
Umeå University
Department of Computing Science
Master’s Thesis Project D, 20 credits

ARIA and Matlab Integration With Applications

Jonas Borgström c00jbm@cs.umu.se

3rd April 2005

Supervisor:
Thomas Hellström

Abstract

The courseIntelligent Roboticsat Umeå University let, like many other simi-
lar courses, their students explore different algorithms and architectures using real
mobile robots. There is unfortunately no standardized way to interface with robots.
Instead each manufacturer provide software developers kits (SDKs) for their own
products. This is especially troublesome for robotics courses where students should
be able to concentrate on the actual subject and not be forcedto spend a lot of time
learning to use complex SDKs and even new programming languages. The course
at the Umeå University uses robots from two different manufacturers. Khepera
robots are controlled from Matlab and AmigoBot robots from C++. Most students
are already familiar with the Matlab programming language and feel a bit intimi-
dated by the AmigoBot’s powerful but complex C++ SDK named ARIA.

This master’s thesis project is divided into two parts. The first part describes
the design and implementation of an adapter layer between the ARIA library and
Matlab. This adapter layer allows ARIA-based robots to be controlled directly
from within Matlab without using the C++ SDK directly. In thesecond part of
this project a full scale SLAM-application is created that explores some important
topics in the robotics field, such as map making and continuous localization.

Contents

1 Introduction 1
1.1 Goal . 1
1.2 Method . 2
1.3 Report Outline . 2

2 ARIA and Matlab 3
2.1 ARIA . 3
2.2 Supported Robots . 4
2.3 The ARIA API . 4
2.4 Matlab . 5
2.5 Integrating Matlab . 5
2.6 Matlab Limitations . 6

3 Adapter Layer 9
3.1 MEX-Extensions . 9
3.2 C++ Classes In MEX-Extensions 9
3.3 The aria_adapter Extension . 10
3.4 Extending the Adapter Layer . 12
3.5 Using the Adapter Layer . 13
3.6 A Sample Program . 13
3.7 Performance . 14
3.8 Limitations . 15
3.9 Future Work . 15

4 Map Making and Localization 17
4.1 Sonar Sensors . 17
4.2 Occupancy Grid . 18
4.3 Sonar Sensor Models . 18
4.4 Updating occupancy grids . 19

4.4.1 Bayesian sensor fusion 20
4.5 Localization . 21

4.5.1 Odometry and Shaft Encoders 22
4.6 Continuous Localization . 22

iii

iv CONTENTS

5 Full Scale SLAM-Application 25
5.1 SLAM . 25
5.2 Design . 26
5.3 Equipment . 27
5.4 Room Configurations . 27
5.5 Navigation . 28
5.6 SLAM And Continuous Localization 28
5.7 Open Areas . 30
5.8 Parameters . 31
5.9 Results . 32
5.10 Limitations . 32
5.11 Future Work . 34

6 Summary and Conclusion 35
6.1 Summary and Conclusions . 35

7 Acknowledgementes 37

References 38

A Programming Tutorial 41

B API Documentation 47

C SLAM Source Code 53

List of Figures

2.1 ARIA API block diagram . 5

4.1 Sonar sensor model . 19
4.2 Bayesian sonar sensor model . 20
4.3 Continuous localization process 23

5.1 Map making and localization process 26
5.2 The AmigoBot robot . 27
5.3 Room Configuration . 28
5.4 Map making without continuous localization 29
5.5 A single sensor reading of a wall 30
5.6 Resulting maps . 33

A.1 Set Path Dialog . 42

v

List of Tables

2.1 Robots supported by robots . 4

vii

Chapter 1

Introduction

The courseIntelligent Roboticsat Umeå University let, like many other similar
courses, their students explore different algorithms and architectures using real
robots. Unfortunately there is no standardized way to interface with robots. In-
stead each manufacturer provide SDKs1 for their own products. This is especially
troublesome for robotics courses where students should be able to concentrate on
the actual subject and not be forced to spend a lot of time learning how to use
different SDKs and even new programming languages.

The course uses two different types of robots: AmigoBots from ActivMedia
and Khepera robots from K-Team. Khepera robots are controlled from Matlab and
AmigoBot robots from C++ or Java. Most students are already familiar with the
Matlab programming language and the dynamic nature makes itvery suitable for
the “trial and error” way of working that is common when experimenting with
robots and algorithms. AmigoBots use an advanced C++ SDK called ARIA. This
SDK is very powerful and well designed but has a prominently steeper learning
curve compared to the rather simplistic Khepera SDK.

1.1 Goal

The goal of this master’s thesis project can be divided into two parts:
The first part is to create an easy to use adapter layer betweenMatlab and

ARIA-based robot. This layer should provide students and other developers with
an easy to use and stimulating developing environment in which a few lines of
Matlab code should be enough to create simple robotics programs.

In the second part, a full-scaled SLAM2 application is developed. The purpose
is to explore important topics within the robotics field suchas map making and
continuous localization. This application also serves as atest-framework for the
adapter layer developed in part one. Experiments with this application illustrate

1Software Development Kit.
2Simultaneous Localization And Mapping.

1

2 Chapter 1. Introduction

how odometry errors affect map making and how efficient continuous localization
is when dealing with this problem.

1.2 Method

In order to determine the best design and implementation forthe adapter layer, the
ARIA and Matlab documentation and API was studied in great detail. Effort was
also made to make sure the resulting API was simple and self-explanatory enough
for new users without extensive training. Furthermore it should have enough simi-
larities with the existing C++ API for existing ARIA developers to feel comfortable
and at home.

Building a SLAM-application required a lot of information searching. Search-
ing for SLAM-related articles using search terms such as “localization” and “map-
ping” on CiteSeer3 and Google were the primary sources of information. Besides
searching for and reading articles a lot of time was spent on the actual implemen-
tation and experiments. The algorithms used and the application itself required a
lot of tweaking and testing in order to produce good results.

1.3 Report Outline

The rest of this thesis paper follows the following disposition:

Chapter 1 This chapter.

Chapter 2 Contains a detailed study of the ARIA and Matlab internals inorder to
determine the best design of the adapter layer.

Chapter 3 Describes the design and implementation of the adapter layer.

Chapter 4 Describes the theory behind map making and localization.

Chapter 5 Descirbes the design and implementation of a SLAM-application as
well as experiment results.

Chapter 6 Summary and conclusions.

Chapter 7 Acknowledgements.

Appendix A Adapter Programming Tutorial.

Appendix B Adapter API Documentation.

Appendix C SLAM-application source code.

3http://citeseer.ist.psu.edu/

Chapter 2

ARIA and Matlab

This chapter introduces ARIA and Matlab, the two major components involved in
the creation of the adapter layer.

2.1 ARIA

ARIA1 is an open source object oriented interface to ActivMedia mobile robots
(see section 2.2 for a complete list of compatible robots). The interface is imple-
mented as a cross platform2 C++ library. Besides a lot of robot related function-
ality the library also contains wrappers around platform specific functions such as
threading and networking.

The ARIA library is primarily designed for professional developers and is
meant to be used as a solid base for large-scale applications. The library architec-
ture is very flexible so the library can be used by both multi-threaded and single-
threaded applications. ARIA communicates with the robot using either a serial
tether or a TCP/IP connection.

Coordinate System

While a robot navigates in the environment, ARIA always keeps track of the robot’s
pose using the built in shaft encoders. The robot’s believedpose can always be
accessed and updated using thegetposeandmovemethods.

The robot’s pose is expressed as a point on the xy-plane and anangleθ. When
the robot powers up the initial pose is set tox = 0, y = 0, θ = 0, and the robot is
looking along the positive x-axis. If the robot rotates +90 degrees (counter clock
wise) it will be looking along the positive y-axis. The x, y position is expressed in
unit of millimeters and theθ angle in the interval of +-180 degrees counter clock
wise.

1Active Robotics Interface Application.
2So far only supported on Linux and Microsoft Windows.

3

4 Chapter 2. ARIA and Matlab

2.2 Supported Robots

ARIA supports robots of all difference sizes and shapes. Thesmallest supported
robot is the AmigoBot, it weighs 3.6 kg and is equipped with eight sonar sensors.
On the other side of the spectrum is the PowerBot, the largestsupported robot
which weighs 120 kg and is equipped with 28 sonar sensors, laser mapping and a
gripper arm.

Most, if not all robots manufactured by ActivMedia are supported by the ARIA
library, table 2.2 contains a complete list.

Table 2.1: Robots supported by ARIA [2]

AmigoBotTM - Classroom and team robot.

Pioneer 3-AT - High performance all-terrain robot.

Pioneer 3-DX - Research and educational robot.

PatrolBotTM - A surveillance robot.

PowerBotTM - High-agility, high-payload robot.

PeopleBotTM - Human interface robot.

2.3 The ARIA API

ARIA has a large and powerful API [1]. The API contains a set ofhigh-level
functions that allow developers to control the robot using both built-in and user
defined actions3. ARIA allows programmers to define new actions by subclassing
ArAction and overriding a few class methods. These actions are run in aback-
ground thread allowing the main application thread to deal with other things than
the robot’s basic behavior.

It is also possible to directly control the robot’s movements and sensors using a
set of lower-level functions. These functions command the robot to perform differ-
ent tasks such as “Give me the range reading from sonar sensorX,” “Move forward
with velocity Y”, etc. ARIA also contains an even lower-level API that allows users
to communicate with and send commands directly to the robotsonboard computer,
this approach however requires detailed knowledge about the properitary protocol
used between ARIA and the robot.

3Also known as behaviors or behavioral actions.

2.4. Matlab 5

Figure 2.1: ARIA API block diagram. Figure taken from the ActivMedia Robotics
Inc web page.

2.4 Matlab

Matlab is a high-level technical computing language developed by MathWorks.
Their goal was to provide engineers and scientists with a more powerful and pro-
ductive environment than was provided by popular programming languages like
Fortran, C and C++ [11].

Matlab is not only a high-level language for technical computing. The Matlab
application is more of a development environment with features like code manage-
ment, interactive tools for iterative exploration, designand problem solving.

2.5 Integrating Matlab

Matlab can be integrated with other languages and applications in a at least two
different ways:

• An application written in C or Fortran can use Matlab as a computation en-
gine by using the Matlab engine library. This library allowsthe application
to communicate with a Matlab instance via a pipe on Unix platforms and a
COM-interface on Windows platforms. This allows an application to send
and receive data to and from Matlab, and to process that data by calling
Matlab functions.

• The other way around is also possible. Functions written in languages such
as C and Fortran can also be used from within Matlab. This is achieved

6 Chapter 2. ARIA and Matlab

by using MEX-files4. A MEX-File consists of two distinct parts. The first
part contains the routine implementing the wanted functionality. It can be
a highly optimized numerical algorithm, a communication routine for some
exotic hardware or something completely different.

The other part is the gateway routine. Its responsibility isto interface the
computational part with Matlab. This includes verifying that the MEX-
function is called with valid left- and right-hand side arguments. The gate-
way routine calls the computational routine after the arguments are verified.

The main reason why people sometimes use MEX-extensions instead of plain
Matlab code is performance. Implementing computationallyexpensive algorithms
in compiled languages like C/C++ or Fortran sometimes yieldsignificant perfor-
mance improvements.

MEX-extensions are also required when accessing some operating system de-
pendent functions and use external libraries, or when communicating directly with
hardware.

2.6 Matlab Limitations

The MEX API [9] and the Matlab language itself imposes a number of limitations
on what an extension is able to do. The following list describes some of these
limitations, their effect on this work and possible workarounds:

• Not thread-safe: The ARIA library can be run both single-threaded and
multi-threaded, but Matlab itself is a strictly single-threaded application.
This means that some of the functionality in the ARIA librarywill not be
available from within Matlab. Fortunately most of the functionality is still
available for single-threaded applications.

• Ad-hoc OOP5 support: MathWorks has in recent versions of Matlab added
object-oriented programming support. Basic oop-featuressuch as function
overloading, data encapsulation and inheritance are supported, but it is not as
advanced as other oop-languages such as C++ or Java. Creating new classes
in Matlab is both complicated and requires a lot of code. Eachnew class
requires a directory on the filesystem that contains one Matlab file for each
class method. Exporting a C++ api asreal Matlab classes require even more
elaborate work that will be described in more detail in chapter 3.

• No destructor support: The oop-system used by Matlab lacks the concept
of destructors used by most other oop-languages. A destructor is a special
class method that is invoked just before a class instance is garbage collected.
Destructors are traditionally used by class instances to return resources back

4Matlab Extension components.
5Object-Oriented Programming.

2.6. Matlab Limitations 7

to the operating system. This missing feature might not seemthat important
given that Matlab’s garbage collection will take care of values no longer
used. Unfortunately this is only true as long as no MEX-extensions are used.
Some MEX-extensions may allocate memory that explicitly has to be freed
in order to avoid memory leaks. This limitation makes it hardto export C++
class instances into Matlab. Chapter 3 presents a (partial)solution to this
problem.

• Limited type-system: Matlab uses a somewhat limited type-system. It is
for example impossible to add new classes at run-time. The only way to
add a new class to the system is to physically create a new directory named
“@”+class_name. The parent directory of this newly created directory also
has to exist in the Matlab path.

• One way communication between a MEX-routine and the Matlab core: The
MEX-API in combination with the single-threaded nature of Matlab makes
it impossible for an extension to notify the main Matlab process of events,
unless Matlab explicitly asks (polls) for them. With this limitation it is not
possible to (from within Matlab) register callback-functions for ARIA to call
when special events like lost contact with the robot occurs.

• Only one computation routine in each MEX-file: MEX-extensions are im-
plemented as shared libraries in UNIX and as dynamically loaded libraries
in Windows. When it comes to locating a MEX-extension Matlabuses the
same naming convention as it does withnormalfunctions written in Matlab,
MEX-extensions must have the same filename as the name of the computa-
tion routine they contain6.

This naming convention is very easy to use but has at least onemajor draw-
back. It will require a lot of redundant code to create Matlabextensions for
a C++ library with tens or hundreds of classes and methods. This is because
a MEX-extension file has to be created for each of the class methods in the
C++ library. Another problem when keeping related class methods in dif-
ferent shared libraries is that it becomes hard to share databetween related
functions that due to this limitation is located in different shared library ex-
tensions. Section 3 will describe a technique making it possible to limit the
number of MEX-extensions required to export an entire C++ API to just one.

6MEX-extensions have a platform specific file type, “.dll” on Windows and “.mexglx” on Linux.

Chapter 3

Adapter Layer

This chapter describes the design and implementation of theadapter layer between
ARIA and Matlab. The core of this layer is a single MEX-extension. The Matlab
MEX API [11] is originally designed to make it possible to create and use highly
optimized C/C++ or Fortran versions of individual algorithms and not to expose
an entire C++ API. Fortunately that does not make it impossible. This chapter will
describe how to embed multiple functions in a single MEX-extension.

3.1 MEX-Extensions

Another way to look at MEX-extensions is that a MEX-extension is basically noth-
ing more than a way to pass a Matlab matrix to a C/C++ or Fortranfunction in a
shared library, and a way for that function to send another matrix back to Matlab.

Matlab contains some additional functionality that allowsusers to invoke these
extensions just like any other Matlab function-call. The parameters used in this
function-call will be passed to the extensions gateway routine. The gateway can
also return a matrix back to Matlab that will be treated as thefunctions return value.

3.2 C++ Classes In MEX-Extensions

Given that the OOP-system in Matlab already requires the user to create a separate
Matlab file for each class method in every class, we might as well try to do some-
thing clever in them to avoid having to create a separate MEX-extension for each
class method as well.

The only thing stopping us from adding multiplecomputational routinesto
a single MEX-extension is that thegateway routineneeds some way to identify
the computational routine requested. A simple solution is to prepend a routine-
identifier before the actual routine parameters when invoking the MEX-function.
This trick will of course make the Matlab source code required to invoke this
MEX-function look a bit strange. Fortunately that source code will only live in
the mandatory class-method files and will never be seen by theuser.

9

10 Chapter 3. Adapter Layer

For example therobot class constructor (file@robot/robot.m) only needs to
contain the following Matlab code:

function o = robot(address)
self.cnx = aria_adapter(1, address);
o = class(self, ’robot’);
return

The constructor call invokes thearia_adapterMEX-extension and requests to
invoke the internal routine number one, theArRobot constructor wrapper function.
The ArRobot instance identifier returned by the wrapper is stored in the instance
variableself.cnx. This instance identifier will later be used when invoking other
class methods.

Even less Matlab code is required to invoke a class method. The Matlab part
of thegetposeclass method (file@robot/getpose.m) looks like this:

function pose = getpose(self)
pose = aria_adapter(4, self.cnx);
return

The routine number four inaria_adapteris invoked with theArRobot instance
identifier as the only parameter. The wrapper function invokes theArRobot::getPose()
C++ method and converts the pose (position and heading) intoa Matlab matrix and
returns it back to Matlab.

3.3 The aria_adapter Extension

The C++ part of the adapter layer is a bit more complicated than the Matlab part.
When any of the wrapped class methods are invoked, thearia_adapterextension
is loaded into memory by Matlab and its gateway routine is invoked. Every MEX-
extension has a gateway routine, it is a C function namedmexFunctionthat serves
as the extension entry point and is invoked by the Matlab binary every time the
extension is invoked.

The main responsibility for thearia_adaptergateway routine is to verify that
the requested ARIA function exist, and that it is called withthe correct number of
left and right hand side parameters, and to hand over the control to the associated
wrapper function. In order to make it easy to add new functions to the adapter layer
and to avoid code redundancy, the gateway routine itself does not know anything
about any specific wrapped ARIA method. Instead the gateway routine only con-
tains generic functionality to perform those tasks. The actual implementation of
the gateway routine inaria_adapterlooks like this (a few lines have been removed
to improve readability and to save space):

3.3. The aria_adapter Extension 11

void
mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{

if (nrhs < 1)
mexErrMsgTxt("At least one rhs argument is required.");

if (mxGetM(prhs[0]) != 1 || mxGetN(prhs[0]) != 1 ||
!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0])) {
mexErrMsgTxt("The first rhs argument has to be a scalar doub le.");

}
arg1 = mxGetPr(prhs[0]);
fid = (int)arg1[0];

// Make sure its a valid function and the correct number
// of arguments
for (i = 0; i < NUMFUNCTIONS; i++) {

if(functionmap[i].id == fid) {
if (functionmap[i].nlhs != nlhs)

mexErrMsgTxt("Incorrect number of lhs arguments");
if (functionmap[i].nrhs != (nrhs - 1))

mexErrMsgTxt("Incorrect number of rhs arguments");
break;

}
}
if (i == NUMFUNCTIONS)

mexErrMsgTxt("Unknown function id");
// Call the selected function wrapper
functionmap[i].func(nlhs, plhs, nrhs, prhs);

}

The function table contains one entry for each embedded function wrapper.
Besides the function id and function name every function entry also contains the
correct number of left-hand side (return values) and right-hand side arguments (pa-
rameters) and a pointer to the wrapper function.

Using this information the gateway routine can take care of things such as
verifying that the function id is correct and that the correct number of left and
right hand side arguments are used. If the concept of one MEX-extension for each
routine was used, this code would have to be duplicated in every extension.

functiontable[] = {
{1, "robot_connect", 1, 1, robot_connect},
{2, "robot_disconnect", 0, 1, robot_disconnect},
{3, "robot_setvel", 0, 2, robot_setvel},
{4, "robot_getpose", 1, 1, robot_getpose},
{5, "robot_readsonar", 1, 1, robot_readsonar},
{6, "robot_isleftmotorstalled", 1, 1, robot_isleftmotor stalled},
...

};

Most wrapper functions are relatively straight-forward like therobot_getpose
function above, where the wrapper function converts the input parameters (prhs)

12 Chapter 3. Adapter Layer

from Matlab matrices into the format expected by the C++ method. Afterwards
the ARIA C++ method is invoked and value returned by the method is afterwards
converted back into a Matlab matrix.

static void
robot_getpose(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])
{

int rid = get_robot_id(prhs);
ArRobot *robot = cnxTable[rid].robot;
ArPose pose = robot->getPose();
if (nlhs == 1) {

plhs[0] = mxCreateDoubleMatrix(1, 3, mxREAL);
*((double *)mxGetPr(plhs[0])) = pose.getX();
*(((double *)mxGetPr(plhs[0]))+1) = pose.getY();
*(((double *)mxGetPr(plhs[0]))+2) = pose.getTh();

}
}

3.4 Extending the Adapter Layer

The design with a central function-table makes it very easy to add support for new
functions. The work required can be summarized into three steps:

1. Add an entry to the function-table. This table entry should contain a unique
function identifier, the expected number of input and outputparameters and
a pointer to the C++ wrapper function. The entry can look something like
this:

{42, "robot_mynewfunction", 1, 3, robot_mynewfunction},

2. Write a C++ wrapper function. This wrapper function is responsible for
the translation of input and output parameters from and to Matlab matrices
before and after the function invocation. Most wrapper functions are fairly
similar so the implementation can probably be based on an existing wrapper
function with a similar signature.

3. Add a new Matlab-file to the@robotdirectory. These files are short Matlab
files that call thearia_adapterMEX-extension.

function ret = mynewfunction(self, arg1, arg2)
ret = aria_adapter(42, self.cnx, arg1, arg2);
return

As long as the new function has a signature similar to some other existing
function, all three steps can usually be completed simply bycopying the required
information from a similar existing function and modify it slightly.

3.5. Using the Adapter Layer 13

3.5 Using the Adapter Layer

This section briefly describes how to use the adapter layer. See appendix A and B
for more verbose instructions.

Before a program can communicate with a robot a TCP/IP connection has to
be established between the ARIA library and the robot. When creating a newrobot
instance by calling therobot constructor with an ip-address as the only argument,
a new connection is automatically established.

myrobot = robot(’192.168.1.11’);

If ARIA for some reason fail to connect to the robot, a Matlab exception will
be raised. This error can be handled like this:

try
myrobot = robot(’192.168.1.11’);

catch
sprintf(’Connection failed’)
return

end

The instance variable (myrobot) should be passed as the firstargument to all
class methods to let ARIA know which robot to send the commands to. For exam-
ple to get the robot’s pose thegetposeclass method is called like this:

pose = getpose(myrobot);

At the end of a program it is good practice to disconnect from the robot. This
will stop the robot and disable the sonar sensors. The following line will disconnect
a robot:

disconnect(myrobot);

3.6 A Sample Program

The Matlab code for a simple avoid obstacle behavior (as a Braitenberg vehicle
[3]) may look like this:

myrobot = robot(’192.168.100.11’);

weights = [1 1.5 2 -2 -1.5 -1 0 0];

while ~isleftmotorstalled(myrobot) && ~isrightmotorsta lled(myrobot)
sonar = readsonar(myrobot) - 7500;
dir = (weights * sonar’) / 1000;
setvel(myrobot, [70 70] + [-dir dir]);

end
disconnect(myrobot);

14 Chapter 3. Adapter Layer

The Java-equivalent of the above Matlab program would look something like this:

public class Avoid {
static {

try {
System.loadLibrary("AriaJava");

} catch (UnsatisfiedLinkError e) {
System.err.println("Native code library failed to load. Y ada Yada" + e);
System.exit(1);

}
}
public static void main(String[] args) {

double weights[] = {1, 1.5, 2, -2, -1.5, -1, 0, 0};
Aria.init(0, true);

ArRobot robot = new ArRobot("robot1", true, true, true);
ArTcpConnection conn = new ArTcpConnection();

conn.setPort("192.168.100.11", 8101);
robot.setDeviceConnection(conn);
if (!robot.blockingConnect())
{

System.err.println("Could not connect to robot, exiting. \n");
System.exit(1);

}
robot.comInt((short)ArCommands.ENABLE, (short)1);
robot.runAsync(true);
while(robot.isLeftMotorStalled() != true &&

robot.isRightMotorStalled() != true) {
double dir = 0;
for(int i = 0; i<8;i++) {

dir += (robot.getSonarRange(i) - 7500) * weights[i];
}
dir /= 1000;
robot.setVel2(70 - dir, 70 + dir);

}
robot.stopRunning(true);
robot.disconnect();
Aria.shutdown();

}
}

3.7 Performance

The adapter layer introduces almost no overhead. The Matlabstatement below
is a crude benchmark that times how long it takes to call the wrapped function
sleep(0)one million times. Running this benchmark on an AMD Duron 1.5Ghz
system estimates the overhead added for one function call bythe adapter layer to
be less than 30µs. Most of this overhead is probably caused by Matlab’s normal
MEX-extension invocation overhead and not by the wrapper itself.

tic, for i=1:1000000, sleep(0), end, toc

3.8. Limitations 15

3.8 Limitations

With the ARIA C++ library programmers can control the robot’s behavior by defin-
ing a set of custom actions. A custom action is created by subclassingArAction
and overloading a few methods. These actions are run in a separate thread to allow
the programmer to focus on other things.

Unfortunately as outlined in section 2.6 Matlab is a strictly single-threaded ap-
plication and in combination with the unflexible class system makes it impossible
to use or define custom actions from within Matlab. This does however not affect
the possibility to control robots using the ARIA API’s ordinary motion commands.

3.9 Future Work

This implementation has currently only been tested with Matlab version 7 running
on Windows XP Professional. The adapter itself uses no platform dependent func-
tionality so it should be possible to port it to other platforms supported by both
ARIA and Matlab such as Linux or Mac OS X.

The adapter has so far only been tested with AmigoBot robots but should in
theory work with other ARIA-based robots (see section 2.2) without requiring any
modifications, except maybe wrapping a few more functions inorder to support
peripherals not available on the AmigoBot.

Another possible continuation of this work would be to add support for non
ARIA-based robots like the Khepera robot from K-Team. The Khepera API is
fairly similar to ARIA so it might be possible to develop an ARIA-compatibility
layer on top of that.

Chapter 4

Map Making and Localization

This chapter covers the theory behind map making and localization.
A mobile robot exploring and mapping an unknown environmentgenerate

maps by accumulating sensor information while exploring the environment. Unfor-
tunately readings from range sensors are only useful for themap making process
if the position of the sensor at the time the reading took place is known. Shaft-
encoders are the most commonly used source of odometry information. However
it usually suffers from both systematic errors like inaccurate wheel measurements,
and non-systematic errors like wheel slippage. These errors cause the odometry
error to quickly accumulate over time. When a robot is not being localized in the
environment, the quality and accuracy of the generated map will be degraded.

4.1 Sonar Sensors

Sonar sensors are one of the most commonly used sensor types for both commercial
and research robots operating indoors. Sonar sensors are active sensors that emits
a sound, and measures the time it takes for the sound to hit an object and bounce
back. Given thetime-of-flightand the speed of sound it is possible to calculate the
distance to the object. An electical pulse causes the sonar transducer (thin metallic
membrane) to generate a sound with an ultrasonic frequency.The sound wave
created by the transducer is often considered to be 30◦ wide. At the same time
as the sound wave is emitted, a timer is set. Afterwards the membrane becomes
stationary and start to work like a microphone. If a strong enoughechois received,
the timer is stopped and the measured time is considered to bethe time-of-flight.

Sonar sensors suffers from a number of shortcomings and limitations. One
problem isspecular reflection, which is when the sound wave hits a surface at an
acute angle and bounces away from the sensor instead of towards it. To make things
worse, the sound can bounce off a second object and then find its way back to the
sensor. In this case thetime-of-flightwill not correspond to true distance to the
object. Forshorteningis another problem that affects sonar sensors. The emitted
sound wave is approximately 30◦ wide, this means that one side of the wave will

17

18 Chapter 4. Map Making and Localization

hit a non-perpendicular surface before the other side. The reflection from that side
of the wave will reach the sonar sensor before the reflection from the center of
the wave. This causes the measuredtime-of-flightto be shorter, and the object to
appear closer than it actually is [8].

4.2 Occupancy Grid

Occupancy grids1 [6] are very commonly used in the field of robotics. An occu-
pancy grid is a finite probabilistic representation of a robot’s spatial knowledge.
There are simple ways to update the grid with small amounts ofsensor data col-
lected from individual sensors and thereby creating an increasingly correct rep-
resentation of the robot’s surroundings. The final grid shows regions probably
occupied, regions probably empty and unknown areas. Besides map making this
representation is also used for activities such as exploration, localization, motion
planning, landmark identification and obstacle avoidance [14].

An attractive feature of occupancy grids is that a single grid can incorporate
information from multiple sensors of different types. A. C.Schultz and W. Adams
demonstrates very accurate localization using a robot equiped with a set of 16 sonar
sensors and a triangulation-based structured light range finder in [10].

4.3 Sonar Sensor Models

In order to be able to incorporate sensor information from different sensor types
into a single occupancy grid, a common sensor information representation is re-
quired. A sensor model function is used to convert sensor type specific measure-
ments to a common representation. The sensor model providesconditional proba-
bilities for each location, given a certain sensor reading.

The AmigoBot robot used in this project is equipped with eight sonar sensors2.
Most roboticists have converged on a model of sonar sensor uncertainty which
looks like figure 4.1. The model can be divided into four different regions. The
first three regions are inside the sonar sensor’s field of viewand the last one is
outside [8].

• Region 1: Elements in this region are probably at least partially occupied.

• Region 2: Elements in this region are probably all empty.

• Region 3: The state of elements in this region is unknown because they are
located behind whatever reflected the sonar pulse.

• Region 4: Nothing is known about elements outside the sonar sensors field
of view.

4.4. Updating occupancy grids 19

3

1

2

4

R

Beta

Figure 4.1: Grid elements are divided into four regions depending on their position
relative to the sonar response.R is the sonars maximum range andβ is half of the
sensor cone angle width.

Given a range reading, elements in region 2 are more likely tobe empty than
elements in region 1. Readings are also more likely to be correct for elements close
to the acoustic axis than elements at the edge of the sonar cone.

Sensor models can be generated in many different ways. Empirical models
are based on interpretations of data collected from experiments. Analytical sensor
models are based on an understanding of the underlying physical properties of the
sensor device.

4.4 Updating occupancy grids

Many methods exist to convert sensor modes into numerical values and update
occupancy grids. Bayesian sensor fusion is one of the most popular methods [7].

1Also known as Evidence grids, probability grids and certainty grids.
2Polaroid ultrasonic transducers

20 Chapter 4. Map Making and Localization

4.4.1 Bayesian sensor fusion

In the Bayesian approach sensor models convert sensor measurements into condi-
tional probabilities of the formP(s|H), i.e. the probability that a sensor readings
will occur, given that a certain grid element is occupied (hypothesisH).

The sonar sensor model used in this project uses the following functions to
calculate the probability for each grid element located at adistance r and an angle
α for the acustic axis of the sonar [8, 7]:

For elements in region 1:

P(Occupied) =

(

R−r
R

)

+
(

β−α
β

)

2
·Maxoccupied (4.1)

P(Empty) = 1.0−P(Occupied) (4.2)

For elements in region 2:

P(Occupied) = 1.0−P(Empty) (4.3)

P(Empty) =

(

R−r
R

)

+
(

β−α
β

)

2
(4.4)

0 10 20 30 40 50 60 70 80

0

20

40

60

80
−1

−0.5

0

0.5

1

Distance

C
er

ta
in

ty

Figure 4.2: A 3D-representation of the Bayesian sonar sensor model. Notice that
the certainty values are higher close to the sensor positionand close to the acoustic
axis.

The variables in the formulas have the following meaning:R represents the
maximum range the sonar sensor can detect,β is half of the sensor cone angle
width.

4.5. Localization 21

The effect of the(R−r
R) and the(β−α

β) parts of the formulas is that elements
close to the acoustic axis and close to the origin of the sonarpulse get higher
probabilities than elements farther away.

These probabilities are projected onto an occupancy grid atthe position and
direction of the sensor, and are merged with the grid’s existing spatial knowledge
using Bayesian sensor fusion.

The sensor model provides conditional probabilities of theform P(s|H) but the
form P(H|s), the probability that a grid cell is occupied given sensor readings, is
of more interest when updating an occupancy grid. Baye’s rule states that:

P(H|s) =
P(s|H)P(H)

P(s|H)P(H)+P(s|¬H)P(¬H)
(4.5)

With our sensor model notation it becomes:

P(Occupied|s) =
P(s|Occupied)P(Occupied)

P(s|Occupied)P(Occupied)+P(s|Empty)P(Empty)
(4.6)

WhereP(Occupied) andP(Empty) probabilities represent the initial uncondi-
tional belief about the state of a grid element.P(Occupied) = P(Empty) = 0.5 is
often used for empty occupancy grids, but could be set to someother values if the
information is available for the environment being mapped.

Using equation 4.5 it is possible to populate an occupancy grid with probability
values from a single sensor reading. With multiple sensor readings the equation
becomes:

P(H|s1,s2, . . .sn) =
P(s1,s2, . . .sn|H)P(H)

P(s1,s2, . . .sn|H)P(H)+P(s1,s2, . . .sn|¬H)P(¬H)
(4.7)

Equation 4.7 has one software implementation problem. It requires the pro-
gram to keep track of all sensor readings while updating an element to be able
to update it in the future. This is problematic because it is not known how many
times each grid element will be updated. Fortunately, clever use of the relation
P(H|s)P(s) = P(s|H)P(H), a recursive version of equation 4.7 can be created:

P(H|sn) =
P(sn|H)P(H|sn−1)

P(sn|H)P(H|sn−1)+P(sn|¬H)P(¬H|sn−1)
(4.8)

With this equation, only the previous grid valueP(H|sn−1) needs to be saved in
order to be able to update the element in the future.

4.5 Localization

For a mobile robot to be able to carry out most tasks, it needs to be able to figure out
its position in the environment. Localization is the process of updating the pose3

3Position and heading (x, y, θ)

22 Chapter 4. Map Making and Localization

using sensor readings. J. Gutmann et al. divided the localization techniques into
three different categories [5]:

• Behavior-based: behavior-based localization relies on the robot’s actions in
the environment in order to navigate. For example aFollow-Right-Wallbe-
havior can be used to navigate in a maze. Simply inverting that behavior
would allow the robot to find the way back to the start position.

• Landmark-based (feature-based): Landmark-based localization works by
identifying landmarks in the environment. Impressive geometrical local-
ization can be achieved using landmark-based localization, the best known
example is probably the GPS satellite system. One major drawback with
landmark-based localization is the requirement of an adequate set of land-
marks in order to work. Landmarks have to be known in advance (like the
GPS satellites) or located while mapping the environment. The overall ef-
fectiveness of this method depends on the effectiveness of the landmark ex-
traction method used.

• Dense sensor matching (iconic): Unlike the landmark-based approach, dense
sensor matching does not require the object recognition problem to be solved.
Dense sensor matching uses whatever sensor information is available and at-
tempt to match that information against the environments surface map, the
occupancy grid.

There has been a lot of progress in the field of localization during the last few
years. A lot of different techniques exist. The remaining sections of this chapter
will cover the techniques used by the application describedin chapter 5.

4.5.1 Odometry and Shaft Encoders

Most robots are at least equipped with some sort of shaft encoders. A shaft encoder
is a proprioceptive sensor that measure the number of turns or fractions of turns a
motor makes. Given that the gearing and wheel size is known itis possible to
calculate the robots new position and heading using the shaft encoders.

Shaft encoders and odometry are however not very exact techniques. Errors can
be divided into two categories, systematic and non-systematic errors. Systematic
errors can come from inexact wheel size measurements or imperfections in the
robot design such as placement or size of wheels. Non-systematic errors come
from uneven floors, fast turning or different wheel slippagedepending on surface
type. This makes shaft encoders unfit as the primary localization system for most
non-trivial robot systems.

4.6 Continuous Localization

Many localization methods try to model the odometry error orto re-localize only
after an unacceptable odometry error has been detected. TheContinuous localiza-

4.6. Continuous Localization 23

tion (CL) (see figure 4.3) technique proposed by Schultz et al. [10, 4, 14] takes
advantage of the fact that positioning errors from shaft encoders usually accumu-
late over time. CL tries to perform small positioning corrections often instead of
large corrections far apart in time.

Continuous localization is an exteroceptive method that builds temporary occu-
pancy grids called short-term maps that contain recent sensor information. Given
that these maps are constructed during a relatively short period of time, it is as-
sumed that they contain relatively small amounts of odometry errors.

Short-term map

A priori knowledge

Sensor readings

Shaft encoders pose generator

Map Registration

Best matching pose

k

n

Figure 4.3: Continuous localization process

During each localization,n sensor sweeps are fused into each short term map.
The variablen is a run-time parameter that depends on the environment and the
equipment being used.

When a short-term map containsenoughinformation, an operation calledmap
registrationtakes place. The short-term map is matched against the robot’s a priori
knowledge about the environment, the long-term map. The overall effectiveness
of continuous localization depends heavily on the completeness and correctness of
the robot’s a priori knowledge. Schultz et al. shows that theodometry error can
be reduced to a constant error if the registration process has access to complete
and correct spatial information [10]. Continuous localization is still effective even
without any initial spatial information. An ordinary occupancy grid simultaneously
updated using map making can also be used. This approach willof course not be as
effective as with complete and correct spatial information, the odometry error, will
slowly accumulate in the long-term map but not at all in the same rate as without
using any localization.

The actual registration process is more complicated than itmight appear. The
fact that the short-term map is only a partial map makes it very likely that it will
fit well in more than one place on the long-term map. In order tolimit the risk
of false matches the search is limited tok probable poses. The functionpose gen-

24 Chapter 4. Map Making and Localization

erator generates a set ofk possible poses given the robot’s believed pose and the
navigation performed during the lifespan of the short-termmap.

For each of thesek poses the match is performed by overlaying the short-term
map centered over the posek onto the global map. The match is then scored by
calculating the sum of the difference between every elementcommon to both maps
using for example the following formula:

∑ |global[i][j]−shortterm[i][j]|

The robot’s position is updated by selecting the best matching pose from the
k poses generated by thepose generatorfunction. If the CL process is combined
with map making the short-term map is also merged with the long-term map at
posek.

Chapter 5

Full Scale SLAM-Application

This chapter summarizes the work done on the second part of this thesis project,
and discusses obtained results and future work.

5.1 SLAM

In the second part of this master’s thesis project a SLAM1 application is devel-
oped. This application also serves as a test application forthe Matlab adapter layer
developed during the first part of this thesis project.

The SLAM problem tries to answer the following question: “Is it possible for
an autonomous vehicle starting at an unknown location in an unknown environ-
ment to incrementally build a map of the environment while simultaneously using
this map to compute the vehicle’s location?” This is a very central problem in
the robotics community. Solving it would allow autonomous vehicles placed in an
unknown environment to build a map using only relative sensor observations, and
then to use this map to navigate around the environment to perform different tasks.
The main advantage of SLAM, is that no previous knowledge (apriori information)
about the environment is required, everything will be accumulated at run time.

The SLAM-application created as a part of this thesis project combines tech-
niques discussed in chapter 4 such as sensor models, occupancy grids, Bayesian
sensor fusion and continuous localization. It is well knownthat shaft encoders are
not very exact, so using the robot’s built in shaft encoders as the only source of
odometry information is not good enough to produce maps of reasonable quality.
Continuous localization will be used to compensate for thisproblem. A number of
tests will be performed, in order to determine how well the continuous localization
technique used in this application, is able to compensate for the odometry error
produced by the robot’s internal shaft encoders.

1Simultaneous Localization And Mapping.

25

26 Chapter 5. Full Scale SLAM-Application

5.2 Design

Short-term map

Long-term map

Sensor readings

Shaft encoders pose generator

Obstacle avoidance

Map Registration

Best matching map

Best matching pose

k

n

Figure 5.1: Block diagram illustrating how map making and continuous localiza-
tion can be combined in a SLAM-application.

This application combines techniques such as sensor models, occupancy grids
and continuous localization into a SLAM application. All ofthese techniques each
require a set of properly configured parameters in order to work efficiently and pro-
duce good results (see section 5.8 for more information about these parameters). In
order to make it possible to find a good set of parameter settings for this particular
application and equipment the actual application is split into two parts.

The first part contains the data collection and navigation logic. The first part
navigates around in the environment while simultaneously collecting sensor read-
ings and robot poses (using the adapter’sgetposeand readsonarfunctions). The
robot’s current pose (position and heading) and readings from the robot’s sonar
sensors are recorded every 1/4 second and stored on the hard-drive. The second
part of the application takes care of the actual map making and localization. The
data collected in part one is used to build a map (called long-term map) of the en-
vironment, this map is simultaneously used by the continuous localization process
to compute and correct the robot’s real position.

The main benefit of separating data collection and localization, is that it both
speeds up and makes it easier to identify good parameter settings. Without this
division, the time consuming effort of letting the robot physically explore the envi-
ronment has to be repeated for each set of parameter settingsto evaluate. Besides
the speed benefit, it also make the evaluation more exact, because the exact same
set of sensor readings and poses can be used to evaluate many different parameter
settings. Nothing in the actual design makes it impossible to fuse the two parts to-
gether into a single application when good parameter settings have been identified.

The block diagram in figure 5.1 illustrates how the application’s different log-

5.3. Equipment 27

ical components are interconnected, and how the short-termmap is fused with the
long-term map after each map registration phase. The best matching pose is also
used by pose generator to update the robot’s position. The process will be described
in more detail in section 5.6.

5.3 Equipment

Figure 5.2: The AmigoBot robot.

An AmigoBot robot (figure 5.2) from ActivMedia Robotics Inc.was used to
test this application. AmigoBot is an affordable classroomrobot with good mobil-
ity in indoor environment. The robot has the following technical specification:

• Six front and two rear rangefinding sonars.

• Two 500-tick shaft encoders.

• Two wheels with individual motors and a rear caster.

• IEEE 802.11b wireless ethernet communication.

The application itself is implemented as a Matlab program, and tested on a
PC running Microsoft Windows XP Professional, Matlab 7 and ARIA 2.1. The
adapter layer developed as a part of this thesis project was used to communicate
with the robot. Appendix C contains the full Matlab source code for both parts of
the application.

5.4 Room Configurations

This application was tested in two different room configurations (see figure 5.3).
Both rooms are open in the center with different hard-surfaced objects around the

28 Chapter 5. Full Scale SLAM-Application

room 1 room 2

Figure 5.3: Room Configuration.

edges of the rooms creating a closed environment. The edges consists mainly of
wood and metal surfaces but fortunately no glass surfaces, so the risk of specular
reflection (see section 4.1) is somewhat limited. The main difference between the
room configurations is that the first room consists of fairly narrow passages. The
second room on the other hand contains a fairly large open area, section 5.7 ex-
plains what type of problems open areas can cause when it comes to continuous
localization.

5.5 Navigation

The robot was programmed with an avoid-obstacle behavior. This behavior was
implemented using oneArActionConstantVelocity and twoArActionAvoidFront
ARIA actions. Simple avoid-obstacle behaviors are usuallypoor choices when it
comes to efficient exploration of unknown environments. However this behavior
fitted these rooms configuration quite well and was able to explore the entire room
rather quickly without getting stuck in corners or visitingsome regions a lot more
frequently than others.

The application’s two-part design imposes one limitation on the choice of nav-
igation behavior. Because the navigation takes place in first part of the application
but the map is generated by the second part, the behavior has to be purely reactive
and can not require access to the long-term map.

5.6 SLAM And Continuous Localization

While building maps, it is very important for the robot to know its exact position
in the environment. Otherwise, accumulating odometry error will soon start to
distort the map being built. Figure 5.4 illustrates how generated maps for room
one and two looks like when the built in shaft-encoders are used as the only source

5.6. SLAM And Continuous Localization 29

of odometry information, without any help from continuous localization.

Room 1. Room 2.

Figure 5.4: Map making without continuous localization.

The continuous localization technique described in [10] was initially intended
to operate with access to complete apriori spatial knowledge about the environ-
ment. Experiments performed by Alan C. Schultz et al. showedthat with access
to complete spatial information about the environment, continuous localization is
able to keep the odometry error at a constant level.

However theapriori knowledgerequirement, is not compatible with the SLAM-
problem. The SLAM-problem explicitly states that an autonomous vehicleshould
be able to build a map of anunknownenvironment. In order to comply with this
requirement, the map registration process used in this application is altered to work
like this:

The long-term map (the map being generated) is initially empty. Each local-
ization starts with an empty short-term map. The short-termmap is fused with
sensor readings until it is considered mature (see theshort-term map maturitypa-
rameter in section 5.8). The map registration processregistersthe short-term map
by overlaying it on the long-term map for each of thek poses returned by thepose
generator. Themap registration search spaceparameter determines which poses
the pose generator will return. The difference between the robot’s believed pose
and the best matching pose is considered to be the odometry error. After the robot’s
pose has been updated, the short-term map is fused with the long-term map and a
new localization starts with a new and empty short-term map.

30 Chapter 5. Full Scale SLAM-Application

5.7 Open Areas

Large open areas are especially troublesome for continuouslocalization. In this
context, open areas are defined as areas in the environment inwhich the robot’s
sonar sensors are unable to detect any obstacle, i.e. every obstacle in the environ-
ment is far enough away not to generate any sonar echo. At least two different
open area related problems affects the effectiveness of continuous localization:

While a robot navigates through a large open area, the sonar sensors will be un-
able to get any range readings at all. If the area is large enough it is possible that the
robot will not detect any obstacles at all during the lifespan of a single short-term
map. A completely empty short-term map will fit equally well anywhere on the
long-term map. Consequently, while navigating through large open areas, contin-
uous localization will be unable to compensate for the odometry error introduced
by the shaft encoders. However as long as the robot navigatesthrough these areas
in a straight line at a constant velocity the error will be quite limited and will not
accumulate very fast.

Figure 5.5: This figure illustrates how the sensor model for asingle sonar reading
from a wall may look like.

Completely empty short-term maps may temporarily disable continuous local-
ization, but it is neither the only nor the worst open area related problem. A worst
case scenario can look like this:

A robot navigates through an open area but one sonar sensor finally detects an
approaching wall (see figure 5.5). That sensor sweep happensto be the last one for
the current short-term map, so that map is registered and fused with the long-term
map. During the lifespan of the next short-term map the robotgathers a number of
range readings from the same wall in the newly created short-term map.

When this new short-term map is later registered, it is matched against the

5.8. Parameters 31

long-term map’s current information about that area, whichconsists of only the
information from the previous short-term map’s single sensor reading. This is usu-
ally not enough information for the map registration process to perform an accu-
rate match. A single sensor reading contains for example notenough information
to determine the actual angle of the wall only the presense ofan obstacle. This
lack of information might result in an inaccurate registration of the short-term map
and thus introducing additional odometry error into the system. This application
tries to avoid this worst-case senario by making sure every short-term map con-
tains enough information. This is done by measuring short-term map maturity by
the number of actual (in range) sensor readings fused, and not by the map age in
seconds. This will cause a single short-term map to be activelonger if the robot
navigates through an open area.

5.8 Parameters

This application contains a set of parameters that all control different aspects of the
application. This section describes these parameters, their effect on the application
and the values found to produce good results.

Map registration search space:The registration process can not match the short-
term map with the long-term map for every possible robot pose. This would
be both too computationally expensive and error prone. Thepose generator
function is used to limit the search tok probable poses. It is not easy to
calculate thek mostprobable poses the robot could have, the robot could
have different odometry errors in all three degrees of freedom (x, y, θ) since
the last localization was made. An idealpose generatorfunction should
probably consider aspects such as current position, current speed and the
movements performed since the last localization when generating the list of
probable poses.

Thepose generatorfunction used in this application is fairly simple but ef-
ficient. The function assumes the accumulated odometry error since the last
localization is in the range of±1 grid elements in thexy-plane. The error on
theθ axis is assumed to be in the range of±3◦. With a resolution of 1 grid
element and 1◦ this yields a total of 63 poses for the registration process to
evaluate during each localization.

Short-term map maturity: The short-term map maturity determines how much
information (sensor readings) to store in each short-term map. The short-
term map maturity can either be measured in age, i.e. the number of seconds
readings are fused into a map before it is considered to be mature, or in
the actual number of (in range) sensor readings fused. Fusing 45 (in-range)
sensor readings into each short-term map was found to be a good setting for
this application.

32 Chapter 5. Full Scale SLAM-Application

Grid Resolution: The short-term map and the long-term map both uses the same
grid resolution. This resolution determines how fine-grained the information
stored in the maps will be. The higher resolution used the more computa-
tionally expensive the application will become. A grid resolution of 35mm
x 35mm was used in these experiments.

Sensor Sweep frequency and vehicle velocity:The sensor sweep frequency and
the vehicle velocity determines the density of the gatheredinformation. Dur-
ing these experiments the robot traveled with an average velocity of 80 mm/s
and collected four full sensor sweeps every second.

5.9 Results

The continuous localization process relies heavily on the accuracy of the long-term
map. However the quality of the long-term map simultaneously depends on the
accuracy of the continuous localization process. The parameters described in sec-
tion 5.8 all control the quality and accuracy of the resulting map, in one way or
another. Besides these parameters, the room configuration and the robot, all affect
the end result. These complex dependencies makes it difficult, or even impossible
to find the optimal parameter settings to use. Figure 5.6 shows the resulting map,
using three different map registration search spaces. One conclusion that can be
made from these maps is, that using a larger search space is not only more compu-
tationally expensive, but can also generate worse results.Using a too large search
space can result in incorrect registration of short-term maps, which results in extra
odometry error being added to the map and robot’s pose. Similarly, using a too
small search space will stop the continuous localization process from being able
to remove the odometry error introduced by the robot’s shaftencoders. With the
equipment and room configurations used in this thesis a search space of±1 grid
element and±3◦ gave the best results.

5.10 Limitations

As mentioned before, continuous localization tries to correct the robot’s position
by matching the short-term map with the long-term map. The accuracy of this
matching process is crucial to the overall effectiveness. The method works well as
long as the short-term map contains sensor readings from at least one object in the
environment, that is also in the long-term map. This is usually the case if the robot
is equipped with enough sonar sensors and the environment does not contain large
open spaces.

When a robot navigates through large open spaces, sonar sensors will be un-
able to get any readings because all obstacles are out of range and as a result the
short-term map will become empty. The map registration process will be unable
to estimate the odometry error because the short-term map will be overlayed over

5.10. Limitations 33

Room 1 Room 2

Using search space±1 grid element,±1◦

Using search space±1 grid element,±6◦

Using search space±1 grid element,±3◦

Figure 5.6: Resulting maps using different search spaces.

34 Chapter 5. Full Scale SLAM-Application

an equally empty part of the long-term map and no correction can be performed.
The sonar sensors on the AmigoBot robot can only detect obstacles less than 800
mm away. This means that this approach is most effective in environment where
the robot most of the time will be less than 800 mm away from obstacles.

5.11 Future Work

The overall map precision and quality could probably be improved by using opti-
mized sensor models. Joris W.M. van Dam et al. presents a way to calibrate sensor
models using neural networks. This approach makes the sensor model adaptive to
changes both in the environment and the characteristics of the sensors [12].

Simple exploration behaviors such as avoid-obstacle or follow-wall might work
adequately in simple room configurations like the one used inthese experiments.
In more complex environments such as large office environments a more efficient
exploration method must be used. Brian Yamauchi introduceda frontier-based
approach for autonomous exploration [13]. This approach uses the concept of
frontiers which is the region between unexplored areas and unoccupied areas. By
navigating to a frontier more information is added to the long-term map and the
frontier is consequently further pushed back. This type of frontier-based explo-
ration is much more efficient than the avoid-obstacle behavior currently used.

Chapter 6

Summary and Conclusion

This chapter summarizes the work and the conclusions that can be drawn from the
two parts this thesis project consists of.

6.1 Summary and Conclusions

This thesis presented an adapter layer between ARIA and Matlab that success-
fully hides some of the complexity imposed by the ARIA library itself and the
C++ language. The API is modeled after ARIA’s original C++ api but due to the
difference in features between the C++ and Matlab languagesthe exposed API is
not complete. Some methods could not be wrapped due to various limitations im-
posed mainly by Matlab. Other methods were wrapped but with slightly different
signatures to make them look and feel more Matlab-like.

One conclusion that can be made is that even though ARIA is a large and com-
plex library and C++ and Matlab are two very different programming languages,
it is possible to create an at least partial adapter layer. When using programming
languages with a feature set more compatible with C++ like Java or Python1 it is
possible to auto-generate most, if not all of the adapter layer using tools such as
swig2. Unfortunately no such tool exists for Matlab so every wrapper function in
this adapter layer is hand-crafted. Fortunately the designused makes it very simple
and obvious where and how to make modifications in order to extend the adapter
layer by wrapping new functions.

This thesis also presented a full-scale SLAM-application.This application ex-
plored important SLAM techniques such as occupancy grids, bayesian sensor fu-
sion and continuous localization. Experiments using this applications showed how
quickly odometry error accumulates and distorts the map being generated. Addi-
tional experiments demonstrated that continuous localization can be used to limit
or even completely remove the odometry error introduced by shaft encoders.

1http://www.python.org/
2http://www.swig.org

35

36 Chapter 6. Summary and Conclusion

One conclusion that can be made is that continuous localization can be very
useful and vastly improve the quality of generated maps. Thetechnique is effective
both with and without any previous knowledge about the room configuration.

Chapter 7

Acknowledgementes

I wish to thank my supervisor Thomas Hellström at the Department of Computing
Science, Umeå University for his support during this project. I would also like to
thank Thomas Nyberg for proof-reading this thesis.

37

References

[1] ACTIVMEDIA. Aria reference manual. pdf-document, 26 Sept. 2004.
http://www.cis.ysu.edu/˜john/robotics/ARIA/Aria-Ref erence.pdf .

[2] ACTIVMEDIA. Robot specifications. web-site, 3 Feb. 2005.
http://www.activrobots.com/ROBOTS/specs.html .

[3] BRAITENBERG, V. Vehicle: Experiments in Synthetic Psychology. Mas-
sachusetts Institute of Technology, 1984.

[4] GRAVES, K., ADAMS, W., AND SCHULTZ, A. Continuous localization in
changing environments, 1997.

[5] GUTMANN , J., BURGARD, W., FOX, D., AND KONOLIGE, K. An experi-
mental comparison of localization methods. InProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (1998).

[6] M ORAVEC, H., AND ELFES, A. E. High resolution maps from wide angle
sonar. InProceedings of the 1985 IEEE International Conference on Robotics
and Automation(March 1985), pp. 116–121.

[7] M ORAVEC, H. P. Sensor fusion in certainty grids for mobile robots. In
Proceedings of the 1988 AI Magazine Volume 9(1988), pp. 61–74.

[8] M URPHY, R. R. Introduction to AI robotics. Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, 2000.

[9] PÄRT-ENANDER, E., AND SJÖBERG, A. Användarhandledning för Matlab.
Uppsala universitet, Uppsala, Sweden, 2003.

[10] SCHULTZ, A. C., AND ADAMS, W. Continuous localization using evidence
grids. pp. 2833–2839.

[11] THE MATHWORKS, I. External interfaces reference, 10 Feb. 2005.
http://www.mathworks.com/access/helpdesk/help/pdf_d oc/matlab/
apiref.pdf .

[12] VAN DAM , J. W. M., KRÖSE, B. J. A., AND GROEN, F. C. A. Adaptive
sensor models. In1996 IEEE/SICE/RSJ Intr. Conf. on Multisensor Fusion

39

40 REFERENCES

and Integration for Intelligent Systems, Washington D.C(Dec. 8–11, 1996),
pp. 705–712.

[13] YAMAUCHI , B. A frontier-based approach for autonomous exploration.In
Proceedings of the 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation(1997), pp. 146–151.

[14] YAMAUCHI , B., SCHULTZ, A. C., AND ADAMS, W. Mobile robot explo-
ration and map-building with continuous localization. pp.3715–3720.

Appendix A

Programming Tutorial

The purpose of this ARIA adapter is to provide a simple yet powerful API for Mat-
lab users. Only a few lines of code is required to create a simple robot application.

This tutorial covers topics such as installing the softwareon your computer,
example programs and troubleshooting. By the time you reachthe end of this
tutorial you will be able to install ARIA for Matlab adapter layer on your computer
and write simple Matlab programs that interacts with your ARIA-based robot.

Installation

The installation is quite straight forward and consists of only two steps:

1. Download and install the ARIA distribution from the ActivMedia web-site.
This distribution contains some data files required by the adapter layer. The
installation program will also install the file necessary touse ARIA from
C++ And Java.

2. Extract the zip-archive containing the compiledAria For Matlab files to
somewhere on your hard-drive, for example toC: \AriaMatlab \

3. In order for this extension to work Matlab must be able to find the@robot -
class directory in the Matlab search path. A new directory can be added to
the search path using theSet Pathdialog (see fig A.1) accessible from the
File-menu. Another option is to use theaddpath command like this:

addpath c:\AriaMatlab\

Note: The addpath command only affects the currently running Matlab in-
stance and has to be re-run every time Matlab is restarted.

41

42 Chapter A. Programming Tutorial

Figure A.1: TheSet Pathdialog can be used to tell Matlab where to find the@robot
directory.

Connecting

ARIA communicates with the robots using TCP/IP connections. Each robot is
identified by an ip-address. It is generally a good idea to verify that the robot’s
ip-address is reachable from the computer running Matlab before trying to use the
adapter layer.

ping <your-robots-ip-address>

If no ping reply is received from the robot when running the above command in
the command prompt please verify your network setup before continuing with this
tutorial.

Before a program can communicate with a robot a TCP/IP connection has to
be established between the ARIA library and the robot. When creating a newrobot
instance by calling therobot constructor with an ip-address as the only argument,
a new connection is automatically established.

myrobot = robot(’192.168.1.11’);

This instance should be passed as the first argument to all class methods to let
ARIA know which robot to send the commands to. At the end of a program it is
good practice to disconnect from the robot. This will stop the robot and disable the
sonar sensors. The following line will disconnect a robot:

disconnect(myrobot);

43

Coordinate System

While a robot navigates in the environment, ARIA always keeps track of the robot’s
pose using the robot’s built in shaft encoders. The robot’s believed pose can always
be accessed and updated using thegetposeandmovemethods.

The robot’s pose is expressed as a point on the xy-plane and anangleθ. When
the robot powers up the initial pose is set tox = 0, y = 0, θ = 0, and the robot is
looking along the positive x-axis. If the robot rotates +90 degrees (counter clock
wise) it will be looking along the positive y-axis. The x, y position is expressed in
unit of millimeters and theθ angle in the interval of +-180 degrees counter clock
wise.

Examples

This section contains three simple Matlab programs that areusing the ARIA adapter
API. Please see appendix B for a complete API documentation.
Example 1 demonstrates how easy it is to implement a simple Braitenberg vehicle.
This avoid obstacle behavior will be repeated until the robot collides with some
object and at least one wheel gets stuck.

weights = [1 1.5 2 -2 -1.5 -1 0 0];
myrobot = robot(’192.168.1.11’);

while ~isleftmotorstalled(myrobot) && ~isrightmotorsta lled(myrobot)
sonar = readsonar(myrobot) - 7500;
dir = (weights * sonar’) / 1000;
setvel(myrobot, [70 70] + [-dir dir]);

end
disconnect(myrobot);

Example 2 demonstrates how to use themove and set(delta)heading com-
mands. This program will move the robot 0.5 meters forward, stop and turn 180
degrees. This behavior will be repeated 10 times before disconnecting from the
robot.

myrobot = robot(’192.168.1.11’);

for i=1:10
% Move 0.5 meters forward
move(myrobot, 500);
% Wait until the robot has reached the target
while ~ismovedone(myrobot)

sleep(100);
end

44 Chapter A. Programming Tutorial

% Rotate 180 degrees clock-wise
setdeltaheading(myrobot, 180);
% Wait until the have rotated 180 degrees
while ~isheadingdone(myrobot)

sleep(100);
end

end
disconnect(myrobot);

Example 3 demonstrates how to use thegetpose method to fetch the robot’s
believed pose. This program will put the robot intoavoid-obstaclemode and plots
the path the robot travels using basic Matlab commands.

r = robot(’192.168.1.11’);
x = [];
y = [];
figure(1);
% Tell the robot to avoid obstacles
avoid(r, 80);
% Loop until we get stuck
while ~isleftmotorstalled(r) && ~isrightmotorstalled(r)

% Save our position in two vectors
pose = getpose(r);
x = [x pose(1)];
y = [y pose(2)];
% Plot our path
plot(x, y);
drawnow;
% Sleep 0.1 seconds
sleep(100);

end
disconnect(r);

Troubleshooting

• When I try to create a robot instance I get the following errormessage:
“Undefined command/function ’robot”’.

Matlab is unable to find the@robotdirectory in the search path. Please make
sure the directory is added using either theSet Pathdialog or theaddpath
command.

• Every time I try to create a robot instance I get the followingerror message:
“connect failed”.

ARIA failed to reach the robot. Please verify that the correct ip-address is
used and that the robot responds toping.

45

• When I call a class method I get the following error message: “invalid robot
id”.

This happens when calling class methodsafterdisconnecting from the robot.
Calling class methods after disconnecting from a robot is not allowed.

• Is there a way to make sure the robot always stops if some unexpected error
happens in my program?

Yes, one way is to use atry, catch statement to make sure the disconnect()
command is always executed:

function myprogram()
myrobot = robot(’192.168.1.11’)
try

myrealprogram(myrobot)
catch

lasterr
end
disconnect(myrobot)

function myrealprogram(myrobot)
<Put your real program here>
return

Appendix B

API Documentation

The API is basically a subset of the full Aria C++ API that has been slightly mod-
ified to get a more Matlab-like look and feel. Among the changes are the use of
vectors and matrices instead of helper classes like ArPose where feasible.

Robot Class Constructor

A robot class instance represents a connection to a robot’s. A single Matlab pro-
gram can connect to and control multiple robots simultaneously by creating one
robot instance for each robot.

A robot instance is created like this:

myrobot = robot(’192.168.1.11’)

The string argument to therobot constructor is the robot’s network address. It can
be a hostname or an numerical ip-address. The constructor returns a newrobot
instance on success. On failure an exception is raised.

Robot Class Methods

The OOP-system in Matlab uses a for Java and C++ programmers awkward syntax.
The following Java/C++ lines

instance.method(arg1, arg2, ...);

looks like this in Matlab:

method(instance, arg1, arg2, ...);

The methods listed in the rest of this section arerobot class-methods:

47

48 Chapter B. API Documentation

name: disconnect
arguments: Nothing

returns: Nothing
description: Disconnects from the robot associated with the robot instance.

This function returns resources associated with this instance
back to the operating system. The instance should not be used
after this.

name: setvel
arguments: [x,y,θ] (1x3 matrix)

returns: Nothing
description: Sets the velocity for the wheels independently.

name: getpose
arguments: Nothing

returns: [x,y,θ] (1x3 matrix)
description: Returns the robot’s current pose (position and heading).

name: readsonar
arguments: Nothing

returns: 1xn matrix (mm)
description: Returns range readings from all of the robot’sn sonar sensors.

The readings are returned as a 1xn matrix. Missing values are
indicated with the value 6842.

name: isleftmotorstalled
arguments: Nothing

returns: 1 if stalled else 0
description: Returns the state of the left motor. A return value of 1 indicates

that the left motor is unable to rotate the left wheel, this is
usually indicates that the robot is stuck due to a collision.

name: isrightmotorstalled
arguments: Nothing

returns: 1 if stalled else 0
description: Returns the state of the right motor. A return value of 1 indi-

cates that the right motor is unable to rotate the right wheel,
this is usually indicates that the robot is stuck due to a colli-
sion.

name: lock
arguments: Nothing

returns: Nothing
description: Locks the robot instance. As long as the robot instance is

locked, the ARIA background thread will not update values
such asposeor sonar readings. This function can be used to
collect readings from the robot in a consistent manner.

49

name: unlock
arguments: Nothing

returns: Nothing
description: Unlocks the robot instance. See thelock method.

name: moveto
arguments: [x,y,θ] (1x3 matrix)

returns: Nothing
description: Updates the robot’s idea of its position. Calling this method

will not physically move the robot only update the robot’s be-
lieved position.

name: cleardirectmotion
arguments: Nothing

returns: Nothing
description: A direct motion command (setvel, move, setheading. . .) over-

rides ARIA actions. This method clears whatever direct mo-
tion command that has been gives so actions work again.

name: stop
arguments: Nothing

returns: Nothing
description: Stops the robot by setting the wheel and rotational velocity to

0.

name: move
arguments: distance (mm)

returns: Nothing
description: Moves the robotdistancemm forward or backward. Theis-

movedonemethod can be used to determine when the move is
completed.

name: ismovedone
arguments: Nothing

returns: 1 if nomovecommand is running else 0
description: Determines if anymovecommand is running.

name: setheading
arguments: heading in degrees

returns: Nothing
description: Rotates the robot to the given heading angle. The isheading-

donemethod can be used to determine when the rotation is
completed.

50 Chapter B. API Documentation

name: setdeltaheading
arguments: delta heading in degrees (relative to the robot’s current head-

ing)
returns: Nothing

description: Rotates the robot to the given heading angle. The isheading-
donemethod can be used to determine when the rotation is
completed.

name: isheadingdone
arguments: Nothing

returns: 1 if noset(delta)headingcommand is running else 0
description: Determines if anyset(delta)headingcommand is running.

name: setrotvel
arguments: velocity (deg/s)

returns: Nothing
description: Tells the robot to rotate at a certain speed.

name: absolutemaxtransvel
arguments: velocity (mm/s)

returns: Nothing
description: Sets the robot’s absolute maximum translational velocity. This

serves as an upper limit for therotvelmaxmethod.

name: absolutemaxrotvel
arguments: velocity (deg/s)

returns: Nothing
description: Sets the robot’s absolute maximum rotationalvelocity. This

servers as an upper limit for thetransvelmaxmethod.

name: rotvelmax
arguments: velocity (deg/s)

returns: Nothing
description: Sets the maximum rotational velocity. This method controls

how fast motion commands such assetheadingandsetdelta-
headingwill rotate.

name: transvelmax
arguments: velocity (mm/s)

returns: Nothing
description: Sets the maximum translational velocity. This method con-

trols how fast the robot will move while performingmove
commands.

name: avoid
arguments: velocity (mm/s)

returns: Nothing
description: Starts a built in avoid obstacle behavior. This behavior is im-

plemented using oneArActionConstantVelocity and two
ArActionAvoidFront ARIA actions.

51

Utility Functions

name: sleep
arguments: time (µs)

returns: Nothing
description: Sleeptimemicroseconds using theArUtils::sleep()function.

Appendix C

SLAM Source Code

part1.m
function save_readings()
r = robot(’192.168.100.11’);
try

setabsolutemaxrotvel(r, 40);
avoid(r, 80);
save_map(r, 30 .* 16);

catch
lasterr
setvel(r, [0, 0]);
disconnect(r);
return;

end
stop(r);
disconnect(r);

function save_map(r, num_readings)
for i = 1:num_readings;

sleep(250);
lock(r);
saved_pose(i,:) = getpose(r);
saved_readings(i,:) = readsonar(r);
unlock(r);

end
save state12 saved*;

53

54 Chapter C. SLAM Source Code

part2.m

SCALE = 35;
world_size = 300;
world = zeros(world_size, world_size);
world(:,:)= 0.5; % 0.5 = unknown
overlap = 0;
degrees = [0 -1 1 -2 2 -3 3];

% Load sensor readings and robot poses from disk
load state10 saved*;
readings = saved_readings;
pose = saved_pose;

off = 1;
while off < length(readings) - overlap

stm_size = 0;
num = 0;
% Determine how many sensor sweeps required to find
% at least 45 in-range readings
while num < 45 && off+stm_size < length(readings)

num = num + sum(readings(off+stm_size,:) < 6000);
stm_size = stm_size + 1;

end
rpos = [];
rstm = [];
rposes = [];
rscore = [];
rdegrees = [];
% Generate LENGTH(DEGREES) different versions of the stm. A ll rotated
% differently to allow us to correct odometry errors on the th eta axis
tic;
for k = 1:length(degrees)

% Start with an empty short time map
stm = zeros(world_size, world_size);
% Everything is unknown
stm(:,:) = 0.5;
for j = 1:stm_size

pos = ceil((pose(off+j,:) ./ SCALE) + (world_size ./ 2) - 40) ;
% Generate a sensor model
model = sonar_model(readings(off+j,:), pose(off+j,3)+d egrees(k));
% Add it to the short term map
stm = bayes(stm, model, pos);

end
% We are only interested in a smaller square of the stm with the first
% robot pose in the center.
margin = 15;
pos = ceil((pose(off+1,:) ./ SCALE) + (world_size ./ 2) - 40 - margin);
stm = stm(pos(1)+1:pos(1)+length(model)+2*margin, ...

pos(2)+1:pos(2)+length(model)+2*margin);

% The POSSIBLE_POSES() function returns a matrix of possibl e robot
% poses (relative to the current position).
% We use the CALC_SCORE utility function to find out in which o f these
% poses the stm fits best.
poses = possible_poses(pose(off+1,:));
for l=1:size(poses,1)

pos2 = pos(1:2) + poses(l,:);
rscore = [rscore calc_score(world, stm, pos2)];
rpos = [rpos; pos2];
rstm(:,:,length(rscore)) = stm;
rposes = [rposes ; poses(l,:)];

55

rdegrees = [rdegrees degrees(k)];
end

end
toc;
% The MIN() functions returns the most probable location.
[score, idx] = min(rscore);
stm = rstm(:,:,idx);
pos = rpos(idx,:);

% Register the short time map in the global map
world = bayes(world, stm, pos);

left = off+stm_size-overlap:length(readings);
a = -rdegrees(idx) / 180 * pi; T = [cos(a) -sin(a); sin(a) cos(a)];
pos = [pose(left,1)-pose(off+1,1) pose(left,2)-pose(of f+1,2)];
pos = pos * T;
pose(left,1:2) = [pos(:,1)+pose(off+1,1) pos(:,2)+pose (off+1,2)];
pose(left,1) = pose(left,1) + (SCALE .* rposes(idx,1));
pose(left,2) = pose(left,2) + (SCALE .* rposes(idx,2));
pose(left,3) = pose(left,3) + rdegrees(idx);

% Display the short-time-map and the long-term map in two dif ferent figures
figure(1);
colormap(gray);
imagesc(stm, [0 1]);
figure(2);
colormap(gray);
imagesc(world, [0 1]);
drawnow;
off = off + stm_size - overlap;

end
% Display a clearer map using some crude image manipulation
figure(3);
colormap(gray);
world(find(world < 0.7)) = 0;
world(find(world >= 0.7)) = 1;
imagesc(world, [0 1]);

function poses = possible_poses(pose)
%poses = [0 0]; return;
poses = [0 0; -1 -1; 1 1; 1 -1; -1 1;

0 -1; 0 1; -1 0; 1 0];
return

function score = calc_score(world, model, offset)
world = world(offset(1)+1:offset(1)+length(model), ...

offset(2)+1:offset(2)+length(model));
if length(find((world ~= 0.5) .* (model ~= 0.5))) == 0

score = 0;
return

end
score = sum(sum(abs(world - model)));

function world = bayes(world, model, offset)
prev = world(offset(1)+1:offset(1)+length(model),

offset(2)+1:offset(2)+length(model));
idx = find(~isnan(model));
new = prev;
new(idx) = (model(idx) .* prev(idx)) ./ (model(idx) .* ...

prev(idx) + (1 - model(idx)) .* (1 - prev(idx)));
world(offset(1)+1:offset(1)+length(model),

offset(2)+1:offset(2)+length(model)) = new;

56 Chapter C. SLAM Source Code

function model = sonar_model(ranges, theta)
B = 7;
R = 26;
SCALE = 35;
TOLERANCE = 1;
MAXOCCUPIED = 0.98;
model_size = 59;
model = zeros(model_size, model_size);
model(:,:)= NaN;
a = -theta/180*pi; T = [cos(a) -sin(a) ; sin(a) cos(a)];
sonars = [73 105 90 ;

130 78 41 ;
154 30 15 ;
154 -30 -15 ;
130 -78 -41 ;
73 -105 -90 ;
-146 -60 -145 ;
-146 60 145 ;];

% Remove out of range sensors
tmp = []; tmp2 = [];
for si = 1:length(sonars)

if ranges(si) < 1000
tmp = [tmp; sonars(si,:)];
tmp2 = [tmp2; ranges(si)];

end
end
if size(tmp, 1) == 0

return
end
sonars = tmp;
ranges = tmp2 ./ SCALE;
sonars(:,1:2) = sonars(:,1:2)*T ./ SCALE;
sonars(:,3) = sonars(:,3) + theta;

for yi = 1:model_size
for xi = 1:model_size

for si = 1:size(sonars, 1)
x = xi - model_size / 2;
y = yi - model_size / 2;
% optimized version of norm()
r = ((x - sonars(si,1))^2 + (y - sonars(si,2))^2)^0.5;
b = abs(atan2(y - sonars(si,2), x - ...

sonars(si,1)) / pi * 180 - sonars(si,3));
while b > 180

b = abs(b - 360);
end
if b > B || r > ranges(si) + TOLERANCE/2

continue
end
if abs(r - ranges(si)) <= TOLERANCE

psn = ((((R - r) / R) + ((B-b) / B)) / 2) * MAXOCCUPIED;
psn = 0.5 * psn + 0.5;

else
psn = (((R - r) / R) + ((B-b) / B)) / 2;
psn = 1 - (0.5 * psn + 0.5);

end
model(xi, yi) = psn;

end
end

end

