
© 2020 Arm Limited (or its affiliates)

Linaro Connect Sept 2020

Arm Architecture 2020 Extensions

Martin Weidmann

Director Product Management, ATG ARM

LVC20-214

2 © 2020 Arm Limited (or its affiliates)

Annual cadence: evolving the CPU architecture

AArch64

AArch32

Crypto

Atomics

Stat
Profiling

Nested
Virt.

Pointer
Auth

Secure
EL2

Memory
Tagging

Predictor
Invalidates

1GHz
Timer

Armv8.0-A Armv8.1-A

2014

Armv8.2-A

2015

Armv8.3-A

2016

Armv8.4-A

2017

Armv8.5-A

2018

Armv8.6-A

2019

3 © 2020 Arm Limited (or its affiliates)

What’s new in 2020

Armv8.7-A

• Support for 52-bit addresses with 4K and 16K
granules

• Enhanced support for PCIe hot unplug

• Atomic store operations for interacting with
accelerators

• WFE/WFI with timeouts

• Improvements to PAN

Future Architecture Technologies

• Branch Record Buffer

• Call Stack Recorder

© 2020 Arm Limited (or its affiliates)

Armv8.7-A

5 © 2020 Arm Limited (or its affiliates)

52-bit VA/IPA/PAs

• Armv8.2-A introduced support for 52-bit VAs, IPAs and PAs
• Only available when using 64K granule
• There are some platforms which are unable to adopt 64K granules

• Armv8.7 extends 52 bit addressing to 4K and 16K granules

• Input addresses:
• T*SZ field rules relaxed to allow specifying up to 52 bits of address space
• Can result in an extra level of walk (level -1)

• Output addresses:
• To enable the larger output addresses, shareability attribute moved from descriptors to TCR_ELx

6 © 2020 Arm Limited (or its affiliates)

PCIe hot-unplug (1)

PCIe devices can be unplugged at any
time

• Could occur in the middle of an access
• PCIe root complex responsible for

generating a response after a fixed
out

– Typically 50 ms

If a CPU has outstanding accesses to
the removed device, it could be
blocked until the timeout expires

• 50ms → 100 million cycles @ 2GHz

Other CPUs can continue to make
progress

Arm

LDR x0, PCIe A

Arm

Interconnect

PCIe root
complex

PCIe device A

PCIe device B

RAM

CPU blocked until
Root Complex

generates
response after

timeout

Device
unexpectedly

removed

7 © 2020 Arm Limited (or its affiliates)

PCIe hot-unplug (2)

TLBI+DSB waits for all memory transactions
using old translation to complete

If a CPU receiving a TLBI simply waits for all
outstanding memory transactions to be
complete

• A CPU awaiting a PCIe hot-unplugged
completion will take ~50mS to
acknowledge the TLBI

• CPU that sent out the TLBI now also
exposed to a ~50mS delay

• Impact beyond the CPU that is directly
talking to the PCIe endpoint

Arm

LDR x0, PCIe A

Arm

TLBI

DSB

LDR x0, RAM

Interconnect

PCIe root
complex

PCIe device A

PCIe device B

RAM

Blocked waiting
for

acknowledgment
of TLBI

TLBI

Waits for
transaction to

complete before
responding to

TLBI

8 © 2020 Arm Limited (or its affiliates)

XS attribute

New XS attribute for devices with
potentially long delays

• New qualifier to Device-*

TLBI and DSB changes
• Existing TLBIs are unchanged
• New TLBIs added which are only required

to wait for transactions with XS=0 (fast)
to complete

• Similar changes to DSB

Receiving PE now only needs to track
whether outstanding transactions are
fast or slow (XS==1)

Arm

LDR x0, PCIe A

Arm

TLBI nXS

DSB nXS

LDR x0, RAM

Interconnect

PCIe root
complex

PCIe device A

PCIe device B

RAM

TLBI

Can respond to
incoming TLBI

without waiting
for timeout

Ack

Marked as Fast in TTs

XS=0

Marked as Slow in TTs

XS=1

9 © 2020 Arm Limited (or its affiliates)

64-byte atomics

Growing trend for accelerators that support 64-byte
atomic load and stores

New store with return value:
• ST64BV Xs,Xt,[Xn|SP]

• ST64BV0 Xs,Xt,[Xn|SP]

– Substitutes the bottom 32 bits for value in ACCDATA_EL1

• Xs acts a return value

New instructions without return value:
• ST64B Xt, [Xn|SP]

• LD64B Xt, [Xn|SP]

Only permitted to non-cacheable addresses

Arm

ST64BV …

Check success

Interconnect

PCIe root
complex

Accelerator

Work
item

queue

Enqueue
operation

Whether item
got placed on

the queue
successfully

10 © 2020 Arm Limited (or its affiliates)

WFE/WFI with timeout

A lot of potential usage of WFE/WFI is blocked by the unlimited time that the WFx might be
asleep

Armv8.7 introduces variants of WFE/WFI with a software specified timeout
• Specified in terms of time, not cycles

WFET Xd / WFIT Xd

• Xd holds a 64-bit value to compare with CNTCVT_EL0
– Generates a local event to wake the WFxT when CNTCVT_EL0 >= Xd value
– If WFxT is woken for any reason, the count will be discarded
– Event only applies to the PE that executes the instruction

11 © 2020 Arm Limited (or its affiliates)

Enhancing PAN

• PSTATE.PAN was introduced as part of Armv8.1
• Causes a permission fault for a privileged data access to unprivileged data memory
• Looks for AP[1]==1 in the page tables.

• Did not consider the case of privileged data access to user execute-only memory
• AP[1]==0 but UXN==0
• Siguza’s blog -> https://siguza.github.io/PAN/

• Linux had offered the ability to mark memory as User Execute-only to protect JITed code
• Makes it harder to attack the JITed code, or to find gadgets within it
• …But that can be exploited to work around the PAN protection

• SCTLR_EL1/2 bit to extend PAN so it causes EL1/2 access to fault on pages that have EL0
instruction or data access
• Permitted to built in any version from v8.1

https://siguza.github.io/PAN/

© 2020 Arm Limited (or its affiliates)

Future Architecture Technologies

Debug and Visibility

Enhancing software development on Arm

13 © 2020 Arm Limited (or its affiliates)

Enabling developers

Enhanced performance attribution

What’s my hot code?
• Feed in to tools like AutoFDO

Where in my call stack or call graph?
• Better attribution of events to real code paths

Enhanced debug

Low-impact consumption of call stacks
• Stack unwinding in software is slow and

introduces probe effects

Lower-overhead logging
• Capturing call stacks on interesting events,

such as malloc/free

14 © 2020 Arm Limited (or its affiliates)

Enabling developers

Enhanced performance attribution

What’s my hot code?
• Feed in to tools like AutoFDO

Where in my call stack or call graph?
• Better attribution of events to real code paths

Enhanced debug

Low-impact consumption of call stacks
• Stack unwinding in software is slow and

introduces probe effects

Lower-overhead logging
• Capturing call stacks on interesting events,

such as malloc/free

15 © 2020 Arm Limited (or its affiliates)

Enabling developers

Enhanced performance attribution

What’s my hot code?
• Feed in to tools like AutoFDO

Where in my call stack or call graph?
• Better attribution of events to real code paths

Enhanced debug

Low-impact consumption of call stacks
• Stack unwinding in software is slow and

introduces probe effects

Lower-overhead logging
• Capturing call stacks on interesting events,

such as malloc/free

ERROR: AddressSanitizer: heap-use-after-free on address 0x60700000dfb5

READ of size 1 at 0x60700000dfb5 thread T0

#0 0x4007d7 in D(char*) /home/use_after_free.cpp:6

#1 0x4007d7 in main /home/use_after_free.cpp:45

#2 0x2b3e6817ac04 in __libc_start_main (/lib64/libc.so.6+0x21c04)

#3 0x400826 (a.out+0x400826)

0x60700000dfb5 is located 5 bytes inside of 80-byte region

freed by thread T0 here:

#0 0x2b3e669d3800 in __interceptor_free asan_malloc_linux.cc:45

#1 0x4007a7 in C() /home/use_after_free.cpp:19

#2 0x4007a7 in B() /home/use_after_free.cpp:35

#3 0x4007a7 in A() /home/use_after_free.cpp:39

#4 0x4007a7 in main /home/use_after_free.cpp:44

#5 0x2b3e6817ac04 in __libc_start_main (/lib64/libc.so.6+0x21c04)

previously allocated by thread T0 here:

#0 0x2b3e669d3b18 in __interceptor_malloc asan_malloc_linux.cc:62

#1 0x40079c in C() /home/use_after_free.cpp:18

#2 0x40079c in B() /home/use_after_free.cpp:35

#3 0x40079c in A() /home/use_after_free.cpp:39

#4 0x40079c in main /home/use_after_free.cpp:44

#5 0x2b3e6817ac04 in __libc_start_main (/lib64/libc.so.6+0x21c04)

16 © 2020 Arm Limited (or its affiliates)

Call Stack Recorder Extension (CSRE)

Objective
Capture the call stack in an easy to consume format

• To copy on periodic or event-driven interrupts

• To copy on malloc/free calls

Requirements
Userspace or Kernel controllable

Capture in main memory

• Allows simple memcpy() of contents, and
scales to capture the full call stack

Low overheads while recording and context
switching

Low cost of reading the call stack on malloc/free

Call Stack Record Buffer

• Allocated by kernel or userspace

Call Stack Record

• Value of LR after BL, 8 bytes in size
• Written on each BL, updating the pointer
• Faults reported synchronously

• Pointer decremented on each RET

Call Stack Recorder

• Separate controls provided at each of
EL0/EL1/EL2, for fast switching of recorder on
entry to kernel

• Usual traps for Virtualization

• Separate traps for EL0 register reads and writes

17 © 2020 Arm Limited (or its affiliates)

Branch Record Buffer Extension (BRBE)

Objective

Capture a recent sequence of branches in
an easy-to-consume format

• For statistical capture and feed in to FDO tooling

Requirements

Low compute and memory overheads for
capture/analysis
• Program trace (ETM) can be expensive in multiple ways

• Prefer uncompressed capture and no need for the
program image

Low overheads while recording

Low cost of context switch and on reading

Branch Record
• Source VA of taken branch/exception

• Target VA of taken branch/exception

• Info: source/target valid, branch/exception type

Branch Record Buffer
• EL1 feature, for recording EL0 and/or EL1

• Accessible via system registers, with 3 per
record
• 96 registers, for up to 32 records
• Banking system for >32 records

• Invalidate-buffer instruction
• To prevent future reads revealing old data

• ISB needed before reading (but not TSB
CSYNC)

© 2020 Arm Limited (or its affiliates)

Find out more

19 © 2020 Arm Limited (or its affiliates)

More information

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

Arm Architecture Reference Manual expected Jan 2021

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

• Martin Weidmann

• Director Product Management
martin.weidmann@arm.com

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)

