AOI'IM Linaro Connect Sept 2020
- Arm Architecture 2020 Extensions

- Martin Weidmann

Director Product Management, ATG ARM
' ' ' ' - LvVC20-214

Annual cadence: evolving the CPU architecture

| AP, () P,
[] Q) O
o oo Ooms G T D C W

C) | C2 C2
® O O O

. Stat Secure OrBranch 1GHz
))
) FP C AT y VHE q Profiling O RCpe Q EL2 argetlDSC Timer O

G2 P ¢ P
O O O

4 : 52-bit Nested Mem Memory Uinegrain
Arch6a Q PR Atomics Oaddresses<> Virt. Model Q Tagging traps C

C7> PN O O
O O QO O
Armv8.0-A Armv8.1-A Armv8.2-A Armv8.3-A Armv8.4-A Armv8.5-A Armv8.6-A

2 © 2020 Arm Limited (or its affiliates) 2014 2015 2016 2017 20 18 20 1& r m

®

What’s new in 2020

Armv8.7-A

e Support for 52-bit addresses with 4K and 16K
granules

* Enhanced support for PCle hot unplug

 Atomic store operations for interacting with
accelerators

WFE/WFI with timeouts
* |mprovements to PAN

3 © 2020 Arm Limited (or its affiliates)

Future Architecture Technologies

Branch Record Buffer
Call Stack Recorder

arm

b : .

. +
F * -
F . .

© 2020 Arm Limited (or its affiliates)

52- bit

addresses

+

+

N " +

. nhanced
PPAN

52-bit VA/IPA/PAs

* Armv8.2-A introduced support for 52-bit VAs, IPAs and PAs

- Only available when using 64K granule
- There are some platforms which are unable to adopt 64K granules

Armv8.7 extends 52 bit addressing to 4K and 16K granules

Input addresses:
- T*SZ field rules relaxed to allow specifying up to 52 bits of address space
 Can result in an extra level of walk (level -1)

Output addresses:
- To enable the larger output addresses, shareability attribute moved from descriptors to TCR ELx

5 © 2020 Arm Limited (or its affiliates) a r m

CPU blocked until

PCle hot-unplug (1)

PCle devices can be unplugged at any refsgfsrzt:fier Arm

time timeout
« Could occur in the middle of an access I

« PCle root complex responsible for
generating a response after a fixed

out
— Typically 50 ms

Interconnect

Device

If a CPU has outstanding accesses to unexpectedly

the removed device, it could be e

blocked until the timeout expires ® B
- 50ms = 100 million cycles @ 2GHz

. PCle device B =
Other CPUs can continue to make

progress

6 © 2020 Arm Limited (or its affiliates) a r m

PCle hot-unplug (2)

TLBI+DSB waits for all memory transactions
using old translation to complete

If a CPU receiving a TLBI simply waits for all
outstanding memory transactions to be

complete

- A CPU awaiting a PCle hot-unplugged
completion will take ~50mS to
acknowledge the TLBI

- CPU that sent out the TLBI now also
exposed to a ~50mS delay

- Impact beyond the CPU that is directly
talking to the PCle endpoint

7 © 2020 Arm Limited (or its affiliates)

Waits for
transaction to
complete before
responding to
TLBI

PCle device B g

Arm

LDR x0, PCIe A

Blocked waiting
for
acknowledgment
of TLBI

Arm

TLBI
DSB
LDR x0, RAM

Interconnect

arm

XS attribute

Can respond to
incoming TLBI
without waiting

for timeout Arm Arm

New XS attribute for devices with

potentially long delays
- New qualiﬁer to Device-* R TDLSBBI nnstS

...................... LDR x0, RAM

TLBI and DSB changes

- Existing TLBIs are unchanged

- New TLBIs added which are only required ~ --------------mmmmmfommmmoo o
to wait for transactions with XS=0 (fast)
to complete

- Similar changes to DSB

Marked as Fast in TTs
XS=0

Receiving PE now only needs to track
whether outstanding transactions are
fast or slow (XS==1) S !

Marked as Slow in TTs
XS=1

8 © 2020 Arm Limited (or its affiliates) a r m

7,

64-byte atomics

Whether item Arm
got placed on
the queue ST64BV ..

successfully Check success

Accelerator

9 © 2020 Arm Limited (or its affiliates)

Enqueue

operation

Growing trend for accelerators that support 64-byte
atomic load and stores

New store with return value:
- ST64BV Xs,Xt, [Xn|SP]

- STe4BVO Xs,Xt, [Xn|SP]
— Substitutes the bottom 32 bits for value in ACCDATA EL1
- Xs acts a return value

New instructions without return value:
- ST64B Xt, [Xn|SP]
- LD64BR Xt, [Xn|SP]

Only permitted to non-cacheable addresses

arm

WFE/WFI with timeout

A lot of potential usage of WEE /WE'I is blocked by the unlimited time that the WE'x might be
asleep

Armv8.7 introduces variants of WFE /WE'T with a software specified timeout
- Specified in terms of time, not cycles

WFET Xd / WFIT Xd

- Xd holds a 64-bit value to compare with CNTCVT ELOQ
- Generates a local event to wake the WExT when CNTCVT ELO >= Xd value
- If WEXT is woken for any reason, the count will be discarded
— Event only applies to the PE that executes the instruction

10 © 2020 Arm Limited (or its affiliates) a r m

Enhancing PAN

e PSTATE.PAN was introduced as part of Armv8.1

- Causes a permission fault for a privileged data access to unprivileged data memory
- Looks for AP [1]==1 in the page tables.

* Did not consider the case of privileged data access to user execute-only memory
- AP[1]==0 but UXN==
- Siguza’s blog -> https://siguza.github.io/PAN/

* Linux had offered the ability to mark memory as User Execute-only to protect JITed code

- Makes it harder to attack the JITed code, or to find gadgets within it
- ...But that can be exploited to work around the PAN protection

 SCTLR EL1/2 bit to extend PAN so it causes EL1/2 access to fault on pages that have ELO

instruction or data access
- Permitted to built in any version from v8.1

11 © 2020 Arm Limited (or its affiliates) a r m

https://siguza.github.io/PAN/

Future Architecture Technologies

Debug and Visibility

Enhancing software development on Arm

© 2020 Arm Limited (or its affiliates) ' ' ' ' ' ' ' ' ' ' ' '

Enabling developers

Enhanced performance attribution

= - - 10

60 - el T 60
What’s my hot code? g e s
Feed in to tools like AutoFDO i e e et |
Where in my call stack or call graph? e i B
Better attribution of events to real code paths ot
Enhanced debug 00 10- 20 30. "’40“ 50 | 60 0 00 10 20 30 40 50 60A
Low-impact consumption of call stacks (@) vithou BoLT ® witnOLT

- Stack unwinding in software is slow and
introduces probe effects

Lower-overhead logging
« Capturing call stacks on interesting events,
such as malloc/free

13 © 2020 Arm Limited (or its affiliates) a r m

Enabling developers

Enhanced performance attribution

What’s my hot code?
Feed in to tools like AutoFDO

Where in my call stack or call graph?
Better attribution of events to real code paths

Enhanced debug

Low-impact consumption of call stacks
- Stack unwinding in software is slow and
introduces probe effects

Lower-overhead logging
« Capturing call stacks on interesting events,
such as malloc/free

14 © 2020 Arm Limited (or its affiliates)

Flame Graph

g=
il

r

-
e
5
i
3
e E3
=
2

2

inish_output (24439 samples, 81.51%)

arm

Enabling developers

ERROR: AddressSanitizer: heap-use-after-free on address 0x60700000dfb5
READ of size 1 at 0x60700000dfb5 thread TO
#0 0x4007d7 in D(char*) /home/use after free.cpp:6

Enhanced performance attribution

What’s my hot code?
« Feedin to tools like AutoFDO

#1 0x4007d7 in main /home/use after free.cpp:45
#2 0x2b3e6817ac04 in libc start main (/1ib64/libc.so.6+0x21c04)
#3 0x400826 (a.out+0x400826)

0x60700000dfb5 is located 5 bytes inside of 80-byte region

Where in my call stack or call graph? freed by thread TO here:
o Better attrlbutlon Of events to real Code paths #0 0x2b3e669d3800 in interceptor free asan malloc linux.cc:45
#1 0x4007a7 in C() /home/use after free.cpp:19
Enhanced debug #2 0x4007a7 in B() /home/use after free.cpp:35
#3 0x4007a7 in A() /home/use after free.cpp:39
LOW_ImpaCt COnsumpthn Of Ca” StaCkS #4 0x4007a7 in main /home/use after free.cpp:44
#5 0x2b3e6817ac04 in libc start main (/1ib64/libc.so.6+0x21c04)
- Stack unwinding in software is slow and
introduces probe effects previously allocated by thread TO here:
#0 0x2b3e669d3bl8 in interceptor malloc asan malloc linux.cc:62
LOwer-Overhead Iogglng #1 0x40079c in C() /home/use after free.cpp:18
- Capturing call stacks on interesting events, #2 0x40079¢ in BA) /home/use_after free.cpp:33
#3 0x40079¢c in A() /home/use after free.cpp:39
SUCh as ma”OC/free #4 0x40079c in main /home/us;_afte;_free.cpp:44

#5 0x2b3e6817ac04 in libc start main (/1ib64/libc.so.6+0x21c04)

15 © 2020 Arm Limited (or its affiliates) a r m

Call Stack Recorder Extension (CSRE)

Objective
Capture the call stack in an easy to consume format

* To copy on periodic or event-driven interrupts

* To copy on malloc/free calls

Requirements

Userspace or Kernel controllable
Capture in main memory

* Allows simple memcpy () of contents, and
scales to capture the full call stack

Low overheads while recording and context
switching

Low cost of reading the call stack on malloc/free

16 © 2020 Arm Limited (or its affiliates)

Call Stack Record Buffer
* Allocated by kernel or userspace
Call Stack Record

* Value of LR after BL, 8 bytes in size
- Written on each BL, updating the pointer
- Faults reported synchronously

e Pointer decremented on each RET
Call Stack Recorder

* Separate controls provided at each of
ELO/EL1/EL2, for fast switching of recorder on
entry to kernel

e Usual traps for Virtualization

* Separate traps for ELO register reads and writes

arm

Branch Record Buffer Extension (BRBE)

Objective

Capture a recent sequence of branches in
an easy-to-consume format

* For statistical capture and feed in to FDO tooling
Requirements

Low compute and memory overheads for
capture/analysis
* Program trace (ETM) can be expensive in multiple ways

* Prefer uncompressed capture and no need for the
program image

Low overheads while recording
Low cost of context switch and on reading

17 © 2020 Arm Limited (or its affiliates)

Branch Record

Source VA of taken branch/exception

Target VA of taken branch/exception

Info: source/target valid, branch/exception type

Branch Record Buffer

EL1 feature, for recording ELO and/or EL1

Accessible via system registers, with 3 per
record

- 96 registers, for up to 32 records

« Banking system for >32 records

Invalidate-buffer instruction
- To prevent future reads revealing old data

ISB needed before reading (but not TSB

CSYNC) arm

Find out more

More information

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

Exploration Tools r “
. ST

. Arm® Aé4 Arm® A32/T32
Arm® Architecture . .
System Registers Instruction Set Instruction Set
Architecture Architecture
This package provides descriptions in This package provides descriptions This package provides descriptions in
XKML and HTML format for the system in XML and HTML format for the XML and HTML format for the A32 and
registers and memory-mapped registers Aé&4 Instruction Set Architecture T32 Instruction Set Architecture
View HTML View HTML View HTML
Armv8.6-A
Release notes Release notes Release notes
2020-06 (bet)
Download XML Download XML Download XML
View HTML
Future View HTML View HTML =
Architecture
Release notes Release notes e

Technologies

Arm Architecture Reference Manual expected Jan 2021

19 © 2020 Arm Limited (or its affiliates)

arm

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools

qrm ' ' ' ' ' ' ' ' - Thank You
S Danke
Merci
Y
HYHED
Gracias
Kiitos
AL Cf
‘_?H«IOI_C{
I8

S BIEIN]
NTIN

Martin Weidmann

Director Product Management
martin.weidmann@arm.com

© 2020 Arm Limited (or its affiliates)

© 2020 Arm Limited (or its affiliates)

"The Arm trademarks featured in this presentation are registered

trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

