rd April 2005

Supervisor:
Thomas Hellstrom

Abstract

The coursdntelligent Roboticsat Umea University let, like many other simi-
lar courses, their students explore different algorithmd @ chitectures using real
mobile robots. There is unfortunately no standardized wanterface with robots.
Instead each manufacturer provide software developesg&iDKs) for their own
products. This is especially troublesome for robotics seswhere students should
be able to concentrate on the actual subject and not be faregubnd a lot of time
learning to use complex SDKs and even new programming layegudl he course
at the Umea University uses robots from two different maciuiers. Khepera
robots are controlled from Matlab and AmigoBot robots fromtCMost students
are already familiar with the Matlab programming languagé feel a bit intimi-
dated by the AmigoBot’s powerful but complex C++ SDK named AR

This master’s thesis project is divided into two parts. Thet fpart describes
the design and implementation of an adapter layer betweeARHA library and
Matlab. This adapter layer allows ARIA-based robots to betradied directly
from within Matlab without using the C++ SDK directly. In treecond part of
this project a full scale SLAM-application is created thgpleres some important
topics in the robotics field, such as map making and contislocalization.

Contents

1

Introduction 1
1.1 Goal e 1
1.2 Method 2
1.3 ReportOutline 2
ARIA and Matlab 3
21 ARIA e 3
2.2 SupportedRobots 4
2.3 The ARIAAPI e 4
24 Matlab 5
2.5 IntegratingMatlab oL 5
2.6 Matlab Limitations 6
Adapter Layer 9
3.1 MEX-Extensions 9
3.2 C++ClassesIn MEX-Extensions 9
3.3 The aria_adapter Extension 10
3.4 Extending the Adapter Layer 12
3.5 Usingthe Adapter Layer 13
3.6 ASample Program 13
3.7 Performance 14
3.8 Limitations 15
3.9 FutureWork 15
Map Making and Localization 17
4.1 SonarSEensors e e e e e e e e e e 17
42 Occupancy Grid 18
43 SonarSensorModels 18
4.4 Updating occupancygrids 19
4.4.1 Bayesiansensorfusion 20
45 Localization 21
45,1 Odometry and ShaftEncoders 22
4.6 Continuous Localization 22

iv CONTENTS

5 Full Scale SLAM-Application 25
5.1 SLAM e 25
5.2 Design 26
53 Equipment. 27
5.4 Room Configurations 27
55 Navigation 28
5.6 SLAM And Continuous Localization 28
57 OpenAreas 30
58 Parameters. 31
59 Results. 32
5.10 Limitations 32
511 FutureWork e 34

6 Summary and Conclusion 35
6.1 Summary and Conclusions 35

7 Acknowledgementes 37

References 38

A Programming Tutorial 41

B API Documentation a7

C SLAM Source Code 53

List of Figures

2.1

4.1
4.2
4.3

51
5.2
53
5.4
55
5.6

Al

ARIA APl blockdiagram 5
Sonarsensormodel Lo 19
Bayesian sonar sensormodel 20
Continuous localization process 3 2
Map making and localization process 6 2
The AmigoBotrobot 27
Room Configuration 28
Map making without continuous localization 29
Asingle sensor readingofawall 30
Resultingmaps 33
SetPathDialog 42

List of Tables

2.1 Robotssupported byrobots

Vii

Chapter 1

Introduction

The coursentelligent Roboticsat Umea University let, like many other similar
courses, their students explore different algorithms awtii@ctures using real
robots. Unfortunately there is no standardized way to fater with robots. In-
stead each manufacturer provide SBKa their own products. This is especially
troublesome for robotics courses where students shouldblbe@concentrate on
the actual subject and not be forced to spend a lot of timailegwhow to use
different SDKs and even new programming languages.

The course uses two different types of robots: AmigoBotsfractivMedia
and Khepera robots from K-Team. Khepera robots are coettétbm Matlab and
AmigoBot robots from C++ or Java. Most students are alreadyilfar with the
Matlab programming language and the dynamic nature makesyitsuitable for
the “trial and error” way of working that is common when expenting with
robots and algorithms. AmigoBots use an advanced C++ SDK®¢tARIA. This
SDK is very powerful and well designed but has a prominentheger learning
curve compared to the rather simplistic Khepera SDK.

1.1 Goal

The goal of this master’s thesis project can be divided wtparts:

The first part is to create an easy to use adapter layer betiedab and
ARIA-based robot. This layer should provide students amgotievelopers with
an easy to use and stimulating developing environment irchwhi few lines of
Matlab code should be enough to create simple robotics @nagr

In the second part, a full-scaled SLANpplication is developed. The purpose
is to explore important topics within the robotics field suahmap making and
continuous localization. This application also serves sssaframework for the
adapter layer developed in part one. Experiments with thigieation illustrate

1software Development Kit.
2Simultaneous Localization And Mapping.

2 Chapter 1. Introduction

how odometry errors affect map making and how efficient catiis localization
is when dealing with this problem.

1.2 Method

In order to determine the best design and implementatiothtoadapter layer, the
ARIA and Matlab documentation and APl was studied in gresitieEffort was
also made to make sure the resulting API was simple and sglésgatory enough
for new users without extensive training. Furthermore dudti have enough simi-
larities with the existing C++ API for existing ARIA develers to feel comfortable
and at home.

Building a SLAM-application required a lot of informatioea&rching. Search-
ing for SLAM-related articles using search terms such asdliaation” and “map-
ping” on CiteSeet and Google were the primary sources of information. Besides
searching for and reading articles a lot of time was spenherattual implemen-
tation and experiments. The algorithms used and the afipliciself required a
lot of tweaking and testing in order to produce good results.

1.3 Report Outline

The rest of this thesis paper follows the following dispiosit
Chapter 1 This chapter.

Chapter 2 Contains a detailed study of the ARIA and Matlab internalsriter to
determine the best design of the adapter layer.

Chapter 3 Describes the design and implementation of the adapter. laye
Chapter 4 Describes the theory behind map making and localization.

Chapter 5 Descirbes the design and implementation of a SLAM-apptioaas
well as experiment results.

Chapter 6 Summary and conclusions.
Chapter 7 Acknowledgements.

Appendix A Adapter Programming Tutorial.
Appendix B Adapter APl Documentation.

Appendix C SLAM-application source code.

Shitp://citeseer.ist.psu.edu/

Chapter 2

ARIA and Matlab

This chapter introduces ARIA and Matlab, the two major congrus involved in
the creation of the adapter layer.

2.1 ARIA

ARIA is an open source object oriented interface to ActivMediditeaobots
(see section 2.2 for a complete list of compatible robot$)e hterface is imple-
mented as a cross platfofnE++ library. Besides a lot of robot related function-
ality the library also contains wrappers around platforracsiic functions such as
threading and networking.

The ARIA library is primarily designed for professional @depers and is
meant to be used as a solid base for large-scale applicafidwslibrary architec-
ture is very flexible so the library can be used by both multeaded and single-
threaded applications. ARIA communicates with the robabgi®ither a serial
tether or a TCP/IP connection.

Coordinate System

While a robot navigates in the environment, ARIA always leieack of the robot’s
pose using the built in shaft encoders. The robot's beligy@sk can always be
accessed and updated using gletposeandmovemethods.

The robot’s pose is expressed as a point on the xy-plane aadged. When
the robot powers up the initial pose is setxte- 0, y = 0, 8 = 0, and the robot is
looking along the positive x-axis. If the robot rotates +@gees (counter clock
wise) it will be looking along the positive y-axis. The X, ygition is expressed in
unit of millimeters and thé® angle in the interval of +-180 degrees counter clock
wise.

IActive Robotics Interface Application.
230 far only supported on Linux and Microsoft Windows.

4 Chapter 2. ARIA and Matlab

2.2 Supported Robots

ARIA supports robots of all difference sizes and shapes. sthallest supported
robot is the AmigoBot, it weighs 3.6 kg and is equipped with¢isonar sensors.
On the other side of the spectrum is the PowerBot, the lamgggported robot
which weighs 120 kg and is equipped with 28 sonar sensoss; taapping and a
gripper arm.

Most, if not all robots manufactured by ActivMedia are sugied by the ARIA
library, table 2.2 contains a complete list.

Table 2.1: Robots supported by ARIA [2]

AmigoBot™ - Classroom and team robot.
Pioneer 3-AT - High performance all-terrain robot.
Pioneer 3-DX - Research and educational robot.
PatrolBot™ - A surveillance robot.

PowerBot™ - High-agility, high-payload robot.

PeopleBof™ - Human interface robot.

2.3 The ARIA API

ARIA has a large and powerful API [1]. The API contains a sethifh-level
functions that allow developers to control the robot usimghtbuilt-in and user
defined actions ARIA allows programmers to define new actions by subclassin
ArAction and overriding a few class methods. These actions are rurbatle
ground thread allowing the main application thread to de#l wther things than
the robot’s basic behavior.

It is also possible to directly control the robot’s movensesmd sensors using a
set of lower-level functions. These functions command thet to perform differ-
ent tasks such as “Give me the range reading from sonar s€risttove forward
with velocity Y”, etc. ARIA also contains an even lower-lé¥dP| that allows users
to communicate with and send commands directly to the rafrdieard computer,
this approach however requires detailed knowledge abeyprtbperitary protocol
used between ARIA and the robot.

3Also known as behaviors or behavioral actions.

2.4. Matlab 5

ArResolver

ArRobot

ArRobot Packel Receiver ArRobot Packef Sender

ArRobot Device Connect

Robot (8im or Real)

Figure 2.1: ARIA API block diagram. Figure taken from the kMedia Robotics
Inc web page.

2.4 Matlab

Matlab is a high-level technical computing language dgwetbby MathWorks.
Their goal was to provide engineers and scientists with aerpowerful and pro-
ductive environment than was provided by popular programynténguages like
Fortran, C and C++ [11].

Matlab is not only a high-level language for technical cotimmu The Matlab
application is more of a development environment with fezglike code manage-
ment, interactive tools for iterative exploration, desagmd problem solving.

2.5 Integrating Matlab

Matlab can be integrated with other languages and appitatin a at least two
different ways:

e An application written in C or Fortran can use Matlab as a agtaon en-
gine by using the Matlab engine library. This library allothe application
to communicate with a Matlab instance via a pipe on Unix platis and a
COM-interface on Windows platforms. This allows an apglma to send
and receive data to and from Matlab, and to process that datalbng
Matlab functions.

e The other way around is also possible. Functions writtemmglages such
as C and Fortran can also be used from within Matlab. This lideaed

6 Chapter 2. ARIA and Matlab

by using MEX-file§. A MEX-File consists of two distinct parts. The first
part contains the routine implementing the wanted funetion It can be
a highly optimized numerical algorithm, a communicationtioe for some
exotic hardware or something completely different.

The other part is the gateway routine. Its responsibilityoisnterface the
computational part with Matlab. This includes verifyingaththe MEX-

function is called with valid left- and right-hand side angents. The gate-
way routine calls the computational routine after the arguois are verified.

The main reason why people sometimes use MEX-extensioteaihsf plain
Matlab code is performance. Implementing computationalgensive algorithms
in compiled languages like C/C++ or Fortran sometimes ysaphificant perfor-
mance improvements.

MEX-extensions are also required when accessing sometopesystem de-
pendent functions and use external libraries, or when cameating directly with
hardware.

2.6 Matlab Limitations

The MEX API [9] and the Matlab language itself imposes a nunabéimitations
on what an extension is able to do. The following list dessilsome of these
limitations, their effect on this work and possible workamds:

e Not thread-safe The ARIA library can be run both single-threaded and
multi-threaded, but Matlab itself is a strictly single¢aded application.
This means that some of the functionality in the ARIA libram}l not be
available from within Matlab. Fortunately most of the fuocality is still
available for single-threaded applications.

e Ad-hoc OOP support MathWorks has in recent versions of Matlab added
object-oriented programming support. Basic oop-featsteh as function
overloading, data encapsulation and inheritance are stgahdut it is not as
advanced as other oop-languages such as C++ or Java. Gneatwrclasses
in Matlab is both complicated and requires a lot of code. Baml class
requires a directory on the filesystem that contains oneddile for each
class method. Exporting a C++ api@sl Matlab classes require even more
elaborate work that will be described in more detail in cbaft

e No destructor supportThe oop-system used by Matlab lacks the concept
of destructors used by most other oop-languages. A destrisch special
class method that is invoked just before a class instanclsage collected.
Destructors are traditionally used by class instancesttorreéesources back

4Matlab Extension components.
50bject-Oriented Programming.

2.6. Matlab Limitations 7

to the operating system. This missing feature might not sbetrimportant

given that Matlab’s garbage collection will take care ofues no longer
used. Unfortunately this is only true as long as no MEX-esi@ms are used.
Some MEX-extensions may allocate memory that explicitly tuabe freed
in order to avoid memory leaks. This limitation makes it heréxport C++

class instances into Matlab. Chapter 3 presents a (pastél}ion to this

problem.

e Limited type-systemMatlab uses a somewhat limited type-system. It is
for example impossible to add new classes at run-time. Theway to
add a new class to the system is to physically create a nestaliyenamed
“@"+class_name The parent directory of this newly created directory also
has to exist in the Matlab path.

e One way communication between a MEX-routine and the Mathaf @ he
MEX-API in combination with the single-threaded nature oftldb makes
it impossible for an extension to notify the main Matlab @sg of events,
unless Matlab explicitly asks (polls) for them. With thimltation it is not
possible to (from within Matlab) register callback-furweis for ARIA to call
when special events like lost contact with the robot occurs.

e Only one computation routine in each MEX-filIEX-extensions are im-
plemented as shared libraries in UNIX and as dynamicallgdddibraries
in Windows. When it comes to locating a MEX-extension Matleges the
same naming convention as it does wittrmalfunctions written in Matlab,
MEX-extensions must have the same filename as the name obringuta-
tion routine they contafh

This naming convention is very easy to use but has at leastnaij@r draw-
back. It will require a lot of redundant code to create Matabensions for
a C++ library with tens or hundreds of classes and methods.i3because
a MEX-extension file has to be created for each of the clashadstin the
C++ library. Another problem when keeping related classhos in dif-
ferent shared libraries is that it becomes hard to sharelmateeen related
functions that due to this limitation is located in diffetesiared library ex-
tensions. Section 3 will describe a technique making it iptesso limit the
number of MEX-extensions required to export an entire C++tAfust one.

6MEX-extensions have a platform specific file type, “.dII” oritfows and “.mexglx” on Linux.

Chapter 3

Adapter Layer

This chapter describes the design and implementation afdhpter layer between
ARIA and Matlab. The core of this layer is a single MEX-extens The Matlab
MEX API [11] is originally designed to make it possible to ate and use highly
optimized C/C++ or Fortran versions of individual algonith and not to expose
an entire C++ API. Fortunately that does not make it impdssibhis chapter will
describe how to embed multiple functions in a single MEXeesion.

3.1 MEX-Extensions

Another way to look at MEX-extensions is that a MEX-extensgm®basically noth-
ing more than a way to pass a Matlab matrix to a C/C++ or Foffwantion in a
shared library, and a way for that function to send anothdrixiaack to Matlab.
Matlab contains some additional functionality that allavgers to invoke these
extensions just like any other Matlab function-call. Thegmaeters used in this
function-call will be passed to the extensions gatewayimeutThe gateway can
also return a matrix back to Matlab that will be treated aduhetions return value.

3.2 C++ Classes In MEX-Extensions

Given that the OOP-system in Matlab already requires thetasgeate a separate
Matlab file for each class method in every class, we might dktiyeo do some-
thing clever in them to avoid having to create a separate Mkdénsion for each
class method as well.

The only thing stopping us from adding multipp@mputational routineo
a single MEX-extension is that thgateway routineneeds some way to identify
the computational routine requested. A simple solutioroiprepend a routine-
identifier before the actual routine parameters when imglthe MEX-function.
This trick will of course make the Matlab source code reqlite invoke this
MEX-function look a bit strange. Fortunately that sourceeavill only live in
the mandatory class-method files and will never be seen bysbe

9

10 Chapter 3. Adapter Layer

For example theobot class constructor (filgrobot/robot.m only needs to
contain the following Matlab code:

function o = robot(address)
self.cnx = aria_adapter(1, address);
0 = class(self, 'robot);

return

The constructor call invokes treia_adapterMEX-extension and requests to
invoke the internal routine number one, thi®obot constructor wrapper function.
The ArRobot instance identifier returned by the wrapper is stored in tiséance
variableself.cnx This instance identifier will later be used when invokingeat
class methods.

Even less Matlab code is required to invoke a class method. Mdtlab part
of thegetposeclass method (fil@robot/getpose.jriooks like this:

function pose = getpose(self)
pose = aria_adapter(4, self.cnx);
return

The routine number four iaria_adapteris invoked with theArRobot instance
identifier as the only parameter. The wrapper function iegakeArRobot::getPose()
C++ method and converts the pose (position and headingailtatlab matrix and
returns it back to Matlab.

3.3 The aria_adapter Extension

The C++ part of the adapter layer is a bit more complicated tha Matlab part.
When any of the wrapped class methods are invokedatiae adapterextension
is loaded into memory by Matlab and its gateway routine isked. Every MEX-
extension has a gateway routine, it is a C function namegFunctiorthat serves
as the extension entry point and is invoked by the Matlabriieaery time the
extension is invoked.

The main responsibility for tharia_adaptergateway routine is to verify that
the requested ARIA function exist, and that it is called wifth correct number of
left and right hand side parameters, and to hand over theatdatthe associated
wrapper function. In order to make it easy to add new funetiorthe adapter layer
and to avoid code redundancy, the gateway routine itsel§ doe know anything
about any specific wrapped ARIA method. Instead the gatewatyne only con-
tains generic functionality to perform those tasks. Thei@cimplementation of
the gateway routine iaria_adapterlooks like this (a few lines have been removed
to improve readability and to save space):

3.3. The aria_adapter Extension 11

void
mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhsf])
{

if (nrhs < 1)
mexErrMsgTxt("At least one rhs argument is required.";

if (mxGetM(prhs[0]) '= 1 || mxGetN(prhs[0]) != 1 ||
ImxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) {
mexErrMsgTxt("The first rhs argument has to be a scalar doub le.");
}
argl = mxGetPr(prhs[0]);
fid = (int)arg1[0];

/I Make sure its a valid function and the correct number
Il of arguments
for (i = 0; i < NUMFUNCTIONS; i++) {
if(functionmapli].id == fid) {
if (functionmapli].nlhs != nlhs)
mexErrMsgTxt("Incorrect number of |hs arguments");
if (functionmapli].nrhs != (nrhs - 1))
mexErrMsgTxt("Incorrect number of rhs arguments");
break;

}

}

if (i == NUMFUNCTIONS)
mexErrMsgTxt("Unknown function id");

/I Call the selected function wrapper

functionmapl[i].func(nlhs, plhs, nrhs, prhs);

The function table contains one entry for each embeddedi@maevrapper.
Besides the function id and function name every functiomyealiso contains the
correct number of left-hand side (return values) and ritnid side arguments (pa-
rameters) and a pointer to the wrapper function.

Using this information the gateway routine can take carehofgs such as
verifying that the function id is correct and that the cotreamber of left and
right hand side arguments are used. If the concept of one E&Rsion for each
routine was used, this code would have to be duplicated iryeseension.

functiontable[] = {

{1, "robot_connect", 1, 1, robot_connect},

{2, "robot_disconnect", 0, 1, robot_disconnect},

{3, "robot_setvel", 0, 2, robot_setvel},

{4, "robot_getpose", 1, 1, robot getpose},

{5, "robot_readsonar", 1, 1, robot_readsonar},

{6, ‘"robot_isleftmotorstalled”, 1, 1, robot_isleftmotor stalled},
3

Most wrapper functions are relatively straight-forwarkklitherobot_getpose
function above, where the wrapper function converts thetimarameters (prhs)

12 Chapter 3. Adapter Layer

from Matlab matrices into the format expected by the C++ methAfterwards
the ARIA C++ method is invoked and value returned by the natb@fterwards
converted back into a Matlab matrix.

static void
robot_getpose(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhsl[])

{
int rid = get_robot_id(prhs);
ArRobot *robot = cnxTable]rid].robot;
ArPose pose = robot->getPose();
if (nlhs == 1) {
plhs[0] = mxCreateDoubleMatrix(1, 3, mxREAL);
*((double *)mxGetPr(plhs[0])) = pose.getX();
*(((double *)mxGetPr(plhs[0]))+1) = pose.getY();
*(((double *)mxGetPr(plhs[0]))+2) = pose.getTh();
}
}

3.4 Extending the Adapter Layer

The design with a central function-table makes it very easgdd support for new
functions. The work required can be summarized into thregsst

1. Add an entry to the function-table. This table entry sdardntain a unique
function identifier, the expected number of input and oufgarameters and
a pointer to the C++ wrapper function. The entry can look sbing like
this:

{42, "robot_mynewfunction”, 1, 3, robot mynewfunction},

2. Write a C++ wrapper function. This wrapper function isp@ssible for
the translation of input and output parameters from and tda¥danatrices
before and after the function invocation. Most wrapper fioms are fairly
similar so the implementation can probably be based on atimgiwrapper
function with a similar signature.

3. Add a new Matlab-file to th@robotdirectory. These files are short Matlab
files that call thearia_adapterMEX-extension.

function ret = mynewfunction(self, argl, arg2)
ret = aria_adapter(42, self.cnx, argl, arg2);
return

As long as the new function has a signature similar to somerathisting
function, all three steps can usually be completed simplgdpying the required
information from a similar existing function and modify lightly.

3.5. Using the Adapter Layer 13

3.5 Using the Adapter Layer

This section briefly describes how to use the adapter laye.appendix A and B
for more verbose instructions.

Before a program can communicate with a robot a TCP/IP cdiamebas to
be established between the ARIA library and the robot. Wheating a newobot
instance by calling theobot constructor with an ip-address as the only argument,
a new connection is automatically established.

myrobot = robot('192.168.1.11");

If ARIA for some reason fail to connect to the robot, a Matladseption will
be raised. This error can be handled like this:

try
myrobot = robot('192.168.1.11");
catch
sprintf(Connection failed’)
return
end

The instance variable (myrobot) should be passed as thafgstnent to all
class methods to let ARIA know which robot to send the comredadFor exam-
ple to get the robot’s pose tlyetposeclass method is called like this:

pose = getpose(myrobot);

At the end of a program it is good practice to disconnect frbenrbbot. This
will stop the robot and disable the sonar sensors. The foligline will disconnect
a robot:

disconnect(myrobot);

3.6 A Sample Program

The Matlab code for a simple avoid obstacle behavior (as #eBzerg vehicle
[3]) may look like this:

myrobot = robot('192.168.100.11);
weights = [1 1.5 2 -2 -1.5 -1 0 0];

while ~isleftmotorstalled(myrobot) && ~isrightmotorsta lled(myrobot)
sonar = readsonar(myrobot) - 7500;
dir = (weights * sonar’) / 1000;
setvel(myrobot, [70 70] + [-dir dir]);

end

disconnect(myrobot);

14 Chapter 3. Adapter Layer

The Java-equivalent of the above Matlab program would l@vkething like this:

public class Avoid {
static {
try {
System.loadLibrary("AriaJava");
} catch (UnsatisfiedLinkError e) {
System.err.printin("Native code library failed to load. Y ada Yada" + e);
System.exit(1);

public static void main(String[] args) {
double weights[] = {1, 1.5, 2, -2, -1.5, -1, 0, O}
Aria.init(0, true);

ArRobot robot = new ArRobot("robot1", true, true, true);
ArTcpConnection conn = new ArTcpConnection();

conn.setPort("192.168.100.11", 8101);
robot.setDeviceConnection(conn);
if (Irobot.blockingConnect())

{
System.err.printin("Could not connect to robot, exiting. \n");
System.exit(1);

robot.comint((short)ArCommands.ENABLE, (short)1);
robot.runAsync(true);
while(robot.isLeftMotorStalled() != true &&
robot.isRightMotorStalled() '= true) {
double dir = 0;
for(int i = 0; i<8;i++) {
dir += (robot.getSonarRange(i) - 7500) * weights]i];

}
dir /= 1000;

robot.setVel2(70 - dir, 70 + dir);
}

robot.stopRunning(true);
robot.disconnect();
Aria.shutdown();

3.7 Performance

The adapter layer introduces almost no overhead. The Matktiement below

is a crude benchmark that times how long it takes to call thepped function
sleep(0)one million times. Running this benchmark on an AMD Duron@h3
system estimates the overhead added for one function c#ticogdapter layer to
be less than 36 Most of this overhead is probably caused by Matlab’s normal
MEX-extension invocation overhead and not by the wrapseitfit

tic, for i=1:1000000, sleep(0), end, toc

3.8. Limitations 15

3.8 Limitations

With the ARIA C++ library programmers can control the roksdiehavior by defin-
ing a set of custom actions. A custom action is created bylaskiagArAction
and overloading a few methods. These actions are run in aatephread to allow
the programmer to focus on other things.

Unfortunately as outlined in section 2.6 Matlab is a styisihgle-threaded ap-
plication and in combination with the unflexible class sgsimakes it impossible
to use or define custom actions from within Matlab. This domsdver not affect
the possibility to control robots using the ARIA API’s ordity motion commands.

3.9 Future Work

This implementation has currently only been tested withldbatersion 7 running
on Windows XP Professional. The adapter itself uses nogstattiependent func-
tionality so it should be possible to port it to other platfier supported by both
ARIA and Matlab such as Linux or Mac OS X.

The adapter has so far only been tested with AmigoBot robatsHould in
theory work with other ARIA-based robots (see section 2.@haut requiring any
modifications, except maybe wrapping a few more functionsrider to support
peripherals not available on the AmigoBot.

Another possible continuation of this work would be to adgprt for non
ARIA-based robots like the Khepera robot from K-Team. Thespdra API is
fairly similar to ARIA so it might be possible to develop an MRcompatibility
layer on top of that.

Chapter 4

Map Making and Localization

This chapter covers the theory behind map making and latadiz

A mobile robot exploring and mapping an unknown environmgeherate
maps by accumulating sensor information while explorirgghvironment. Unfor-
tunately readings from range sensors are only useful fonthe making process
if the position of the sensor at the time the reading took eoiacknown. Shaft-
encoders are the most commonly used source of odometryriafan. However
it usually suffers from both systematic errors like ina@tarwheel measurements,
and non-systematic errors like wheel slippage. Thesesoause the odometry
error to quickly accumulate over time. When a robot is nohfdocalized in the
environment, the quality and accuracy of the generated nilhpendegraded.

4.1 Sonar Sensors

Sonar sensors are one of the most commonly used sensor ¢ybesgtf commercial
and research robots operating indoors. Sonar sensorstaue sensors that emits
a sound, and measures the time it takes for the sound to hivjant@nd bounce
back. Given thdéime-of-flightand the speed of sound it is possible to calculate the
distance to the object. An electical pulse causes the smraducer (thin metallic
membrane) to generate a sound with an ultrasonic frequembg sound wave
created by the transducer is often considered to Bewd@e. At the same time
as the sound wave is emitted, a timer is set. Afterwards thebrene becomes
stationary and start to work like a microphone. If a strongugihechois received,
the timer is stopped and the measured time is consideredttektiene-of-flight
Sonar sensors suffers from a number of shortcomings antationis. One
problem isspecular reflectionwhich is when the sound wave hits a surface at an
acute angle and bounces away from the sensor instead oft®itiafo make things
worse, the sound can bounce off a second object and thendindit back to the
sensor. In this case theme-of-flightwill not correspond to true distance to the
object. Forshorteningis another problem that affects sonar sensors. The emitted
sound wave is approximately 3@ide, this means that one side of the wave will

17

18 Chapter 4. Map Making and Localization

hit a non-perpendicular surface before the other side. &thection from that side
of the wave will reach the sonar sensor before the reflectiom fthe center of
the wave. This causes the measutiatk-of-flightto be shorter, and the object to
appear closer than it actually is [8].

4.2 Occupancy Grid

Occupancy grids[6] are very commonly used in the field of robotics. An occu-
pancy grid is a finite probabilistic representation of a t&bepatial knowledge.
There are simple ways to update the grid with small amounten$or data col-
lected from individual sensors and thereby creating aneamingly correct rep-
resentation of the robot’s surroundings. The final grid shoegions probably
occupied, regions probably empty and unknown areas. Besidg making this
representation is also used for activities such as expboraiocalization, motion
planning, landmark identification and obstacle avoidaridg. [

An attractive feature of occupancy grids is that a singlé gen incorporate
information from multiple sensors of different types. A.&hultz and W. Adams
demonstrates very accurate localization using a robopeduwith a set of 16 sonar
sensors and a triangulation-based structured light randerfin [10].

4.3 Sonar Sensor Models

In order to be able to incorporate sensor information froffedint sensor types
into a single occupancy grid, a common sensor informatigmesentation is re-
quired. A sensor model function is used to convert sensa $ypecific measure-
ments to a common representation. The sensor model prosichetitional proba-
bilities for each location, given a certain sensor reading.

The AmigoBot robot used in this project is equipped with eéggnar sensofs
Most roboticists have converged on a model of sonar sensmriainty which
looks like figure 4.1. The model can be divided into four diffiet regions. The
first three regions are inside the sonar sensor’s field of \&@ed the last one is
outside [8].

e Region 1: Elements in this region are probably at leastgibrtbccupied.
e Region 2: Elements in this region are probably all empty.

e Region 3: The state of elements in this region is unknown tme#hey are
located behind whatever reflected the sonar pulse.

e Region 4: Nothing is known about elements outside the saasass field
of view.

4.4. Updating occupancy grids 19

Figure 4.1: Grid elements are divided into four regions delpgg on their position
relative to the sonar respondRis the sonars maximum range aids half of the
sensor cone angle width.

Given a range reading, elements in region 2 are more likebetempty than
elements in region 1. Readings are also more likely to beecbfor elements close
to the acoustic axis than elements at the edge of the sonar con

Sensor models can be generated in many different ways. Ealpinodels
are based on interpretations of data collected from ex@erisn Analytical sensor
models are based on an understanding of the underlyingqathiysioperties of the
sensor device.

4.4 Updating occupancy grids

Many methods exist to convert sensor modes into numeridaksaand update
occupancy grids. Bayesian sensor fusion is one of the masti@omethods [7].

1Also known as Evidence grids, probability grids and cettagrids.
2polaroid ultrasonic transducers

20 Chapter 4. Map Making and Localization

4.4.1 Bayesian sensor fusion

In the Bayesian approach sensor models convert sensor ragasus into condi-
tional probabilities of the fornfP(s|H), i.e. the probability that a sensor readisig
will occur, given that a certain grid element is occupiedp@dipesisH).

The sonar sensor model used in this project uses the folgpWinctions to
calculate the probability for each grid element located @distance r and an angle
a for the acustic axis of the sonar [8, 7]:

For elements in region 1:

(E)"i‘ B—a
P(Occupied = Rf(B)‘Maxoccupied (4.2)

P(Empty) = 1.0—P(Occupied 4.2

For elements in region 2:

P(Occupied = 1.0—P(Empty) (4.3)
Ror)y (Ba
P(Empty) = M (4.4)

Certainty
|

. AR

30 40

Distance

Figure 4.2: A 3D-representation of the Bayesian sonar sensdel. Notice that
the certainty values are higher close to the sensor positidrclose to the acoustic
axis.

The variables in the formulas have the following meaniRyrepresents the
maximum range the sonar sensor can detf@ds half of the sensor cone angle
width.

4.5. Localization 21

The effect of the(RL) and the(B*T“) parts of the formulas is that elements
close to the acoustic axis and close to the origin of the spnée get higher
probabilities than elements farther away.

These probabilities are projected onto an occupancy grileaposition and
direction of the sensor, and are merged with the grid’s iexjsdpatial knowledge
using Bayesian sensor fusion.

The sensor model provides conditional probabilities offthen P(s|H) but the
form P(H|s), the probability that a grid cell is occupied given sensadiegs, is
of more interest when updating an occupancy grid. Baye&sstdtes that:

P(siH)P(H)
P(H|s) = 4.5
(Hls) P(siH)P(H) +P(s|-H)P(—H) (4.5)
With our sensor model notation it becomes:
P(Occupieds) — . P(s|OccupiedP(Occupied (4.6)

(s|OccupiedP(Occupied + P(s|Empty) P(Empty)

WhereP(Occupied andP(Empty) probabilities represent the initial uncondi-
tional belief about the state of a grid elemeR{Occupied = P(Empty) = 0.5 is
often used for empty occupancy grids, but could be set to suiher values if the
information is available for the environment being mapped.

Using equation 4.5 it is possible to populate an occupanicywgth probability
values from a single sensor reading. With multiple sensadirgys the equation
becomes:

P(s1,%2,...S|H)P(H)
PHIs1%,-- %) P(s1,%,...Sa|H)P(H) + P(s1,%, ... |—H)P(=H) “.7)
Equation 4.7 has one software implementation problem. ditires the pro-
gram to keep track of all sensor readings while updating ement to be able
to update it in the future. This is problematic because itoskmown how many
times each grid element will be updated. Fortunately, clexse of the relation
P(H|s)P(s) = P(s|H)P(H), a recursive version of equation 4.7 can be created:

_ P(sh|H)P(H|sh-1)

P(sn|H)P(H|sh-1) + P(sa|=H)P(—=H|sn_1)
With this equation, only the previous grid vali®H|s,_1) needs to be saved in
order to be able to update the element in the future.

P(H|sn)

(4.8)

4.5 Localization

For a mobile robot to be able to carry out most tasks, it neets tible to figure out
its position in the environment. Localization is the prace$ updating the pose

3position and heading(y, 6)

22 Chapter 4. Map Making and Localization

using sensor readings. J. Gutmann et al. divided the |ataiz techniques into
three different categories [5]:

¢ Behavior-basedbehavior-based localization relies on the robot’s adtion
the environment in order to navigate. For exampkobow-Right-Wallbe-
havior can be used to navigate in a maze. Simply inverting likhavior
would allow the robot to find the way back to the start position

e Landmark-based (feature-based)andmark-based localization works by
identifying landmarks in the environment. Impressive getioal local-
ization can be achieved using landmark-based localizati@best known
example is probably the GPS satellite system. One major lwekvwith
landmark-based localization is the requirement of an aalegset of land-
marks in order to work. Landmarks have to be known in advalike the
GPS satellites) or located while mapping the environmethte dverall ef-
fectiveness of this method depends on the effectivenessedéihdmark ex-
traction method used.

e Dense sensor matching (icorid)nlike the landmark-based approach, dense
sensor matching does not require the object recognitidigmoto be solved.
Dense sensor matching uses whatever sensor informatigailatde and at-
tempt to match that information against the environmenti&asa map, the
occupancy grid.

There has been a lot of progress in the field of localizatiainduthe last few
years. A lot of different techniques exist. The remainingtiems of this chapter
will cover the techniques used by the application describedhapter 5.

4.5.1 Odometry and Shaft Encoders

Most robots are at least equipped with some sort of shaftd=rso A shaft encoder
is a proprioceptive sensor that measure the number of turfraations of turns a
motor makes. Given that the gearing and wheel size is knowspbssible to

calculate the robots new position and heading using the shabders.

Shaft encoders and odometry are however not very exactiteere Errors can
be divided into two categories, systematic and non-sydteragors. Systematic
errors can come from inexact wheel size measurements onfisgens in the
robot design such as placement or size of wheels. Non-sgite®rrors come
from uneven floors, fast turning or different wheel slippagpending on surface
type. This makes shaft encoders unfit as the primary lodalizaystem for most
non-trivial robot systems.

4.6 Continuous Localization

Many localization methods try to model the odometry errotoore-localize only
after an unacceptable odometry error has been detectedCdrtsmuous localiza-

4.6. Continuous Localization 23

tion (CL) (see figure 4.3) technigue proposed by Schultz et al, 41@4] takes

advantage of the fact that positioning errors from shafodecs usually accumu-
late over time. CL tries to perform small positioning cotieas often instead of
large corrections far apart in time.

Continuous localization is an exteroceptive method thédlistemporary occu-
pancy grids called short-term maps that contain recenosaénformation. Given
that these maps are constructed during a relatively shoiddoef time, it is as-
sumed that they contain relatively small amounts of odoyretrors.

A priori knowledge

n
Sensor readings ——» | Short-term map —_;_) Map Registration

k
Shaft encoders ——» | pose generator

T Best matching pose

Figure 4.3: Continuous localization process

During each localizatiom sensor sweeps are fused into each short term map.
The variablen is a run-time parameter that depends on the environmenthend t
equipment being used.

When a short-term map contaiaaoughinformation, an operation calledap
registrationtakes place. The short-term map is matched against thes@bptiori
knowledge about the environment, the long-term map. Theativeffectiveness
of continuous localization depends heavily on the compksde and correctness of
the robot’s a priori knowledge. Schultz et al. shows thatddemetry error can
be reduced to a constant error if the registration processabeess to complete
and correct spatial information [10]. Continuous locdii@a is still effective even
without any initial spatial information. An ordinary occacy grid simultaneously
updated using map making can also be used. This approaobfwillirse not be as
effective as with complete and correct spatial informatithe odometry error, will
slowly accumulate in the long-term map but not at all in thesaate as without
using any localization.

The actual registration process is more complicated thamght appear. The
fact that the short-term map is only a partial map makes i likely that it will
fit well in more than one place on the long-term map. In ordelinit the risk
of false matches the search is limitedktprobable poses. The functigmose gen-

24 Chapter 4. Map Making and Localization

erator generates a set &fpossible poses given the robot’s believed pose and the
navigation performed during the lifespan of the short-tenap.

For each of thesk poses the match is performed by overlaying the short-term
map centered over the pokento the global map. The match is then scored by
calculating the sum of the difference between every elem@mimon to both maps
using for example the following formula:

Z |globali][j] — shortternii][]|

The robot’s position is updated by selecting the best magcpbse from the
k poses generated by tippse generatofunction. If the CL process is combined
with map making the short-term map is also merged with thg-t@nm map at
posek.

Chapter 5

Full Scale SLAM-Application

This chapter summarizes the work done on the second partsathibsis project,
and discusses obtained results and future work.

5.1 SLAM

In the second part of this master’s thesis project a SEAdplication is devel-
oped. This application also serves as a test applicatiotnéoMatlab adapter layer
developed during the first part of this thesis project.

The SLAM problem tries to answer the following questioits it possible for
an autonomous vehicle starting at an unknown location in aknown environ-
ment to incrementally build a map of the environment whiteusianeously using
this map to compute the vehicle’s locatidnThis is a very central problem in
the robotics community. Solving it would allow autonomowhicles placed in an
unknown environment to build a map using only relative sendservations, and
then to use this map to navigate around the environment forpedifferent tasks.
The main advantage of SLAM, is that no previous knowledgéd&pnformation)
about the environment is required, everything will be acalated at run time.

The SLAM-application created as a part of this thesis ptajembines tech-
niques discussed in chapter 4 such as sensor models, ocyupidas, Bayesian
sensor fusion and continuous localization. It is well knavat shaft encoders are
not very exact, so using the robot's built in shaft encodargha only source of
odometry information is not good enough to produce mapsagaeable quality.
Continuous localization will be used to compensate for pnéblem. A number of
tests will be performed, in order to determine how well thetowous localization
technique used in this application, is able to compensatéhfo odometry error
produced by the robot’s internal shaft encoders.

1Simultaneous Localization And Mapping.

25

26 Chapter 5. Full Scale SLAM-Application

5.2 Design

Best matching map

v

Long-term map

n
Sensor readings Short-term map —:E Map Registration

k

Y

Shaft encoders

Y

pose generator
A Best matching pose

L—» | Obstacle avoidance|

Figure 5.1: Block diagram illustrating how map making andtowous localiza-
tion can be combined in a SLAM-application.

This application combines techniques such as sensor maabelgpancy grids
and continuous localization into a SLAM application. AlltbEse techniques each
require a set of properly configured parameters in order & efficiently and pro-
duce good results (see section 5.8 for more informationtahese parameters). In
order to make it possible to find a good set of parameter gstfur this particular
application and equipment the actual application is spid two parts.

The first part contains the data collection and navigatigicloThe first part
navigates around in the environment while simultaneousliecting sensor read-
ings and robot poses (using the adaptgesposeand readsonarfunctions). The
robot’s current pose (position and heading) and reading® fthe robot's sonar
sensors are recorded every 1/4 second and stored on thelisrd-The second
part of the application takes care of the actual map makinpl@salization. The
data collected in part one is used to build a map (called teng- map) of the en-
vironment, this map is simultaneously used by the contisdocalization process
to compute and correct the robot’s real position.

The main benefit of separating data collection and locadimais that it both
speeds up and makes it easier to identify good parameténgsettWithout this
division, the time consuming effort of letting the robot gioally explore the envi-
ronment has to be repeated for each set of parameter sdtiiegaluate. Besides
the speed benefit, it also make the evaluation more exa@ubedhe exact same
set of sensor readings and poses can be used to evaluate iffergntiparameter
settings. Nothing in the actual design makes it impossibkeige the two parts to-
gether into a single application when good parameter gsttiave been identified.

The block diagram in figure 5.1 illustrates how the applmait different log-

5.3. Equipment 27

ical components are interconnected, and how the short+teamis fused with the
long-term map after each map registration phase. The beashing pose is also
used by pose generator to update the robot’s position. Tdweps will be described
in more detail in section 5.6.

5.3 Equipment

Figure 5.2: The AmigoBot robot.

An AmigoBot robot (figure 5.2) from ActivMedia Robotics Ingvas used to
test this application. AmigoBot is an affordable classraoimot with good mobil-
ity in indoor environment. The robot has the following teiah specification:

Six front and two rear rangefinding sonars.

Two 500-tick shaft encoders.

Two wheels with individual motors and a rear caster.

IEEE 802.11b wireless ethernet communication.

The application itself is implemented as a Matlab progrand tested on a
PC running Microsoft Windows XP Professional, Matlab 7 ardlA 2.1. The
adapter layer developed as a part of this thesis project @&s 10 communicate
with the robot. Appendix C contains the full Matlab sourceledor both parts of
the application.

5.4 Room Configurations

This application was tested in two different room configiorzd (see figure 5.3).
Both rooms are open in the center with different hard-sedagbjects around the

28 Chapter 5. Full Scale SLAM-Application

room 1 room 2

Figure 5.3: Room Configuration.

edges of the rooms creating a closed environment. The edges$sts mainly of

wood and metal surfaces but fortunately no glass surfacethesrisk of specular

reflection (see section 4.1) is somewhat limited. The mdferéince between the
room configurations is that the first room consists of faidyrow passages. The
second room on the other hand contains a fairly large opem aeetion 5.7 ex-

plains what type of problems open areas can cause when itsctmreontinuous

localization.

5.5 Navigation

The robot was programmed with an avoid-obstacle behavibis behavior was
implemented using on&rActionConstantVelocity and twoArActionAvoidFront
ARIA actions. Simple avoid-obstacle behaviors are usuadigr choices when it
comes to efficient exploration of unknown environments. eesv this behavior
fitted these rooms configuration quite well and was able tdoexhe entire room
rather quickly without getting stuck in corners or visitisgme regions a lot more
frequently than others.

The application’s two-part design imposes one limitatiarttee choice of nav-
igation behavior. Because the navigation takes place ingiing of the application
but the map is generated by the second part, the behavioo tasgurely reactive
and can not require access to the long-term map.

5.6 SLAM And Continuous Localization

While building maps, it is very important for the robot to kmdts exact position
in the environment. Otherwise, accumulating odometryrewitl soon start to
distort the map being built. Figure 5.4 illustrates how gaterl maps for room
one and two looks like when the built in shaft-encoders aeel as the only source

5.6. SLAM And Continuous Localization 29

of odometry information, without any help from continuoosdlization.

Room 1. Room 2.

Figure 5.4: Map making without continuous localization.

The continuous localization technique described in [10§ wdtially intended
to operate with access to complete apriori spatial knovdeglgout the environ-
ment. Experiments performed by Alan C. Schultz et al. shothatlwith access
to complete spatial information about the environment tiooilwus localization is
able to keep the odometry error at a constant level.

However theapriori knowledgeequirement, is not compatible with the SLAM-
problem. The SLAM-problem explicitly states that an autoios vehicleshould
be able to build a map of amnknownenvironment. In order to comply with this
requirement, the map registration process used in thiscapipin is altered to work
like this:

The long-term map (the map being generated) is initially tympgach local-
ization starts with an empty short-term map. The short-terap is fused with
sensor readings until it is considered mature (sessliogt-term map maturitpa-
rameter in section 5.8). The map registration procegsstersthe short-term map
by overlaying it on the long-term map for each of thposes returned by thmse
generator Themap registration search spagmarameter determines which poses
the pose generator will return. The difference between ¢hetis believed pose
and the best matching pose is considered to be the odomatry &fter the robot’s
pose has been updated, the short-term map is fused withriggdom map and a
new localization starts with a new and empty short-term map.

30 Chapter 5. Full Scale SLAM-Application

5.7 Open Areas

Large open areas are especially troublesome for continlamadization. In this
context, open areas are defined as areas in the environmerttich the robot’s
sonar sensors are unable to detect any obstacle, i.e. dv&cte in the environ-
ment is far enough away not to generate any sonar echo. Attleadifferent
open area related problems affects the effectiveness @ihoonis localization:

While a robot navigates through a large open area, the senaoss will be un-
able to get any range readings at all. If the area is largegimivis possible that the
robot will not detect any obstacles at all during the lifaspéa single short-term
map. A completely empty short-term map will fit equally wetiyavhere on the
long-term map. Consequently, while navigating throughjdaspen areas, contin-
uous localization will be unable to compensate for the odoyrerror introduced
by the shaft encoders. However as long as the robot navijatesgh these areas
in a straight line at a constant velocity the error will betguimited and will not
accumulate very fast.

Figure 5.5: This figure illustrates how the sensor model fsingle sonar reading
from a wall may look like.

Completely empty short-term maps may temporarily disabtginuous local-
ization, but it is neither the only nor the worst open areatesl problem. A worst
case scenario can look like this:

A robot navigates through an open area but one sonar sensahfidetects an
approaching wall (see figure 5.5). That sensor sweep happdrsthe last one for
the current short-term map, so that map is registered anddwegith the long-term
map. During the lifespan of the next short-term map the rgadhers a number of
range readings from the same wall in the newly created steortr map.

When this new short-term map is later registered, it is netchgainst the

5.8. Parameters 31

long-term map’s current information about that area, wtdohsists of only the
information from the previous short-term map’s single semeading. This is usu-
ally not enough information for the map registration practsperform an accu-
rate match. A single sensor reading contains for examplematigh information
to determine the actual angle of the wall only the presensenafbstacle. This
lack of information might result in an inaccurate registmatof the short-term map
and thus introducing additional odometry error into thetesys This application
tries to avoid this worst-case senario by making sure eveoytderm map con-
tains enough information. This is done by measuring sterrtmap maturity by
the number of actual (in range) sensor readings fused, anoyrthe map age in
seconds. This will cause a single short-term map to be aldivger if the robot
navigates through an open area.

5.8 Parameters

This application contains a set of parameters that all obdifferent aspects of the
application. This section describes these parameteis gffect on the application
and the values found to produce good results.

Map registration search space: The registration process can not match the short-
term map with the long-term map for every possible robot pd$és would
be both too computationally expensive and error prone. pdse generator
function is used to limit the search toprobable poses. It is hot easy to
calculate thek mostprobable poses the robot could have, the robot could
have different odometry errors in all three degrees of fvee¢, y, 6) since
the last localization was made. An idgabse generatofunction should
probably consider aspects such as current position, duspged and the
movements performed since the last localization when géingrthe list of
probable poses.

The pose generatofunction used in this application is fairly simple but ef-
ficient. The function assumes the accumulated odometry simoe the last
localization is in the range of1 grid elements in they-plane. The error on
the 6 axis is assumed to be in the rangede8°. With a resolution of 1 grid
element and Lthis yields a total of 63 poses for the registration process t
evaluate during each localization.

Short-term map maturity: The short-term map maturity determines how much
information (sensor readings) to store in each short-teap.nThe short-
term map maturity can either be measured in age, i.e. the euaflseconds
readings are fused into a map before it is considered to bareabr in
the actual number of (in range) sensor readings fused. gd&ir{in-range)
sensor readings into each short-term map was found to bedaggiting for
this application.

32 Chapter 5. Full Scale SLAM-Application

Grid Resolution: The short-term map and the long-term map both uses the same
grid resolution. This resolution determines how fine-gedithe information
stored in the maps will be. The higher resolution used theencomputa-
tionally expensive the application will become. A grid riegion of 35mm
x 35mm was used in these experiments.

Sensor Sweep frequency and vehicle velocityThe sensor sweep frequency and
the vehicle velocity determines the density of the gatharftmation. Dur-
ing these experiments the robot traveled with an averageiglf 80 mm/s
and collected four full sensor sweeps every second.

5.9 Results

The continuous localization process relies heavily on toeigcy of the long-term
map. However the quality of the long-term map simultanegodspends on the
accuracy of the continuous localization process. The patens described in sec-
tion 5.8 all control the quality and accuracy of the resgltmap, in one way or
another. Besides these parameters, the room configurattbtha robot, all affect
the end result. These complex dependencies makes it difftrudven impossible
to find the optimal parameter settings to use. Figure 5.6 shbesresulting map,
using three different map registration search spaces. Oneusion that can be
made from these maps is, that using a larger search spacedsiponore compu-
tationally expensive, but can also generate worse redudtisig a too large search
space can result in incorrect registration of short-ternpsnavhich results in extra
odometry error being added to the map and robot's pose. &igpilusing a too
small search space will stop the continuous localizatiacess from being able
to remove the odometry error introduced by the robot's sbafoders. With the
equipment and room configurations used in this thesis alsegace ot:1 grid
element and:3° gave the best results.

5.10 Limitations

As mentioned before, continuous localization tries to ectrthe robot’s position
by matching the short-term map with the long-term map. Theu@cy of this
matching process is crucial to the overall effectivenesge method works well as
long as the short-term map contains sensor readings fropastt bne object in the
environment, that is also in the long-term map. This is Uguhe case if the robot
is equipped with enough sonar sensors and the environmeastrad contain large
open spaces.

When a robot navigates through large open spaces, sonarsevifi be un-
able to get any readings because all obstacles are out af eamyas a result the
short-term map will become empty. The map registration ggeavill be unable
to estimate the odometry error because the short-term nmbpenoverlayed over

5.10. Limitations 33

Room 1 Room 2

Using search spacel grid element;£6°

Using search spacel grid element;£3°

Figure 5.6: Resulting maps using different search spaces.

34 Chapter 5. Full Scale SLAM-Application

an equally empty part of the long-term map and no correctaomle performed.
The sonar sensors on the AmigoBot robot can only detect dbstéess than 800
mm away. This means that this approach is most effective vir@mment where
the robot most of the time will be less than 800 mm away frontastiss.

5.11 Future Work

The overall map precision and quality could probably be mapd by using opti-
mized sensor models. Joris W.M. van Dam et al. presents aonaglibrate sensor
models using neural networks. This approach makes the isemtatel adaptive to
changes both in the environment and the characteristidseafénsors [12].
Simple exploration behaviors such as avoid-obstacle tmvielvall might work

adequately in simple room configurations like the one usdtiése experiments.
In more complex environments such as large office envirotsngmore efficient
exploration method must be used. Brian Yamauchi introdwucdbntier-based
approach for autonomous exploration [13]. This approads ke concept of
frontiers which is the region between unexplored areas andaupied areas. By
navigating to a frontier more information is added to thegiderm map and the
frontier is consequently further pushed back. This typeroftier-based explo-
ration is much more efficient than the avoid-obstacle behastirrently used.

Chapter 6

Summary and Conclusion

This chapter summarizes the work and the conclusions tiabearawn from the
two parts this thesis project consists of.

6.1 Summary and Conclusions

This thesis presented an adapter layer between ARIA andabldtiat success-
fully hides some of the complexity imposed by the ARIA librdtself and the
C++ language. The API is modeled after ARIAs original C++ bpt due to the
difference in features between the C++ and Matlab langutgeexposed API is
not complete. Some methods could not be wrapped due to gdifitations im-
posed mainly by Matlab. Other methods were wrapped but vightty different
signatures to make them look and feel more Matlab-like.

One conclusion that can be made is that even though ARIA igye End com-
plex library and C++ and Matlab are two very different pragraing languages,
it is possible to create an at least partial adapter layereMitsing programming
languages with a feature set more compatible with C++ like & Pytho# it is
possible to auto-generate most, if not all of the adaptesrlaging tools such as
swig?. Unfortunately no such tool exists for Matlab so every wiapipinction in
this adapter layer is hand-crafted. Fortunately the dassgal makes it very simple
and obvious where and how to make modifications in order tenekthe adapter
layer by wrapping new functions.

This thesis also presented a full-scale SLAM-applicatibnis application ex-
plored important SLAM techniques such as occupancy gridgesian sensor fu-
sion and continuous localization. Experiments using tpidieations showed how
quickly odometry error accumulates and distorts the mapgogenerated. Addi-
tional experiments demonstrated that continuous lodaizacan be used to limit
or even completely remove the odometry error introducedhiaft £ncoders.

Thttp:/iwww.python.org/
2http://www.swig.org

35

36 Chapter 6. Summary and Conclusion

One conclusion that can be made is that continuous localizagan be very
useful and vastly improve the quality of generated maps.téttenique is effective
both with and without any previous knowledge about the roomfiguration.

Chapter 7

Acknowledgementes

| wish to thank my supervisor Thomas Hellstrom at the Depantnof Computing
Science, Umed& University for his support during this projéaevould also like to
thank Thomas Nyberg for proof-reading this thesis.

37

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

ACTIVMEDIA. Aria reference manual. pdf-document, 26 Sept. 2004.
http://www.cis.ysu.edu/"john/robotics/ARIA/Aria-Ref erence.pdf

ACTIVMEDIA. Robot specifications. web-site, 3 Feb. 2005.
http://www.activrobots.com/ROBOTS/specs.html

BRAITENBERG, V. Vehicle: Experiments in Synthetic Psychologylas-
sachusetts Institute of Technology, 1984.

GRAVES, K., ADAMS, W., AND ScHULTZ, A. Continuous localization in
changing environments, 1997.

GUTMANN, J., BURGARD, W., Fox, D., AND KONOLIGE, K. An experi-
mental comparison of localization methods.Aroceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systgdr98).

MORAVEC, H., AND ELFES, A. E. High resolution maps from wide angle
sonar. InProceedings of the 1985 IEEE International Conference dndRos
and Automatior{March 1985), pp. 116-121.

MoORAVEC, H. P. Sensor fusion in certainty grids for mobile robots. In
Proceedings of the 1988 Al Magazine Volum@988), pp. 61-74.

M URPHY, R. R.Introduction to Al robotics Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, 2000.

PART-ENANDER, E., AND SIOBERG A. Anvandarhandledning for Matlab
Uppsala universitet, Uppsala, Sweden, 2003.

ScHuLTZ, A. C.,AND ADAMS, W. Continuous localization using evidence
grids. pp. 2833-2839.

THE MATHWORKS, |. External interfaces reference, 10 Feb. 2005.
http:/iwww.mathworks.com/access/helpdesk/help/pdf_d oc/matlab/
apiref.pdf

VAN DAM, J. W. M., KROSE, B. J. A.,AND GROEN, F. C. A. Adaptive
sensor models. 11996 |IEEE/SICE/RSJ Intr. Conf. on Multisensor Fusion

39

40 REFERENCES

and Integration for Intelligent Systems, Washington fD@c. 8-11, 1996),
pp. 705-712.

[13] YAMAUCHI, B. A frontier-based approach for autonomous exploratiom.
Proceedings of the 1997 IEEE International Symposium on féational
Intelligence in Robotics and Automati¢t997), pp. 146-151.

[14] YAMAUCHI, B., ScHuLTz, A. C., AND ADAMS, W. Mobile robot explo-
ration and map-building with continuous localization. B15-3720.

Appendix A

Programming Tutorial

The purpose of this ARIA adapter is to provide a simple yetgdu API for Mat-
lab users. Only a few lines of code is required to create alsingot application.

This tutorial covers topics such as installing the softwameyour computer,
example programs and troubleshooting. By the time you rélaehend of this
tutorial you will be able to install ARIA for Matlab adaptexyler on your computer
and write simple Matlab programs that interacts with younAfRased robot.

Installation
The installation is quite straight forward and consistsmdf/dwo steps:

1. Download and install the ARIA distribution from the Adthedia web-site.
This distribution contains some data files required by thepset layer. The
installation program will also install the file necessaryuse ARIA from
C++ And Java.

2. Extract the zip-archive containing the compilada For Matlab files to
somewhere on your hard-drive, for exampleCtd AriaMatlab 1\

3. In order for this extension to work Matlab must be able td fime @robot -
class directory in the Matlab search path. A new directory loa added to

the search path using tl&et Pathdialog (see fig A.1) accessible from the
File-menu. Another option is to use thddpath command like this:

addpath c:\AriaMatlab\

Note: The addpath command only affects the currently rupniMiatlab in-
stance and has to be re-run every time Matlab is restarted.

41

42 Chapter A. Programming Tutorial

=) Set Path

All changes take effect immedistely.

- (23 C:\PragramiWATLAB7 01 taalboximatlabigeneral
3 CAProgramWATLAB? 01 oolboxvmatlabiops

(23 C:\PragramiWATLABTO 1 taalboximatlabilang
(20 C:\PragramiWATLABTO 1t aalboxmatlablelmat
(20 C\ProgramiWATLABE7 01 taalhoximatlabialfun
(23 C:\PragramiWATLABTO 1t aalboxmatlablspecfun

3 C:\PrograrmyMATLAB70 1 oolboxvnatlabimatfun

(23 C:\PragramiWATLABT 01 taalboximatlabidatafun
(23 CProgramivATLABT 01 oalboximatlabipalyfun

(23 C\PragramiWATLABET 01 taalhoximatlabifunfun

(3 C\ProgramiMATLAET 01 toolhoximatlabispariun
Remove &

[CAProaramitATLABZ 01t onlboximatlabiscribe

Figure A.1: TheSet Pathdialog can be used to tell Matlab where to find @eobot
directory.

Connecting

ARIA communicates with the robots using TCP/IP connectioiEsach robot is
identified by an ip-address. It is generally a good idea tafyéhnat the robot’s
ip-address is reachable from the computer running Matlérédrying to use the
adapter layer.

ping <your-robots-ip-address>

If no ping reply is received from the robot when running thexacommand in
the command prompt please verify your network setup befon¢irtuing with this
tutorial.

Before a program can communicate with a robot a TCP/IP cdiamebas to
be established between the ARIA library and the robot. Wheating a newobot
instance by calling theobot constructor with an ip-address as the only argument,
a new connection is automatically established.

myrobot = robot('192.168.1.11");

This instance should be passed as the first argument to sdl oiathods to let
ARIA know which robot to send the commands to. At the end ofagpam it is
good practice to disconnect from the robot. This will stopithbot and disable the
sonar sensors. The following line will disconnect a robot:

disconnect(myrobot);

43

Coordinate System

While a robot navigates in the environment, ARIA always lsseack of the robot’s
pose using the robot’s built in shaft encoders. The robatfebed pose can always
be accessed and updated usinggemoseandmovemethods.

The robot’s pose is expressed as a point on the xy-plane aadged. When
the robot powers up the initial pose is setxte- 0, y = 0, 6 = 0, and the robot is
looking along the positive x-axis. If the robot rotates +@@akes (counter clock
wise) it will be looking along the positive y-axis. The x, ygition is expressed in
unit of millimeters and thé angle in the interval of +-180 degrees counter clock
wise.

Examples

This section contains three simple Matlab programs thatsirey the ARIA adapter
API. Please see appendix B for a complete APl documentation.

Example 1 demonstrates how easy it is to implement a sim@#eBiberg vehicle.
This avoid obstacle behavior will be repeated until the tatmlides with some
object and at least one wheel gets stuck.

weights = [1 1.5 2 -2 -15 -1 0 0];
myrobot = robot('192.168.1.11");

while ~isleftmotorstalled(myrobot) && ~isrightmotorsta lled(myrobot)
sonar = readsonar(myrobot) - 7500;
dir = (weights * sonar’) / 1000;
setvel(myrobot, [70 70] + [-dir dir]);

end

disconnect(myrobot);

Example 2 demonstrates how to use thave and set(delta)heading com-
mands. This program will move the robot 0.5 meters forwatal sind turn 180
degrees. This behavior will be repeated 10 times beforeodisecting from the
robot.

myrobot = robot('192.168.1.11");

for i=1:10
% Move 0.5 meters forward
move(myrobot, 500);
% Wait until the robot has reached the target
while ~ismovedone(myrobot)
sleep(100);
end

44 Chapter A. Programming Tutorial

% Rotate 180 degrees clock-wise
setdeltaheading(myrobot, 180);
% Wait until the have rotated 180 degrees
while ~isheadingdone(myrobot)
sleep(100);
end
end
disconnect(myrobot);

Example 3 demonstrates how to use glagppose method to fetch the robot's
believed pose. This program will put the robot imteoid-obstaclenode and plots
the path the robot travels using basic Matlab commands.

r = robot(192.168.1.11";

x = [I;

y = [;

figure(1);

% Tell the robot to avoid obstacles

avoid(r, 80);

% Loop until we get stuck

while ~isleftmotorstalled(r) && ~isrightmotorstalled(r)

% Save our position in two vectors
pose = getpose(r);
x = [x pose(1)];
y = [y pose(2)];
% Plot our path
plot(x, y);
drawnow;
% Sleep 0.1 seconds
sleep(100);

end

disconnect(r);

Troubleshooting

e When | try to create a robot instance | get the following erroessage:
“Undefined command/function 'robot™.

Matlab is unable to find th@robotdirectory in the search path. Please make

sure the directory is added using either 8et Pathdialog or theaddpath
command.

e Every time | try to create a robot instance | get the followargor message:
“connect failed”.

ARIA failed to reach the robot. Please verify that the cdripeaddress is
used and that the robot respondpiog.

45

e When | call a class method | get the following error messagevélid robot
id”.
This happens when calling class methaéter disconnecting from the robot.
Calling class methods after disconnecting from a robot isatiowed.

¢ Is there a way to make sure the robot always stops if some ao@gerror
happens in my program?

Yes, one way is to usetgy, catch statement to make sure the disconnect()
command is always executed:

function myprogram()
myrobot = robot('192.168.1.11")
try

myrealprogram(myrobot)
catch

lasterr
end
disconnect(myrobot)

function myrealprogram(myrobot)
<Put your real program here>
return

Appendix B

AP| Documentation

The APl is basically a subset of the full Aria C++ API that haeb slightly mod-
ified to get a more Matlab-like look and feel. Among the changee the use of
vectors and matrices instead of helper classes like ArPbseeNeasible.

Robot Class Constructor
A robot class instance represents a connection to a robot’s. Aesiigtlab pro-

gram can connect to and control multiple robots simultaslohy creating one
robot instance for each robot.

A robot instance is created like this:
myrobot = robot('192.168.1.11")
The string argument to thebot constructor is the robot’s network address. It can

be a hostname or an numerical ip-address. The construdtonsea newrobot
instance on success. On failure an exception is raised.

Robot Class Methods

The OOP-system in Matlab uses a for Java and C++ programnviysaad syntax.
The following Java/C++ lines

instance.method(argl, arg2, ...);
looks like this in Matlab:
method(instance, argl, arg2, ...);

The methods listed in the rest of this section @it class-methods:

47

48

Chapter B. APl Documentation

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:
description:

name:

arguments:

returns:
description:

name:

arguments:

returns:
description:

name:

arguments:

returns:
description:

disconnect

Nothing

Nothing

Disconnects from the robot associated wihidhot instance.
This function returns resources associated with this msta
back to the operating system. The instance should not be used
after this.

setvel
XY, 0] (1x3 matrix)
Nothing
Sets the velocity for the wheels indepengentl

getpose
Nothing
[X,Y, 8] (1x3 matrix)
Returns the robot’s current pose (positiah laeading).

readsonar

Nothing

1xn matrix (mm)

Returns range readings from all of the robogsnar sensors.
The readings are returned as a 1xn matrix. Missing values are
indicated with the value 6842.

isleftmotorstalled

Nothing

1if stalled else O

Returns the state of the left motor. A retulne®f 1 indicates
that the left motor is unable to rotate the left wheel, this is
usually indicates that the robot is stuck due to a collision.

isrightmotorstalled

Nothing

1 if stalled else O

Returns the state of the right motor. A retustug of 1 indi-
cates that the right motor is unable to rotate the right wheel
this is usually indicates that the robot is stuck due to a-coll
sion.

lock

Nothing

Nothing

Locks the robot instance. As long as the robstance is
locked, the ARIA background thread will not update values
such agoseor sonar readings. This function can be used to
collect readings from the robot in a consistent manner.

49

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:
description:

name:

arguments:

returns:
description:

name:

arguments:

returns:
description:

name:

arguments:

returns:
description:

name:

arguments:

returns:
description:

unlock

Nothing

Nothing

Unlocks the robot instance. Seeltioék method.

moveto

[X,Y,0] (1x3 matrix)

Nothing

Updates the robot’s idea of its position. i@glthis method
will not physically move the robot only update the robot’s be
lieved position.

cleardirectmotion

Nothing

Nothing

A direct motion commansgdtve] move setheading . .) over-
rides ARIA actions. This method clears whatever direct mo-
tion command that has been gives so actions work again.

stop

Nothing

Nothing

Stops the robot by setting the wheel and mtativelocity to
0.

move
distance (mm)

Nothing

Moves the robatistancemm forward or backward. This-
movedonemethod can be used to determine when the move is
completed.

ismovedone

Nothing

1 if nomovecommand is running else 0
Determines if anpovecommand is running.

setheading

heading in degrees

Nothing

Rotates the robot to the given heading angte iSheading-
donemethod can be used to determine when the rotation is
completed.

50

Chapter B. APl Documentation

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

name:

arguments:

returns:

description:

setdeltaheading

delta heading in degrees (relative to the ®misatrent head-
ing)

Nothing

Rotates the robot to the given heading angheisheading-

donemethod can be used to determine when the rotation is

completed.

isheadingdone

Nothing

1 if noset(delta)headingommand is running else 0
Determines if arget(delta)headingommand is running.

setrotvel
velocity (deg/s)
Nothing
Tells the robot to rotate at a certain speed.

absolutemaxtransvel

velocity (mm/s)

Nothing

Sets the robot’s absolute maximum transiatigelocity. This
serves as an upper limit for tmetvelmaxmethod.

absolutemaxrotvel

velocity (deg/s)

Nothing

Sets the robot’s absolute maximum rotatimesdcity. This
servers as an upper limit for thensvelmaxmethod.

rotvelmax

velocity (deg/s)

Nothing

Sets the maximum rotational velocity. Thisthod controls
how fast motion commands such sstheadingand setdelta-
headingwill rotate.

transvelmax

velocity (mm/s)

Nothing

Sets the maximum translational velocity. sTimethod con-
trols how fast the robot will move while performingiove
commands.

avoid

velocity (mm/s)

Nothing

Starts a built in avoid obstacle behavior.sTdehavior is im-
plemented using onArActionConstantVelocity and two
ArActionAvoidFront ARIA actions.

51

Utility Functions

name: sleep
arguments: timey
returns: Nothing
description: Sleefimemicroseconds using th&rUtils::sleep() function.

Appendix C

SLAM Source Code

partl.m

function save_readings()
r = robot('192.168.100.11");
try
setabsolutemaxrotvel(r, 40);
avoid(r, 80);
save_map(r, 30 .* 16);
catch
lasterr
setvel(r, [0, 0]);
disconnect(r);
return;
end
stop(r);
disconnect(r);

function save_map(r, num_readings)
for i = 1:num_readings;
sleep(250);
lock(r);
saved_pose(i,;) = getpose(r);
saved_readings(i,;) = readsonar(r);
unlock(r);
end
save statel?2 saved*;

53

54 Chapter C. SLAM Source Code

part2.m

SCALE = 35;

world_size = 300;

world = zeros(world_size, world_size);
world(:,:)= 0.5; % 0.5 = unknown
overlap = 0;

degrees = [0 -1 1 -2 2 -3 3J;

% Load sensor readings and robot poses from disk
load statel0 saved*;

readings = saved_readings;

pose = saved_pose;

off = 1;

while off < length(readings) - overlap
stm_size = 0;
num = 0;

% Determine how many sensor sweeps required to find
% at least 45 in-range readings
while num < 45 && off+stm_size < length(readings)
num = num + sum(readings(off+stm_size,:) < 6000);
stm_size = stm_size + 1;
end
rpos = [J;
rstm = [];
rposes = [J;
rscore = [J;
rdegrees = [J;
% Generate LENGTH(DEGREES) different versions of the stm. A II' rotated
% differently to allow us to correct odometry errors on the th eta axis
tic;
for k = 1:length(degrees)
% Start with an empty short time map
stm = zeros(world_size, world_size);
% Everything is unknown
stm(:,;;) = 0.5;
for j = l:stm_size
pos = ceil((pose(off+j,)) ./ SCALE) + (world_size ./ 2) - 40) ;
% Generate a sensor model
model = sonar_model(readings(off+j,:), pose(off+j,3)+d egrees(k));
% Add it to the short term map
stm = bayes(stm, model, pos);

end

% We are only interested in a smaller square of the stm with the first
% robot pose in the center.

margin = 15;

pos = ceil((pose(off+1,:) ./ SCALE) + (world_size ./ 2) - 40 - margin);

stm = stm(pos(1)+1:pos(1)+length(model)+2*margin, ...
pos(2)+1:pos(2)+length(model)+2*margin);

% The POSSIBLE_POSES() function returns a matrix of possibl e robot
% poses (relative to the current position).
% We use the CALC_SCORE utility function to find out in which o f these

% poses the stm fits best.
poses = possible_poses(pose(off+1,:));
for I=1:size(poses,1)
pos2 = pos(1:2) + poses(l,:);
rscore = [rscore calc_score(world, stm, pos2)];
rpos = [rpos; pos2];
rstm(:,:,length(rscore)) = stm;
rposes = [rposes ; poses(l,:)];

55

rdegrees = [rdegrees degrees(k)];

end
end
toc;
% The MIN() functions returns the most probable location.
[score, idx] = min(rscore);
stm = rstm(;,,idx);
pos = rpos(idx,:);

% Register the short time map in the global map
world = bayes(world, stm, pos);

left = off+stm_size-overlap:length(readings);

a = -rdegrees(idx) / 180 * pi; T = [cos(a) -sin(a); sin(a) cos(
pos = [pose(left,1)-pose(off+1,1) pose(left,2)-pose(of

pos = pos * T,

pose(left,1:2) = [pos(:,1)+pose(off+1,1) pos(:,2)+pose
pose(left,1) = pose(left,1) + (SCALE .* rposes(idx,1));
pose(left,2) = pose(left,2) + (SCALE .* rposes(idx,2));
pose(left,3) = pose(left,3) + rdegrees(idx);

% Display the short-time-map and the long-term map in two dif
figure(1);
colormap(gray);
imagesc(stm, [0 1]);
figure(2);
colormap(gray);
imagesc(world, [0 1]);
drawnow;
off = off + stm_size - overlap;
end
% Display a clearer map using some crude image manipulation
figure(3);
colormap(gray);
world(find(world < 0.7)) = 0;
world(find(world >= 0.7)) = 1;
imagesc(world, [0 1]);

function poses = possible_poses(pose)

%poses = [0 0]; return;

poses = [00; -1-1;11;1-1;-11;
0-1,01;,-10;10

return

function score = calc_score(world, model, offset)
world = world(offset(1)+1:0ffset(1)+length(model), ...
offset(2)+1:0ffset(2)+length(model));
if length(find((world ~= 0.5) .* (model ~= 0.5))) ==
score = 0;
return
end
score = sum(sum(abs(world - model)));

function world = bayes(world, model, offset)

prev = world(offset(1)+1:0ffset(1)+length(model),
offset(2)+1:offset(2)+length(model));

idx = find(~isnan(model));

new = prev;

new(idx) = (model(idx) .* prev(idx)) ./ (model(idx) .* ...
prev(idx) + (1 - model(idx)) .* (1 - prev(idx)));

world(offset(1)+1:offset(1)+length(model),

offset(2)+1:0ffset(2)+length(model)) = new;

f+1,2)];

(off+1,2)];

ferent figures

56 Chapter C. SLAM Source Code

function model = sonar_model(ranges, theta)

B =7
R = 26;
SCALE = 35;

TOLERANCE = 1,
MAXOCCUPIED = 0.98;
model_size = 59;
model = zeros(model_size, model_size);
model(:,:)= NaN;
a = -theta/180*pi; T = [cos(a) -sin(a) ; sin(a) cos(a)];
sonars = [73 105 90 ;

130 78 41 ;

154 30 15 ;

154 -30 -15 ;

130 -78 -41 ;

73 -105 -90 ;

-146 -60 -145 ;

-146 60 145 ;];
% Remove out of range sensors
tmp = [J; tmp2 = [|;
for si = 1:length(sonars)

if ranges(si) < 1000

tmp = [tmp; sonars(si,:)];
tmp2 = [tmp2; ranges(si)];

end
end
if size(tmp, 1) ==

return
end
sonars = tmp;
ranges = tmp2 ./ SCALE;
sonars(:,1:2) = sonars(;,1:2)*T ./ SCALE;
sonars(;,3) = sonars(;,3) + theta;

for yi = 1:model_size
for xi = 1:model_size
for si = 1:size(sonars, 1)
X = xi - model_size / 2;
y = yi - model_size / 2;
% optimized version of norm()
r = ((x - sonars(si,1))*2 + (y - sonars(si,2))*2)"0.5;
b = abs(atan2(y - sonars(si,2), x - ...
sonars(si,1)) / pi * 180 - sonars(si,3));
while b > 180
b = abs(b - 360);
end
if b > B || r > ranges(si) + TOLERANCE/2
continue
end
if abs(r - ranges(si)) <= TOLERANCE
psn = (R - r) / R) + ((B-b) / B)) / 2) * MAXOCCUPIED;
psn = 0.5 * psn + 0.5;

else
psn = (R -1 / R) + ((B-b) / B)) / 2
psn =1 - (0.5 * psn + 0.5);
end
model(xi, yi) = psn;
end

end
end

