ARM Processors

Lecture on Introduction to Embedded Systems

By
Harish V. Mekali
Assistant Professor, Dept. of ECE
BMSCE, Bangalore - 19

Abstraction

Embedded Systems

SOFTWARE

HARDWARE

PROTOCOL

Abstraction

System architecture

Microprocessor

- CPU is stand-alone, RAM,
 ROM, I/O, timer are separate
- Designer can decide on the amount of ROM, RAM and I/O ports.
- Expansive
- Versatility
- General-purpose

Microcontroller

- CPU, RAM, ROM, I/O and timer are all on a single chip
- Fix amount of on-chip ROM, RAM, I/O ports
- For applications in which cost, power and space are critical
- Not Expansive
- Single-purpose

CPU architecture

Comparison

CISC RISC

Any instruction may reference memory Only load/store references memory

Many instructions & addressing modes Few instructions & addressing modes

Variable instruction formats Fixed instruction formats

Single register set Multiple register sets

Multi-clock cycle instructions Single-clock cycle instructions

Micro-program interprets instructions Hardware (FSM) executes instructions

Complexity is in the micro-program Complexity is in the compiler

Less to no pipelining Highly pipelined

Program code size small Program code size large

CPU architecture

Memory architecture

von Neumann Architecture

- · Memory holds data, instructions.
- Central processing unit (CPU) fetches instructions from memory.
 - Separate CPU and memory distinguishes programmable computer.
- · CPU registers help out:
 - · Program counter (PC),
 - · Instruction register (IR),
 - · General-purpose registers, etc.

.

von Neumann vs. Harvard

- von Neumann
 - · Same memory holds data, instructions.
 - A single set of address/data buses between CPU and memory
- Harvard
 - Separate memories for data and instructions.
 - Two sets of address/data buses between CPU and memory

data memory

data

PC

address

program memory

data

Harvard architecture

5

Why ARM?

ARM Design Philosophy

- Low power
- Small size
- High code density
- Low cost
- Easy debug

The ARM Processor Family

The ARM Processor Family

Binary Upwards Compatibility

Instruction Set

ARM University Program

The Architecture for the Digital World* ARM

Inside ARM based System

ARM University Program

The Architecture for the Digital World* ARM*

Inside ARM based System

AMBA

AMBA (Advanced Microcontroller Bus Architecture)

It is an open-standard, on-chip interconnect specification for the connection and management of functional blocks in system-on-a-chip (SoC) designs.

ASB (Advanced System Bus) : Simple bi-directional bus

APB (Advanced Peripheral Bus): Low speed peripheral bus

AHB (Advanced High speed Bus): Centralized multilayer bus

AHB multi : Multi master – multi slave

AHB lite : Single master – multi slave

Mostly ARM core is Bus master and Peripherals are slaves

Peripherals

- All peripherals are Memory mapped
- Controllers are special types of peripherals that govern the interfacing policies
 - Interrupt controller
 - Standard Interrupt control No Priority
 - Vector Interrupt Control (VIC) Priority based
 - Memory controller
 - Memory preparation
 - Ex: DRAM requires to be configured for refresh rates and timing before it is accessed
 - Memory management
 - Memory protection

Computer Memory Hierarchy

Embedded Software

Boot / initialization code

It runs on reset and does following basic tasks

- Initial hardware configuration like memory controllers and cache i.e., it prepares the hardware to satisfy the image to be booted
- Diagnostics: Fault detection and isolation
- Booting : Loading image and handing over the control to image by modifying the PC(Program Counter)

Embedded Software

Operating System

Organizes system resources like peripherals, memory and processors time

- Two main categories
 - Real Time Operating Systems (RTOS)
 - Hard real time
 - Soft real time
 - Platform Operating Systems
 Manages large non real time applications

Applications

Code dedicated to handle a particular task

Thank you

Harish V. Mekali

hvm.ece@bmsce.ac.in

+91-9538765141

www.harishvmekli.blogspot.com

I acknowledge and appreciate ARM University Program(AUP) and ARM Embedded Systems pvt. Ltd. for their continuous support.

References

Video lectures:

Mr. Chrish Shore, ARM Training Manager, UK
 The ARM University Program, ARM Architecture Fundamentals
 https://www.youtube.com/watch?v=7LqPJGnBPMM

2. Dr.Santanu Chaudhury, Dept. of Electrical Engineering, IIT Delhi Lecture - 5 ARM: (https://www.youtube.com/watch?v=4VRtujwa_b8)

Website:

3. http://infocenter.arm.com/help/index.jsp

Textbooks:

- 1. ARM system developers guide, Andrew N Sloss, Dominic Symes and Chris Wright, Elsevier, Morgan Kaufman publishers, 2008.
- ARM System-on-Chip Architecture, Steve Furber, Second Edition, Pearson, 2015