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Artificial intelligence is currently attracting 

considerable interest and attention from industry, 

researchers, governments as well as investors, 

who are pouring record amounts of money into the 

development of new machine learning technologies 

and applications. Increasingly sophisticated 

algorithms are being employed to support human 

activity, not only in forecasting tasks but also in 

making actual decisions that impact society, 

businesses and individuals. Whether in the 

manufacturing sector, where robots are adapting 

their behaviour to work alongside humans, or in the 

home environment, where refrigerators order food 

supplies based on the homeowner’s preferences, 

artificial intelligence is continuously making inroads 

into domains previously reserved to human skills, 

judgment or decision-making.

While artificial intelligence has the potential to 

help address some of humanity’s most pressing 

challenges, such as the depletion of environmental 

resources, the growth and aging of the world’s 

population, or the fight against poverty, the 

increasing use of machines to help humans make 

adequate decisions is also generating a number 

of risks and threats that businesses, governments 

and policy makers need to understand and 

tackle carefully. New concerns related to safety, 

security, privacy, trust, and ethical considerations 

in general are definitely emerging together with 

the technological innovations enabled by artificial 

intelligence. These challenges are common to all 

societies across the globe and will need to be dealt 

with at the international level.

The present White Paper provides a framework 

for understanding where artificial intelligence 

stands today and what could be the outlook for its 

development in the next 5 to 10 years. Based on an 

explanation of current technological capabilities, 

it describes the main systems, techniques and 

algorithms that are in use today and indicates 

what kinds of problems they typically help to solve. 

Adopting an industrial perspective, the White Paper 

discusses in greater detail four application domains 

offering extensive opportunities for the deployment 

of artificial intelligence technologies: smart homes, 

intelligent manufacturing, smart transportation and 

self-driving vehicles, and the energy sector.

The analysis of various specific use cases pertaining 

to these four domains provides clear evidence that 

artificial intelligence can be implemented across 

and benefit a wide set of industries. This potential is 

paving the way for artificial intelligence to become 

an essential part of the equation in resolving issues 

generated by today’s and tomorrow’s megatrends. 

Building upon this analysis, the White Paper 

provides a detailed description of some of the 

major existing and future challenges that artificial 

intelligence will have to address. While industry and 

the research community constitute the principal 

drivers for developing initiatives to tackle technical 

challenges related to data, algorithms, hardware 

and computing infrastructures, governments and 

regulators urgently need to elaborate new policies 

to deal with some of the most critical ethical and 

social issues foreseen to be the by-products of 

artificial intelligence.

Standardization and conformity assessment are 

expected to play an essential role not only in driving 

market adoption of artificial intelligence but also in 

mitigating some of the most pressing challenges 

related to decision-making by machines. As a 

leading organization providing a unique mix of 

standardization and conformity assessment 

capabilities for industrial and information technology 

systems, the IEC is ideally positioned to address 

some of these challenges at the international level.

Executive summary
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The following specific recommendations targeted 

at the IEC and its committees are provided in the 

last part of the White paper:

§§ Promote the central role of JTC 1/SC 42 in 

horizontal artificial intelligence standardization.

§§ Coordinate the standardization of data 

semantics and ontologies.

§§ Develop and centralize artificial intelligence-

related use cases.

§§ Develop an artificial intelligence reference 

architecture with consistent interfaces.

§§ Explore the potential for artificial intelligence 

conformity assessment needs.

§§ Foster a dialogue with various societal 

stakeholders concerning artificial intelligence.

§§ Include artificial intelligence use cases in 

testbeds involving the IEC.

As it is foreseen that artificial intelligence will become 

a core technology across many different industries 

and one of the driving forces of the coming fourth 

industrial revolution, the standardization community 

will play a critical role in shaping its future. Building 

upon its long track record in safety and reliability, 

the IEC can be instrumental in achieving this goal 

and fulfilling the promise of artificial intelligence as 

a benefit to humanity.
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Glossary

Application programming interface

API

interface constituted of clearly defined methods 

of communication between various software 

components

Application-specific integrated circuit

ASIC

an electronic circuit specialized to perform a 

specific set of operations for a specific purpose 

NOTE The application field cannot be changed since it is 

defined through its architecture.

Artificial intelligence

AI

a branch in computer science that simulates 

intelligent behaviour in computers including 

problem solving, learning and pattern recognition

Artificial neural network

ANN

a mathematical construct inspired by biological 

neural networks that are often used in computer 

science to perform tasks by giving them training 

examples without being explicitly programmed to 

do so

Central processing unit

CPU

an electronic circuit that performs instructions of a 

computer programme

Convolutional neural network

CNN

a special feed-forward network that is usually 

applied for tasks such as image recognition

Deep learning

a field of machine learning using deep neuronal 

networks

Deep neural network

DNN

an artificial neural network that has several 

consecutive layers of neurons that are connected 

in order to process an input to an output

Explanation-based learning

EBL

a form of artificial intelligence that uses domain 

theory to generalize from training examples

Field-programmable gate array

FPGA

an electronic circuit that performs specifically for 

different applications 

NOTE In contrast to application-specific integrated circuits, 

FPGA can be reprogrammed after manufacturing.

General Data Protection Regulation

GDPR

a set of significant regulatory changes to data 

protection and privacy in the European Union, 

which also addresses automated decision-making 

by artificial intelligence systems

Graphics processing unit

GPU

an electric circuit that is specialized to process 

images by performing massive amounts of 

calculations in parallel

Hidden Markov model

HMM

a probabilistic model of linear sequences that can 

be described using the Markov process 

NOTE Hidden Markov model is a technique used in machine 

learning with the assumption that not all states of the described 

processes can be directly observed and thus are hidden.
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Internet of Things

IoT

network of physical devices, embedded electronics 

or software that enables these components to be 

connected with a larger network to exchange data

Machine learning

a category of algorithms in computer science 

enabling a device to improve its performance of 

a specific task with increasing data and without 

being explicitly programmed to do so

Natural language processing

NLP

an area of computer science dealing with how 

computers can process natural language for 

speech recognition, language understanding or 

language generation

Neural processing unit

NPU

an electric circuit that is not based on a von-

Neumann or Harvard architecture, but on the 

principle of neuromorphing

Rectified linear unit

ReLu

an activation function of a neuron which consists 

of two linear parts

Recurrent neural network

RNN

a class of neural network in which the connections 

between the neurons form a directed graph along 

a sequence

Relational database management system

RDBMS

a database system that is based on the relational 

model

Tensor processing unit

TPU

an application-specific integrated circuit developed 

by Google to process machine learning and deep 

learning tasks

Glossary
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Section 1
Introduction

1.1	 Artificial intelligence: miracle 
or mirage?

Artificial intelligence (AI) is today one of the most 

widely hyped technologies. Since the advent of 

the first computers, mathematical models have 

increasingly been used to support humans in an 

ever larger set of decision-making processes. 

Whether employed in the human resources area to 

help determine who gets hired for a job, or in the 

banking sector to select approved recipients for 

a loan, machines have been continuously making 

inroads into domains hitherto reserved to human 

judgment and adjudication. 

With the digitalization of many industries making 

large sets of data available, AI began to be the 

focus of renewed interest for its potential in solving 

an ever increasing number of problems. Machine 

learning techniques grew more and more powerful 

and sophisticated, in particular in the context of 

what are known as artificial neural networks (ANNs). 

Developed in the middle of the 20th century as a 

mathematical curiosity inspired by biology, neural 

networks have become one of the cornerstones of 

AI.

However, it was not until 2010 and later that dramatic 

improvements in machine learning, commonly 

referred to as deep learning, paved the way for an 

explosion of AI. With computing power increasing 

steadily, very large (“deep”) neural networks began 

to provide machines with novel capabilities that 

would have been too complex or even impossible 

to implement using traditional programming 

techniques. Since then, technologies such as 

computer vision and natural language processing 

(NLP) have been completely transformed and 

are being deployed on a massive scale in many 

different products and services. Deep learning is 

now being applied in a large number of industries, 

such as manufacturing, healthcare or finance, to 

uncover new patterns, make predictions and guide 

a wide variety of key decisions.

However impressive such recent developments 

have been, AI remains today very much task-

focused and centered around well-defined pattern 

recognition applications. While current research 

is working dynamically to equip machines with 

human-like skills such as contextual awareness or 

empathy, attainment of this objective is, according 

to many AI scientists, still far ahead in the future.

Despite today’s limitations, AI is already profoundly 

impacting society, businesses and individuals and 

is expected to exert a growing influence on how 

people live, work and interact with one another. 

As with all major technological shifts, AI is being 

idolized and demonized simultaneously. All sorts 

of existential threats potentially posed by AI are 

being devised, ranging from robots increasingly 

appropriating jobs to AI-powered machines fighting 

specifically against humans. Setting such gloomy 

scenarios aside, it is nevertheless undeniable that 

new ethical and societal challenges are emerging 

concomitantly with innovative AI developments. 

Businesses, governments, regulators and society 

as a whole, will have to address such issues to 

ensure that AI truly benefits all of humanity. In 

this context, technical standards and conformity 

assessment systems could play a critical role in 

shaping the future of AI.
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1.2	 From winter to rebirth of 
artificial intelligence

AI does not constitute a new scientific discipline, 

as its origins can be traced back to the 1950s. The 

literature typically identifies three historical phases 

of AI development.

In the first phase (1950s to 1980s), AI emerged from the 

abstract mathematical reasoning of programmable 

digital computers. The famous computer pioneer 

Alan Turing conceptualized the first test to decide 

whether a programme could be considered intelligent 

or not, the so-called Turing Test [1]. The term “artificial 

intelligence” was actually initially crafted by John 

McCarthy in 1955, who later became known as one 

of the fathers of AI [2], and was proposed as the 

subject title for the first conference on AI, which took 

place in Dartmouth College in 1956.

An important next step in the development of 

AI was the invention of an algorithm using the 

concept of neural networks (the “perceptron”) by 

Frank Rosenblatt in 1958 [3]. However, it was not 

until 1967, with the development of the nearest 

neighbour algorithm by Cover and Hart [4], 

that machine learning started to be used in real 

applications. In spite of these early achievements 

and the rapid development of computer-based 

symbolism, the reach of AI remained nevertheless 

limited due to the inability to formally express or 

represent many concepts.

In the second phase (1980s to late 1990s), 

expert systems developed rapidly and significant 

breakthroughs in mathematical modelling were 

achieved. ANNs also started to be deployed more 

widely across a growing number of applications. 

During that period, some of the core techniques 

and algorithms of AI were developed and further 

refined: explanation-based learning (EBL) in 1981 

[5], the backpropagation algorithm in 1986 [6], and 

the principle of the support vector machine (SVM) 

in 1995 [7].

One of the best-known milestones during this 

second phase was the Deep Blue chess programme 

developed by IBM in 1996, which managed to 

beat the world champion the following year [8]. 

This was the first time a computer programme 

was able to defeat human players in games at the 

world championship level. In spite of this success, 

limitations related to knowledge acquisition and 

reasoning ability, combined with the high cost of 

deployed AI systems, produced a certain level of 

disenchantment, which led some observers to 

speak of an “AI winter”.

It was not until the third phase of development, 

which started at the beginning of the 21st century, 

that AI began to deliver on its initial promises. In 

2006, the first powerful fast learning deep belief 

network was introduced in a paper by Hinton, 

Osindero and Teh [9]. The algorithm was used 

to recognize and classify numbers in a set of 

images. This contribution was instrumental to the 

development of AI and became one of the most 

influential works for today’s AI research. More 

recent developments such as IBM Watson in 

2010 and AlphaGo in 2016 have since received 

considerable public attention.

With the explosion of collected data, sustained 

innovation in theoretical algorithms and the 

continuing rise in computing power, AI has 

subsequently made breakthrough progress in many 

application fields and now looks well prepared to 

take on new challenges. All of these developments 

have led some analysts to speak of a “rebirth of AI”.

Figure 1-1 depicts some of the major milestones of 

AI from its early days until the present time.

The success of machine learning algorithms for 

speech and image recognition was instrumental in 

attracting considerable interest from the research 

community, businesses and governments. 

Additionally, parallel developments in cloud 

computing and big data provided the support for 

moving from computer-based AI simulations to 

more complex and intelligent systems connecting 

machines and people. It is now foreseen that AI 

will become one of the core technologies of the 

fourth industrial revolution, as well as a driving 
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Figure 1-1 | Major milestones of AI development
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force for innovation in transportation, healthcare, 

retail, education, government services and other 

industries.

1.3	 Great opportunities come  
with risks and challenges

AI represents a huge market potential. According to a 

recent study from the International Data Corporation 

(IDC), worldwide spending on cognitive and AI 

systems is forecast to exceed USD 57 billion in 2021 

[10]. The retail and banking sectors are expected to 

spend the most on AI in the coming years, followed 

by discrete manufacturing, healthcare and process 

automation. These five industries, still according 

to IDC, will continue to be the largest consumers 

of AI technology, with their combined investments 

representing nearly 55% of all worldwide spending 

on such technology by 2021.

Taking into account the related service industry of 

machine intelligence, which includes programme 

management, education, training, hardware 

installation, system integration and consulting, 

the market size is actually much larger and AI is 

foreseen to become one of the fastest growing 

industries in the near future.

While automated customer service and diagnostic 

systems will likely remain the top drivers of AI 

spending in the coming years, smart manufacturing 

is expected to take a strong position in the AI 

market. IDC actually sees intelligent process 

automation become the third largest use case 

of AI systems by 2021 [10]. Other use cases that 

will experience fast spending growth include 

public safety, emergency response, and shopping 

advisors and recommendations.

Inevitably these exciting market prospects will also 

carry a certain number of risks and challenges. The 

impact of AI on the workforce is frequently cited as 

a potential threat to societies, with tensions in social 

relations resulting from a gradual diversification of 

the employment market. Increased automation 

and connectivity could also lead to additional or 

intensified wealth gaps between developed and 

developing economies. However uncertain such 

scenarios appear today, all major economies 

throughout the world have started to invest heavily 

to support AI innovations as part of their strategic 

technology planning activities. For instance, in 

2017 China promulgated the “New Generation 

of AI Development Plan”, the “Three Year Action 

Plan for the Promotion of New Generation of AI 
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Industry (2018-2020)” as well as various other 

policies to accelerate research, development and 

industrialization of AI technology.

1.4	 Definitions of artificial 
intelligence

There are several ways of defining AI. ISO/IEC 

Joint Technical Committee (JTC) 1 refers to 

“an interdisciplinary field, usually regarded as a 

branch of computer science, dealing with models 

and systems for the performance of functions 

generally associated with human intelligence, 

such as reasoning and learning” [11]. In the IEC 

White Paper on edge intelligence [12], the term 

AI is applied when “a machine mimics cognitive 

functions that humans associate with other human 

minds, such as pattern matching, learning, and 

problem solving”.

In other words, intelligence is demonstrated by 

four basic capabilities: sensing, comprehending, 

acting and learning. As of today, comprehending 

does not have the same meaning for machines as 

for humans. Typically, a model will be trained to 

“learn” how to perform better compared to more 

conventional methods, but AI systems cannot 

claim yet to “comprehend” the world around them.

Practitioners of AI often distinguish between strong 

AI and weak AI. Strong AI (also called general 

AI) refers to the more philosophical concept of 

a machine capable of exactly imitating human 

intelligence. Such a machine would be able to 

solve any problem in any field requiring advanced 

cognitive abilities. This kind of AI has not been 

developed yet and can only be found in various 

science fiction books or movies.

In contrast, weak AI (also called narrow AI) 

supports humans in solving specific problems for a 

particular use case. For example, AlphaGo masters 

the board game Go to an almost perfect degree 

but is unable to solve any other problem. Speech 

recognition tools such as Siri represent a kind of 

hybrid intelligence, which combines different weak 

AIs. These tools have the ability to translate spoken 

language and connect words to their databases 

in order to perform different tasks. Nevertheless, 

such systems do not constitute any general form 

of intelligence [13].

Other terms are tightly connected to AI, such as 

machine learning and deep learning. To create 

intelligent machines, a specific kind of knowledge 

is needed. In the past, such knowledge was 

hardcoded directly into the machines, which led to 

certain restrictions and limitations. The approach 

taken by machine learning is that the machine 

builds up its knowledge itself, based on a given set 

of data [14].

As knowledge these days comes mostly from 

real-world data, the performance of machine 

learning algorithms highly correlates with the 

information available, also called representation. 

A representation consists of all the features that 

are available to a given machine (e.g. output of 

a temperature or vibration sensor in a predictive 

maintenance application). Selecting the right 

representation is a complex and time-consuming 

task, requiring highly specialized domain 

knowledge. 

A field of machine learning called representation 

learning automates this task by discovering the 

representations needed for feature detection or 

classification from raw data. This set of methods 

is based on learning data representations, 

as opposed to more traditional task-specific 

algorithms [14].

However, selecting the right features is usually a 

very difficult operation, since they are dependent 

on various environmental factors. For instance, 

colours will be perceived differently in a dark 

environment, which then can impact the silhouette 

of objects.

As a subcategory of representation learning, deep 

learning transforms features and elaborates 

dependencies based on inputs received. In the 

example of an image, the input features are the 

Introduction
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pixels. A deep learning approach will map the 

pixels first to the edges of the image, then to the 

corners and finally to the contours to identify an 

object [14].

Figure 1-2 shows how these concepts logically 

relate to one another, with deep learning being a 

kind of representation learning, which in turn is a 

kind of machine learning, which is one subcategory 

of all possible approaches to AI.

1.5	 Scope of the White Paper

The objective of the present White Paper is to 

provide an overview of where AI stands today as 

well as some forward thinking for the next decade, 

by exploring opportunities and challenges of AI for 

a number of application domains. Building upon 

several use cases, the White Paper introduces 

a number of recommendations, some of them 

targeted at the IEC and its committees for future 

standardization and conformity assessment work.

This White Paper primarily focuses on weak AI. It 

is clear that today the world is running on various 

forms of weak AI. An email spam filter is a classic 

type of weak AI. It starts off loaded with a certain 

level of intelligence that enables it to figure out what 

constitutes spam and what does not, and then 

refines its intelligence as it acquires experience 

with the particular preferences of individual or 

collective users. Automobiles today are replete 

with weak AI systems, from the computer that 

determines when the anti-lock brakes should be 

activated to the processing unit that tunes the fuel 

injection parameters. Self-driving cars that are 

currently being tested include numerous robust 

weak AI systems allowing the vehicle to sense and 

react to the surrounding environment.

Creating an AI as smart as the human brain will 

remain an enormous challenge for quite some 

time. Building a computer that can multiply two 

ten-digit numbers in an infinitesimal amount of time 

is unexpectedly easy. Building one that can look 

at a dog and decide whether it is actually a dog 

or a cat is much more difficult. While creating a 

system that can defeat the world chess champion 

has already been achieved, fabricating an AI that 

can understand the meaning of a paragraph from a 

six-year old’s picture book, and not just recognize 

the words, is still well beyond today’s possibilities.

Many such capacities that seem easy to human 

beings are actually extremely complicated and 

only seem easy because the skills involved have 

been optimized in humans (and most animals) 

across hundreds of millions of years of evolution. 

Since it is virtually impossible to properly define 

what intelligence consists of, it is very difficult to 

provide a clear criterion as to what would count as 

a success in the development of strong AI.

In order to shed light on some of the foreseen 

developments of AI within the next decade, the 

following application domains are explored in the 

White Paper, and for each of them a number of use 

cases are described:

Figure 1-2 | Venn diagramme of AI
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§§ Smart homes – residential environments 

that are equipped with connected products 

for controlling, automating and optimizing 

functions such as temperature, lighting, 

security, safety or entertainment.

§§ Smart manufacturing – a technology-driven 

approach using connected machinery to 

monitor production processes and data 

analytics to improve manufacturing operations.

§§ Smart transportation – a scenario in which 

mobility-related entities (e.g. personal vehicles, 

public transportation, delivery vehicles, 

emergency services, parking) are integrated 

and automated in order to improve traffic 

performance and reduce potential negative 

impacts such as congestions, accidents or 

pollution.

§§ Smart energy – a sustainable and cost-

effective energy system in which renewable 

production, consumption, and infrastructures 

are integrated and coordinated through energy 

services, active users and enabling information 

and communication technologies (ICTs).

1.6	 Outline of the White Paper

Section 2 describes the need for AI through 

identification of several key megatrends posing 

major challenges for societies, businesses and 

individuals. AI will enable and enhance a wide 

range of applications addressing some of these 

challenges, such as environmental concerns, 

changing demographic trends or economic 

disparity, to mention only a few.

Although AI is hardly a new discipline, it was not 

until 2010 and later that dramatic technological 

enhancements, in particular in the area of machine 

learning, paved the way for today’s explosion 

of AI. This breakthrough was enabled thanks 

to a number of factors explained in Section 3. 

Significant improvements in computational power, 

more sophisticated machine learning algorithms 

and the availability of large amounts of data to 

train AI systems have been the primary enablers of 

today’s spectacular AI developments.

A number of additional drivers that have also 

contributed to the flourishing field of AI research 

are further outlined in Section 3. These include 

information technology (IT) developments such 

as cloud and edge computing, the Internet of 

Things (IoT), and big data, as well as the increasing 

readiness of consumers and society to embrace 

new technologies and share data.

Section 4 provides a high-level understanding 

of the most common AI systems and machine 

learning techniques. Without entering into deep 

technical detail, it also reviews the most popular 

AI algorithms in use today that constitute the 

foundation for tomorrow’s AI developments. Based 

on the current state of the art of AI, this technical 

overview is complemented by many references 

for readers wishing to consolidate their scientific 

understanding of how AI actually works from the 

inside.

While this White Paper cannot cover all of the 

possible AI application scenarios, a representation 

describing how today’s main AI systems map to 

some of the most popular application domains 

is provided in Section 5. This exercise furnishes 

a better characterization of the AI needs and 

requirements of several industry sectors. The rest 

of the section is then devoted to a more detailed 

description of the four application domains (smart 

homes, smart manufacturing, smart transportation, 

and smart energy), for which several AI-related use 

cases and scenarios are reviewed, together with 

some of the most pressing challenges of current 

and emerging AI implementations.

Following this review, Section 6 consolidates the 

main AI challenges that can be identified in today’s 

implementations or foreseen in emerging AI 

developments. Challenges are grouped into several 

categories: social and economic challenges; 

data-related challenges, including the selection 

Introduction
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of training data and the standardization of data; 

algorithm-related challenges, such as algorithm 

robustness and interpretability; infrastructure 

challenges, related to hardware or platforms; 

trustworthiness issues, including trust, privacy 

and security; and challenges linked to regulations, 

such as liability and ethical issues.

Building upon the previous section, Section 7 

develops a standardization landscape for AI 

and identifies a number of gaps that need to 

be addressed in order to solve some of the AI 

challenges described previously. While today’s 

standardization activities are still at a very early 

stage, the White Paper clearly demonstrates that 

standards need to play an essential role in shaping 

the future of AI and mitigating the many technical 

and non-technical issues emerging with the 

deployment of AI across industries.

Finally, Section 8 concludes the White Paper by 

offering a series of recommendations for industry, 

regulatory bodies and the IEC. While the success 

of AI and its acceptance within diverse societies 

will rely on the involvement of multiple stakeholders 

and communities, it is clear from this White 

Paper that industry, policy makers and standards 

development organizations such as the IEC will 

need to play a driving role to ensure that AI delivers 

on its promises.

Additional, future-looking AI developments that 

may grow in importance over the next decade are 

discussed in Annex A.
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Section 2
Need for artificial intelligence

Today’s society and business landscape are 

characterized by a complex and unprecedented 

set of challenges and opportunities. Existing 

markets are subject to disruption and can even 

disappear abruptly in a short space of time. Major 

global trends impacting society, the economy, 

business, cultures and personal lives, often called 

megatrends, are defining the future world of 

mankind and its increasing pace of change.

Megatrends represent interconnected, global 

interactions that contribute to framing the impact 

of major technology developments such as AI. 

The joint effect of digitization, automation and AI 

is expected to significantly impact the future of 

work. It is anticipated that computerization will 

affect many low-skill jobs, with computer-guided 

automation becoming increasingly prevalent across 

numerous industries and environments, including 

manufacturing, planning and decision-making 

[15]. The growth in technological capabilities is 

already transforming supply chains, reshaping the 

workforce and redefining jobs. The challenging 

prospect of such change lies in the fact that 

the growth is not linear but rather complex and 

accelerating.

At the same time, AI will enable and improve a wide 

range of applications that can address some of 

the challenges emerging from these megatrends: 

environmental concerns, changing demographics, 

or economic disparity, to mention only a few.

2.1	 Scarcity of natural resources

The planet’s natural resources are being consumed 

at an alarming rate and most countries are expected 

to double their annual global consumption of such 

resources by 2050 [16]. Not only are finite natural 

resources being depleted, humans are also using 

far more environmental resources than Nature can 

regenerate. While in the past resource conservation 

was often viewed as detrimental to business, today 

the two are by no means mutually exclusive.

AI is already helping countless manufacturers to 

optimize productions processes, thereby reducing 

waste and increasing output. In addition, AI will 

soon be used not just to optimize the processes 

themselves but also their inputs. By analyzing the 

purpose, properties and environmental impact 

of a production’s input materials, AI will be able 

to help scientists design materials that match 

the specifications required for more sustainable 

production. Ideas have even been proposed 

for using AI to identify a second usage for the 

material components of by-products created by 

machinery, thereby creating a near circular use of 

raw materials. Not only are such efficiency gains 

in production processes an attractive incentive for 

businesses, they will also have a significant impact 

on global resource consumption.

AI will also help utilities in an era of increasing 

urbanization, growing power consumption, scarcity 

of water resources, and large-scale deployment 

of renewable energy. This will be achieved by 

more intelligent management of both demand and 

supply. On the demand side, AI is already producing 

significant energy savings, for example by reducing 

the consumption of data centres by 15%. On the 

supply side, decentralized smart energy grids 

will be able to predict and pre-empt outages, 

and manage fluctuations in supply and demand 

to ensure the optimal level of supply while at the 

same time minimizing the use of fossil fuels [17].  
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Additional examples include the optimization of 

renewable energy generation through solar or wind 

farms or the optimization of vehicle traffic flows to 

reduce emissions.

2.2	 Climate change

Forecasts by leading scientists have been 

unequivocal: without a consistent response to the 

climate change challenge and a more responsible 

use of environmental resources, unpredictable 

changes will threaten the planet. This raises the 

question of how to reconcile economic objectives 

with environmental sustainability. Equally important 

is how mankind can prepare for unexpected 

dramatic natural occurrences in the future.

The use of AI in a wide variety of applications 

is expected to play a leading role in the fight 

against climate change. AI can support complex 

decision-making processes when dealing with 

natural resources or when predicting unexpected 

incidents. The consumption and use of resources, 

for instance, can already be optimally coordinated 

during energy generation. AI makes it possible to 

set numerous parameters such as context-based 

electricity consumption and grid load in relation 

to weather forecasts and electricity tariffs. As a 

result, the behaviour of electricity consumers can 

be determined and addressed more efficiently.

Building on those achievements, intelligent 

mobility solutions involving a more responsible 

use of resources can be implemented, including 

autonomous electromobility. Not only can vehicles 

and trucks be optimally and efficiently matched 

to one another, they can also be driven more 

efficiently thanks to AI.

Similar developments can be devised for efficient 

water consumption. In agriculture, for example, 

AI allows to determine the optimal water demand 

depending on the specific needs of each individual 

plant, the soil situation and current weather 

conditions. Furthermore, supply strategies 

for droughts and water shortages in affected 

regions and countries can be developed using AI 

techniques.

AI can also contribute to improving predictions of 

weather scenarios and natural disasters. Scientists 

are increasingly faced with the challenge of 

capturing and processing numerous influencing 

factors in order to increase the accuracy of 

weather forecasts. AI will effectively help people 

process a wide range of measurement data in 

order to provide early predictions for weather-

related events and warnings of potential elements 

such as floods, air pollution episodes, or storms. 

Early-warning systems can then be set up more 

intelligently for diverse geographies.

2.3	 Demographic trends

The United Nations (UN) is predicting a population 

increase of more than one billion by 2030 due to 

demographic growth in emerging and developing 

countries (Figure 2-1). In addition, the ageing 

population (number of persons 65 years or older) 

will increase by more than 390 million due to people 

living longer and having fewer children.

As shown in Figure 2-2, the impact of an ageing 

population will be more immediately felt in Europe, 

Asia and Latin America, resulting in different 

regional issues. The trend in the number of working 

people supporting each elderly person will move 

from nine in 2015 to a range of a half to four in Asia, 

which will create a much higher dependency of the 

older generation on the younger one. In Europe, 

the availability of a suitable working age population 

will decrease and create an acute demand for a 

new generation of workers, i.e. women and the 

elderly. The ratio of four working age persons 

per elderly in 2015 will decrease by 50% in 2050. 

These ageing population trends will undoubtedly 

generate significant challenges for governments 

and industry [18].

Another important aspect of such trends is related 

to large regional differences in the availability of the 

working age population, such as 1,5 working age 

Need for artificial intelligence
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Figure 2-1 | Increasing global population

Figure 2-2 | Ageing population across the globe
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people for each elderly person in Japan in 2050 

versus 15 working age people for each elderly 

individual in Nigeria.

The ageing population trend will drive higher 

spending on healthcare. It is anticipated that within 

G7 countries, healthcare budgets will increase 

by about USD 200 billion every year. However, 

technological and scientific innovations may help 

reduce healthcare costs to more affordable levels.

Most governments in Europe are now encouraging 

older workers to remain within the workforce by 

increasing the official retirement age, and by 

outlawing age discrimination. In addition, industry 

will need to provide financial incentives as well as 

re-training programmes for older workers. Lifelong 

learning to acquire new skills during the individual’s 

working life, as well as mentoring of younger 

colleagues, will become critical for efforts to keep 

ageing people within the workforce.

2.4	 Economic policy

It has already been highlighted how automation 

and immense productivity gains will help countries 

alleviate the pressures of demographic change. 

While this will certainly be a welcome development 

for more advanced economies struggling with 

an ageing population, there are countless 

opportunities for AI to make a difference for the 

world’s poorest countries.

The UN’s Sustainable Development Goals, for 

example, seek to tackle these challenges by 

reducing poverty and hunger, and improving 

education. The recent AI for Good Global Summit 

2017 highlighted how AI can support these 

efforts. Suggestions ranged from initiatives aimed 

at monitoring the progress of the international 

community toward achieving these goals and 

determining where resources are most needed, 

to predictive modelling of disease outbreaks [19]. 

AI is also poised to operate in conjunction with 

the IoT, drones and synthetic biology to power 

smart agriculture and provide insights concerning 

when and where to plant and harvest crops while 

optimizing nutrition, pesticides and water to 

increase yields and help combat world hunger [20].

The interest of governments in the potential of AI is 

increasingly rapidly, and as it does, AI is expected 

to make contributions to public policy, particularly 

economic policy. When constructing a model, 

economists usually begin with a set of assumptions 

which they then seek to verify. AI, however, offers 

the power to analyze data and uncover previously 

unknown interactions between variables, on which 

a model can then be built from first principles and 

serve to inform public and monetary policies.

AI may also support financial regulators in their 

monitoring activities by inspecting the balance 

sheets of banks for anomalies that are of concern 

from a prudential or conduct perspective [21]. 

Such explorations into how AI can be used in the 

public sphere should be welcomed, as they can 

help governments explore best practices, make 

more informed decisions on AI policy and build 

public trust.

2.5	 Service and product 
customization

The integration of AI and advanced manufacturing 

enables mass customization that easily connects 

suppliers, partners and customers, and meets 

individualized demands with efficiency and 

cost close to mass production. Applying AI 

therefore optimizes the manufacturing value 

chain, so that manufacturers can track flows of 

materials in real-time. They can also assess more 

accurately engineering and quality issues, reduce 

excess inventory and logistics delays, increase 

responsiveness to customer needs and make better 

business decisions that reduce waste and costs. 

Businesses will benefit from mass customization 

of production by empowering internet-connected 

consumers to control intelligent manufacturing 

processes in order to develop products according 

to their desired specifications.

Need for artificial intelligence
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AI allows the individualization of products on a 

completely new level. Not only product configurators 

that customers can use online are affected. The use 

of AI also opens up completely new possibilities for 

individualization. Products whose individualization 

would involve high development costs can be 

adapted to requirements by using AI.

Services also can be automatically tailored to 

customer needs. An example is the automatic 

translation of texts. While previously the results 

of rule-based techniques could often only reflect 

the meaning of individual words but not entire 

sentences that are contextualized, services 

supported by AI are able to perform translation 

based on the meaning of a text.

Need for artificial intelligence
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Section 3
Enablers and drivers of artificial intelligence

While improvements in hardware, algorithms and 

data availability have been the primary enablers of 

AI, capital has been its fuel. The rapid development 

seen today would arguably not have been possible 

without an increase in awareness, venture capital 

and government support for AI, which served 

to provide both the funding and market for new 

innovations. There is a growing awareness of the 

advantages AI can bring to those who are able 

to use it effectively. As a result, business and 

technology leaders are taking a much more active 

role in shaping the future of AI, thereby creating 

improved market conditions for its development.

§§ Heightened awareness

78% of organizations surveyed in 2017 reported 

that they had plans to adopt AI in the future, with 

close to 50% indicating that they were actively 

exploring adoption [22]. Indeed, in 2016 companies 

collectively invested up to USD 39 billion in AI [23], 

particularly in machine learning, which attracted 

nearly 60% of investments. An increasing interest 

in and adoption of AI technology by small-to-

medium enterprises (SMEs) will no doubt continue 

to fuel this growth for many years to come [24]. The 

potential market for AI applications is thus huge, 

with a projected total market size of USD 127 billion 

by 2025 [23].

§§ Availability of private capital

With companies eager to transform their business 

through AI and willing to pay the price, the 

availability of capital for AI entrepreneurs has never 

been higher. Global venture capital investments 

in AI doubled in 2017 to USD 12 billion [25] and 

the number of active AI start-ups in the United 

States alone has increased 14-fold since 2000. 

Technology companies too have outdone each 

other in announcing billion-dollar investments in 

their AI departments.

§§ Government support

This availability of private capital can only be 

expected to increase, as governments compete 

to grow their domestic AI industry. The European 

Union, the United Kingdom, Germany, France and 

Canada have all committed to strengthening their 

domestic AI industries, after China published its 

ambitious plan to overtake the United States as 

the global leader in AI by 2030 [26]. Although the 

volume of investment committed varies widely by 

country, increased government attention is laying 

the foundations for public/private partnerships and 

the development of AI applications for the public 

sector.

Today it is easier than ever to access the world 

of AI. Frameworks, toolkits and libraries provide 

users with algorithms and various programming 

languages. They also maintain such algorithms and 

facilitate implementation, attracting a community 

of developers and users to jointly improve open-

source software [27].

3.1	 Enablers of artificial 
intelligence

Interest in AI has reached a new peak. Almost every 

week, new discoveries arise and new applications 

are advertised publicly. Achievements that were 

unthinkable in the past are now being accomplished 

at increasing pace. For example, IBM Watson has 

beaten the best players in Jeopardy, a game that 
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requires high language skills as well as knowledge 

about riddles and wordplays [28].

The remaining question is what has enabled such a 

tremendous acceleration in AI progress over recent 

years? While core concepts and approaches to AI 

have been around for decades, three key enablers 

have helped bypass the “AI winter” and led to 

today’s spectacular developments:

§§ Increased computational power

§§ Availability of data

§§ Improved algorithms

3.1.1	 Increased computational power

Most AI algorithms require a huge amount of 

computational power, especially in the training 

phase. More computational power means that 

algorithms can be tested and trained faster, and 

that more complex algorithms can be implemented. 

Therefore, the growing adoption of AI has been 

greatly enabled by progress made in hardware 

technology (e.g. integrated circuits, semiconductor 

fabrication, server technologies).

The increase in computational power is commonly 

represented by Moore’s Law, which relates such power 

to the density of transistors on a chip [29]. Following 

Moore’s law, the feature size of semiconductors 

has shrunk from 10 μm in the 1970s to 10 nm in 

2017, which means that a far greater number of 

transistors can be integrated on the same die size 

(Figure 3-1).

Not only has the transistor number substantially 

increased to provide much higher computing 

power, but also the hardware architecture has 

been improved to offer better performance for AI 

applications. For instance, multi-core processors 

are designed to provide increased parallelism. 

In addition to central processing units (CPUs), 

other types of processing units such as graphics 

processing units (GPUs), field-programmable gate 

arrays (FPGAs), and application-specific integrated 

circuits (ASICs) are being further adopted for 

various workload patterns.

Figure 3-1 | Increased computational power over time

Enablers and drivers of artificial intelligence
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GPUs are used for handling image processing 

tasks and have been found to be very effective 

in accelerating AI algorithms such as deep 

neural networks (DNNs) or convolutional neural 

networks (CNNs). Integrated circuits like FPGAs 

are configurable after manufacturing to fit a wide 

range of applications and offer much higher speed 

compared to traditional CPUs. ASICs include 

different variants such as tensor processing 

units (TPUs) and neural processing units (NPUs). 

By tailoring the circuit design based on the data 

processing patterns, ASICs can achieve even 

higher performance than GPUs or FPGAs. For 

example, it is claimed that TPUs deliver 15 to 30 

times higher performance and 30 to 80 times 

higher performance-per-watt than contemporary 

CPUs and GPUs [30].

3.1.2	 Availability of data

The output of an AI application is information 

extracted from algorithms based on supplied 

data. Therefore, the use of incomplete or faulty 

data will always lead to poor results, no matter 

how good the algorithm is [29]. An important 

factor in creating and evaluating new algorithms is 

access to datasets and meaningful data that have 

already been classified. One of the most significant 

developments that has driven the availability of data 

is the internet. This has allowed huge communities 

to collaborate in order to create datasets, which 

can be accessed by researchers all over the world.

One illustrative example of an internet community 

that constantly creates, classifies, labels and 

uploads data for image classification is the 

ImageNet community. Creating and labelling 

training data not only took considerable time in the 

past, but has also been almost impossible for large 

datasets that are required to train neural networks. 

While an image dataset for facial recognition in 

1997 consisted of approximately 165 instances 

[31], an ImageNet dataset for faces already 

consists of 1 570 fully classified instances [32].  

In total, ImageNet alone provides almost 15 million 

classified images, which can be easily accessed 

and used to train and evaluate AI algorithms [33].

Easy accessibility to a large amount of data that 

can be used to train and fine-tune algorithms 

means that researchers and practitioners of AI can 

devote their time to improving and developing new 

algorithms and then quickly test and validate them. 

This was not possible just two decades ago.

3.1.3	 Improved algorithms

Most recent advances in AI have taken place in 

deep learning. Although the concept has been 

around for several years, the actual breakthrough 

occurred very recently. While there have not been 

major recent milestones in neural network research, 

developments have not come to a halt. Numerous 

improvements in existing techniques and the 

development of several new ones have led to many 

successful neural network implementations.

An example of a small change in algorithms that 

allowed neural networks to process information 

faster and more efficiently is the rectified linear unit 

(ReLu) activation function. An activation function 

is an essential part of any neuron, of which 

neural networks consist. The ReLu concept was 

introduced by Hahnloser in 2000 [34]. It takes 

the form of a ramp function and consists of two 

linear parts. Its first successful implementation was 

demonstrated in 2011, when it was used to train 

a neural network more efficiently [35]. It replaces 

another activation function, the logistical or sigmoid 

function, and describes a logarithmic curve 

requiring more processing power than a linear 

function. The ReLu activation function offers many 

advantages compared to the sigmoid activation 

function, such as efficient propagation, scale 

invariance and higher computational efficiency. 

It is especially useful in applications containing 

complex datasets, since it allows for a faster and 

more efficient training in deep networks.

Enablers and drivers of artificial intelligence
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Another example of a new concept that contributed 

to the development of deep learning is the CNN, 

which was first introduced in 1989 [36] [37]. It is 

widely used for image recognition tasks, where it is 

able to achieve above-human-level performance [38].

All these developments have enabled AI research 

to achieve enormous progress over the last few 

years. The increased amount of available data 

would have been useless without the ability to 

process it efficiently with appropriate algorithms. It 

is clear that advances in AI have not been the result 

of a single enabler, but rather the consequence of 

a combination of various ideas and technologies 

that gradually improved over time.

3.2	 Drivers of artificial intelligence

The three key enablers described above have 

given birth to the flourishing field of AI research that 

can be observed today. Added to the perceived 

economic value of AI, these developments have 

also been made possible thanks to a number of 

technology and social drivers that have accelerated 

the deployment of AI across a broad range of 

applications. They are all related to the digital 

transformation trends that have been permeating 

industry, society and also individual lives over the 

past decade.

IT developments have been instrumental in 

supporting the deployment of AI applications. 

Abundant resources have been provided by 

modern IT infrastructures, including but not limited 

to cloud computing, big data and the IoT.

Cloud computing is an elastic and scalable 

infrastructure that provides access to shared pools 

of resources and higher-level services, which can 

be provisioned on-demand and with minimal 

management effort. Since the computing needs 

of AI vary significantly based on datasets and 

algorithms, particular application requirements 

can be met by leveraging the enhanced resource 

utilization and efficiency offered by cloud 

infrastructures.

Big data is the science and engineering of 

storing, managing and analyzing large datasets 

characterized by volume, velocity, variety and/

or variability [39]. Techniques and architectures 

dealing with structured, semi-structured and 

unstructured data have been proposed. These 

include, for example, relational database 

management systems (RDBMSs), distributed file 

systems, graph databases and various computing 

frameworks to process or analyze these data.

Last but not least, the IoT is the network of physical 

devices, vehicles, or other electrical appliances, 

which enables such objects to communicate 

and interact with each other. It provides the 

infrastructure to collect and gather data related to 

the status of these devices via sensors distributed 

geographically. Devices can then be configured 

and controlled through actuators. The combination 

of IoT infrastructure and AI technologies has led to 

many applications, such as smart manufacturing, 

smart homes and intelligent transportation.

These IT developments have coalesced with 

changes in society that have boosted the 

acceptance and widespread use of data-intensive 

tools such as social media. This trend was 

an additional factor driving and facilitating the 

extensive deployment of AI.

3.2.1	 Cloud and edge computing

Edge computing is a distributed open platform 

at the network edge, close to the things or data 

sources involved, integrating the capabilities of 

networks, storage and applications. By operating in 

close proximity to mobile devices or sensors, edge 

computing complements centralized cloud nodes, 

allowing for analytics and information generation 

close to the origin and consumption of data. 

This enables the fulfilment of key requirements 

of industry digitalization for agile connectivity, 

real-time services, data optimization, application 

intelligence, security and privacy protection. Cloud 

and edge computing enable access to cost-

Enablers and drivers of artificial intelligence



31

efficient, scalable computing resources as well as 

specialized services.

AI benefits from the use of edge computing in the 

following ways:

§§ Localization of data acquisition and storage 

enables the pre-processing of data so that 

only decisions or alarms are forwarded to the 

cloud servers rather than raw data.

§§ Faster and more efficient decision-making can 

be achieved via the placement of machine 

learning algorithms on the edge devices, thus 

reducing the frequency of contact with cloud 

servers and steadily decreasing the effect of 

round-trip delay on decision-making.

§§ Data can be secured close to its source using 

local identity management and application-

specific access policies, and following local 

regulations.

§§ Communication between edge computing 

nodes will enable the distribution of AI 

capabilities and sharing of intelligence between 

the distributed AI nodes.

Further information on edge computing and edge 

intelligence is available in the IEC White Paper on 

edge intelligence [12].

3.2.2	 Internet of Things

The IoT focuses on gathering data from devices, 

which is particularly relevant for production and 

consumer information. The evolution of ICTs over 

the last decades has led to the expansion of 

computing capabilities into smaller and smarter 

devices [40]. Based on this development, the 

IoT is defined by ISO/IEC as the “infrastructure 

of interconnected objects, people, systems and 

information resources together with intelligent 

services to allow them to process information of 

the physical and the virtual world and react” [41].

The number of connected devices installed 

worldwide is expected to increase from over 23 

billion in 2018 to approximately 75 billion in 2025 

[42] [43]. This illustrates the impact of the IoT on 

data acquisition. In the future, the amount of data 

that can be used in AI applications will further 

increase and thus improve the performance of 

algorithms.

Today, IoT applications make it possible to capture 

performance and environment-related data using 

sensors attached to devices. This enables the 

analysis of data either locally or via cloud platforms. 

In the future, the real-time behaviour of such systems 

will become increasingly important for time-critical 

applications such as autonomous driving [44].

Given the large amounts of data generated by these 

connected sensors, the role of AI computing at the 

edge (or edge computing) will become even more 

important. As mentioned before, it is impractical 

and sometimes even impossible to transmit all 

generated data to a central location, analyze such 

data and then send back the necessary information 

to the device. Therefore, being able to carry out 

simple analysis or decisions locally is becoming 

critically important. This trend will also lead to 

simpler AI algorithms running locally on devices 

that rely on edge computing. AI at the edge will 

bring the IoT to the next level of capabilities.

Further information on the IoT is available from the 

IEC White Paper on smart and secure IoT platform 

(IoT 2020) [44].

3.2.3	 Big data

The unprecedented growth in global connectivity 

and networking is generating massive amounts of 

data, and the rate of this generation is accelerating. 

Big data makes it possible to store, manage and 

analyze these very large datasets through various 

techniques and architectures. Big data can be 

of great benefit to individuals and organizations, 

offering insights into a multitude of areas such as 

smarter cities, faster medical breakthroughs, more 

efficient use of resources, and human resource 

processes.

Enablers and drivers of artificial intelligence
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Many organizations are embracing this paradigm 

and are becoming more data-driven in decision-

making, product and service development, as well 

as when interacting with customers, employees, 

suppliers and other stakeholders. Social media 

platforms are great examples of how marketers 

today approach their customers and transform the 

field of marketing [15].

Big data is commonly defined as “a term that 

describes large volumes of high velocity, complex 

and variable data that require advanced techniques 

and technologies to enable the capture, storage, 

distribution, management, and analysis of the 

information” [45]. According to [39], big data can 

be represented by volume, variety, velocity and 

veracity (the four Vs) as follows:

§§ Volume – the amount of data generated. 

This amount has been exploding due to the 

increasing number of data sources connected 

through the IoT, their higher resolution, as 

well as the depth of data. The challenge for 

AI applications is to process, analyze and 

maintain this very large amount of data.

§§ Variety – the heterogeneity of data, caused by 

the variety of data sources. Multiple sources 

describe one event, providing different data 

formats in a structured or even unstructured 

form. These data are not limited to sensor 

data, but could also be for example expert 

knowledge of a machine operator. AI therefore 

has to exploit information from different 

sources with different data types.

§§ Velocity – the speed at which data is generated, 

which currently is real-time in many cases. 

For some applications, the speed of data 

generation is critical because it conditions the 

validity of the data. Often this leads to a trade-

off between the speed of data generation and 

its processing. The latency between generation 

and processing is an important factor for AI 

applications.

§§ Veracity – the data quality. As described 

above, an AI algorithm is only as powerful as 

the data with which it is fed. As applications 

based on lower-quality data might lead to 

wrong predictions, AI has to mitigate the data 

quality issue to keep producing useful results.

3.2.4	 Consumer acceptance

Another driver of AI is the increasing readiness of 

consumers and society as a whole to embrace 

new technologies, share data and information, 

and join collaborative communities to improve AI 

applications.

The generation called “digital natives”, which 

grew up with computers, smartphones and other 

electronic devices, is already very open-minded 

about adopting new technologies and sharing 

personal data. Although data privacy concerns are 

now receiving more attention, younger generations 

have already embraced data-intensive activities 

(such as social media) as part of their lives. In a 

recent study by Deloitte, the willingness to share 

information with companies has doubled since 

2014. Almost 80% of the people surveyed stated 

that they are willing to share their personal data 

if they directly benefit from it [46]. This is one of 

the reasons explaining why social media are major 

fields of application of AI.

Social media platforms have rapidly become 

popular and efficient ways of sharing, 

communicating, networking and collaborating for 

individuals, organizations and businesses. They 

offer businesses increased brand awareness, 

enhanced customer analytics, and new sales 

channels. Additionally, journalists, scientists, 

business owners, and the general public, who 

used to live and work in isolation from each 

other, are increasingly becoming more and more 

interconnected. Social media allow for immediate 

connections, which may previously have been 

considered beyond conventional reach [15].

Enablers and drivers of artificial intelligence
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But AI is not only deployed to obtain insights into 

consumers, it already functions as a part of people’s 

daily routine. Internet search engines already use 

AI. Both Google and Baidu have developed high-

performance algorithms that improve the accuracy 

of search queries [47]. Other applications are found 

in a myriad of sectors. Fraud can be detected 

via machine learning algorithms to secure bank 

accounts [48]. E-mail accounts are kept cleaner 

by algorithms that automatically filter spams [49]. 

Facebook uses facial recognition to compare 

users with new images [50]. Pinterest automatically 

identifies specific objects in images and allows 

them to be assigned to specific categories [51]. 

Twitter and Instagram have developed user 

sentiment analysis engines [52]. Snapchat tracks 

facial movements and allows dynamic overlay [53]. 

Many other daily examples could be mentioned.

While human interaction with AI in these cases 

is rather passive, efforts are also being spent on 

making AI much more proactive and interactive 

with humans. Siri, Alexa, Google Now or Cortana 

can handle natural language processing (NLP) to 

behave like personal assistants answering all kinds 

of questions [54]. More developments of this nature 

are certainly to come in the future.

Enablers and drivers of artificial intelligence
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Figure 4-1 | Classification

Figure 4-2 | Regression

Section 4
Inside artificial intelligence

This section provides further insights into how AI 

actually works, in particular what kinds of machine 

learning mechanisms are commonly encountered 

today. Some of the basic learning problems that 

machine learning algorithms deal with are explained 

in more detail, as well as major application areas in 

which such algorithms are implemented. The last 

part of this section then reviews some of the most 

widely used AI algorithms.

4.1	 Categories of machine learning

Machine learning extracts information from data. 

Three main categories describe the way this 

process works: supervised learning, unsupervised 

learning and reinforced learning.

4.1.1	 Supervised learning

If the dataset includes known input and output 

pairs, it is called supervised learning. Based on 

this, supervised learning uses a set of training 

data to predict output values for unknown 

datasets. The performance of models developed 

using supervised learning depends upon the 

size and variance (data selection) of the training 

dataset employed to achieve better generalization 

and greater predictive power for new datasets. 

Algorithms can perform either a classification 

(Figure 4-1) or a regression (Figure 4-2).

Classification maps input variables to discrete 

output variables. A typical application is spam 

filtering based on the occurrence of certain words 

in an email (e.g. “$$$”, “make money”, “no fees”). 

Regression maps the input variables to continuous 

output variables, approximating for example the 

temperature curve over the whole year.
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4.1.2	 Unsupervised learning

Unsupervised learning models learn to group 

instances of a dataset without defining pre-

specified attributes. The algorithms determine 

the underlying structure of the dataset without 

information about target criteria. Given a set of 

images, such an algorithm would for instance 

identify that the objects in the various images are 

not the same. Without knowing the object, it then 

forms different categories. Typical approaches 

include for example clustering (Figure 4-3) and 

dimensionality reduction.

4.1.3	 Reinforcement learning

Reinforcement learning describes a way of learning 

in which an AI system in the form of an agent 

interacts with its environment, or at least with a 

specific object in the environment. The agent is able 

to perform actions on and observe its environment. 

In return, the agent receives feedback through 

its environment, usually in the form of a reward. 

This reward can be positive or negative. The goal 
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Figure 4-3 | Clustering

of the agent is to maximize its received positive 

feedback or minimize negative feedback through 

its actions. This is effected by a value function that 

approximates the value of an action. It improves 

through performed actions and received rewards 

for said actions. Through repeated actions in 

connection with received feedbacks, the agent is 

thus in a better position to approximate the value of 

its actions through the value function. Depending 

on how the feedback is structured, the agent can 

learn to perform certain functions. The process of 

such a learning agent is illustrated in Figure 4.4.

4.2	 Current machine learning 
systems

In the following subsections several examples 

of typical AI systems encountered today are 

described.

4.2.1	 Computer vision

Computer vision refers to the use of computers 

to simulate the human visual system in order to 

identify objects or people. It usually makes use 

of machine learning algorithms that recognize 

patterns in pictures and utilize these patterns to 

classify the image. Computer vision tasks include 

methods for acquiring, processing, analyzing, and 

understanding digital images, and extraction of 

high-dimensional data from the real-world in order 

to produce numerical or symbolic information 

(e.g. decisions). Understanding in this context 

means the transformation of visual images into 

descriptions of the world that can interface with 

other thought processes and generate appropriate 

actions. Image data can take many forms, such as 

video sequences, views from multiple cameras, or 

multi-dimensional data from a medical scanner. 

CNNs are commonly applied for this kind of tasks.
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Figure 4-4 | Reinforcement learning

Inside artificial intelligence
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4.2.2	 Anomaly detection

Anomaly detection is used for any application in 

which it is essential to identify a deviation from an 

expected pattern. This can be found in a variety 

of scenarios, such as fraud detection, health 

care monitoring or detection of intrusion into a 

computer system. Machine learning can support 

faster detection of anomalies.

Three broad categories of anomaly detection 

techniques exist. Unsupervised anomaly detection 

techniques detect anomalies in an unlabelled test 

dataset, under the assumption that the majority of 

the instances in the dataset are normal in contrast 

to instances that seem to fit least to the remainder 

of the dataset. Supervised anomaly detection 

techniques require a dataset that has been 

labelled as “normal” and “abnormal” and involves 

training a classifier. Finally, semi-supervised 

anomaly detection techniques construct a model 

representing normal behaviour from a given normal 

training dataset, and then test the likelihood of a 

test instance to be generated by the learned model. 

Algorithms commonly used include k-nearest 

neighbour (k-NN), SVMs, Bayesian networks, 

decision trees, k-means, but also ANNs such as 

long-short-term memory (LSTM) approaches.

4.2.3	 Time series analysis

Time series analysis describes an analytical 

approach to finding patterns in a set of time series 

of data. The aim is to recognize trends in the data, 

which can be obscured by noise, and then describe 

them formally. Furthermore, time series analysis 

is used to forecast future values of the series in 

order to make predictions. Among the algorithms 

that are used for time series analysis are hidden 

Markov models (HMMs), recurrent neural networks 

(RNNs), LSTM neural networks, and SVMs.

4.2.4	 Natural language processing

NLP is a way for computers to analyze, understand, 

and derive meaning from human language in a 

smart and useful way. By utilizing NLP, developers 

can organize and structure knowledge to 

perform tasks such as automatic summarization, 

translation, named entity recognition, relationship 

extraction, sentiment analysis, speech recognition, 

and topic segmentation.

For instance, in speech recognition a computer 

analyzes spoken language and translates it into 

text. This can be part of a language processing 

system, in which the computer receives a spoken 
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question and searches for an answer. Many home 

assistance systems rely on this kind of user input. 

Techniques such as HMMs and DNNs are often 

used for this task.

In machine translation, many programmes that 

fully automatically translate text from one language 

into another use self-learning algorithms. The 

challenge in translation is usually that there is not 

just one specified meaning for every word that can 

be looked up in a dictionary, but the meaning can 

change depending on the context. While statistical 

and rule-based models were often used for 

machine translations in the past, the development 

of DNNs has progressed rapidly in recent years 

and often provides superior results.

4.2.5	 Recommender systems

A recommender or recommendation system 

predicts items for a user matching his or her 

preferences. The popularity of recommendation 

systems is often based on the use of digital content 

or services, where the preferences of a user can 

be more easily identified based on given ratings. 

Collaborative filtering is often used, but naïve Bayes 

and k-NN algorithms are also popular for this task.

4.3	 Algorithms for machine 
learning

Having introduced some of today’s most common 

machine learning systems, the main algorithms 

supporting these systems are described in 

subsections 4.3.1 to 4.3.9 below.

4.3.1	 Decision trees

Decision trees are applicable to both classification 

and regression tasks. They are usually categorized 

as a form of supervised learning algorithms. 

Decision trees use training data to graphically 

outline decision rules and their outcomes  

(Figure 4-5). A classification tree results in  
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categorical or discrete outcomes, whereas a 

regression tree predicts continuous values. 

Because of their easy interpretability and high 

level of accuracy, decision trees are very popular 

machine learning techniques. Widely used decision 

tree algorithms include Iterative Dichotomiser 3 

(ID3), its successor C4.5, and classification and 

regression tree (CART) [55] [56].

These models differ in their mode of operation. 

To generate an efficient prediction, the hierarchy 

of the decision tree relies on the contribution of 

the attribute to the overall outcome. The features 

having most impact on the result are set on the top 

of the decision tree, followed by the features with a 

declining impact.

One problem with decision trees in general is 

overfitting. This happens if the model extracts 

every detail of the training dataset, building an 

over-complex decision tree. The result is very good 

performance on training data, but with not enough 

generalization to fit new datasets. There are 

several solutions to avoid the overfitting of decision 

trees, such as pruning methods (set the minimal 

number of samples needed to create a node or 

limit the depth of the decision tree) or ensemble 

methods (creating multiple decision trees trained 

on different datasets and combining them into a 

single model) [58].

4.3.2	 Support vector machines

The SVM algorithm handles supervised machine 

learning problems. It can be applied for classification 

and regression tasks. The basic concept of this 

algorithm is to linearly divide different classes, 

as illustrated in Figure 4-6 for the case of two 

dimensions and two classes that are linearly 

separable. The algorithm maximizes the distance 

between the classes provided by the dataset.

This is called the hard margin classifier. To provide 

an optimal classification, the algorithm uses the 

data points which allow for a maximal separation 

between the different classes. The chosen data 
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points defining the straight line separating the 

classes are called support vectors, from which the 

algorithm draws its name [57].

One of the downsides with the hard margin 

classifier approach is that it can lead to overfitting 

since no errors are allowed. This often leads to 

a good performance on training data but less 

on other datasets. Not allowing for errors also 

means that in the case of no linear separability in 

higher dimensions, the algorithm does not find a 

solution. For non-linear datasets, a soft margin 

is used instead of a hard margin classifier. It 

introduces a variable which allows for classification 

mistakes. The variable is then tuned to optimize 

the performance of the algorithm [4].
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Figure 4-5 | Decision tree
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4.3.3	 Naïve Bayes

Naïve Bayes classifiers are a class of supervised 

learning algorithms which are based on the Bayes 

theorem. There is a common assumption that 

all these algorithms share in order to classify 

data. Every feature of the data being classified is 

independent from all other features given in the 

class. Features are independent when changes in 

the value of one feature have no effect on the value 

of another feature.

Based on the class of a training example in the 

dataset, the algorithm calculates the probability 

of each feature belonging to that particular class 

based on the values. When classifying new data 

points, the algorithm calculates the class probability 

for each feature separately. For each class the 

product of those probabilities is calculated, and 

the class with the highest probability is chosen. 

This is a generative approach for classification.

While it is often argued that discriminative 

approaches are better for classification, it was 

shown that naïve Bayes classifiers can achieve 

their asymptotic error much faster than comparable 

classifiers [59].

Bayes algorithms are applied to many tasks, such 

as text retrieval or spam classification [60]. One 

huge advantage is their scalability for new features, 

which is especially useful for large datasets [61].

4.3.4	 k-nearest neighbour

The k-NN algorithm is commonly used for 

supervised classification and regression but can 

also be applied to unsupervised clustering. The 

algorithm is called a lazy learner because data is 

just kept in memory until new data needs to be 

classified. New data is categorized according to 

the stored data points, thus always depending on 

the current training data.

The basic idea of the k-NN algorithm is to match the 

data accordingly to the k-nearest data points with 

the minimal distance (Figure 4-7). The choice of the 
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Figure 4-7 | k-nearest neighbours
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number of data points (k) taken into account for 

the classification has great influence on the quality 

of the prediction. For regression applications, the 

prediction is calculated using the values of the 

k-NNs.

There are many possibilities to improve the 

predictions of a k-NN algorithm. For example, 

it is possible to increase the influence of the 

nearest points by assigning weight to such points. 

This allows for more consistent classification. 

Depending on the property of the data, different 

distance measures provide better performance. To 

name only a couple of these, Euclidean distance 

has proven well for similar data types (length and 

width) and Manhattan distance seems to perform 

better when using different data types such as 

body, height and age.

Feature and sample selection is very important for 

k-NN algorithms. Filters and wrappers are among 

the most important feature selection techniques. 

The approach of filters is to remove irrelevant 

features without running the algorithm itself. It just 

searches for the dimensions best describing the 

structure of the data. Wrappers, on the other hand, 

identify the set of features most relevant for the 

performance of the predictions by estimating the 

results of the algorithm [62].
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4.3.5	 k-means

In clustering problems, an unlabelled dataset is 

provided, which the algorithm should automatically 

group into coherent subsets or clusters. The 

k-means algorithm as presented in [63] and [64] 

is one of the most popular algorithms for this kind 

of task.

The k-means algorithm works by randomly 

initializing k random points in the dataset, called 

the cluster centroids. The number k is chosen 

by hand or derived using an evaluation method. 

It then proceeds repetitively with two steps: 

assignment and centroid repositioning [65]. In the 

cluster assignment step, the algorithm iterates 

through each of the examples in the given dataset 

and assigns each example to one of the initialized 

centroids based on the closest distance. This is 

repeated for each data point until every example 
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Figure 4-8 | k-means
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is assigned to a cluster. In the second step, the 

algorithm computes the average distance for each 

data point that is assigned to a specific cluster. 

The centroid is then moved to the calculated mean 

location. This step is repeated for all k clusters. 

The algorithm iterates until the cluster centroids no 

longer move, meaning the k-means algorithm has 

converged to k clusters (Figure 4-8).

The result of the k-means algorithm can be k 

clusters or less, depending on whether some of 

the centroids have data points assigned to them or 

not. The result of the algorithm can vary due to the 

random initialization of the centroids. When applied 

in practice, the k-means algorithm is deployed 

multiple times with different initializations of the 

centroids and varying numbers of the k number in 

order to get a useful result.
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4.3.6	 Hidden Markov model

A useful algorithm for creating a probabilistic model 

of linear sequences is the HMM. The underlying 

concept for this algorithm is the Markov process, 

which assumes that the system can be described 

at any time as being in a set of distinctive states. 

At spaced discrete times, the system changes 

between states according to a set of probabilities 

associated with the states (Figure 4-9) [66].

Hidden states in a Markov model represent 

stochastic processes that are not directly 

observable but can only be indirectly observed 

through another set of stochastic processes that 

produce a sequence of observations [66].

Application fields of HMMs include sequence 

modelling in DNA and protein analysis [67], 

information retrieval systems [68], and audio 

sequencing [69].

4.3.7	 Artificial neural networks

An algorithm based on neural networks (the 

perceptron) was developed in the early days 

of AI [3]. It can be applied to supervised and 

unsupervised learning. In general, ANNs are 
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Figure 4-10 | Artificial neural network
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inspired by the human brain, however they do not 

copy its functions [70].

A neural network consists of different layers, each 

comprising artificial neurons that are connected to 

all the artificial neurons in the previous layer (Figure 

4-10). The input layer represents the input data, 

which always consist of numerical values. It can 

process structured data, such as a temperature 

sensor output, and unstructured data, such as the 

pixels of an image. Depending on which units in 

the hidden layers are activated, the output layer 

unit provides a prediction. In the case of image 

recognition, this could be for example a monkey 

identified in the image.

Artificial neurons represent the units of each layer. 

They handle the input data and make prediction 

possible. The input of the perceptron is either the 

original data from the input layer or, in a DNN (which 

has more than one hidden layer), the transformed 

inputs from artificial neurons of previous hidden 

layers. Each input is adapted by a specific weight. 

The weighted input is then processed and summed 

up in the cell body. A bias (fixed number) is added 

as a tuning variable, as illustrated in Figure 4-11. 

The output of the cell is then used in the activation 

function (in this case a step function) representing 

the input for the next layer.

To train the network, the weights are randomly 

initialized. Next, the first training datasets are fed into 

Figure 4-9 | Hidden Markov model with 5 states
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the neural network. The outcome of the training case 

is then compared to the actual desired outcome. 

An algorithm called backpropagation then updates 

the weights. However, if many neurons are stacked 

together, it becomes very hard to control the 

changes in the final output of the whole network [71]. 

The essential step to ensure that a neural network 

functions is to make the output change smooth with 

the help of a continuous activation function. One of 

the main advantages of ANNs is their universality.

4.3.8	 Convolutional neural networks

CNNs have many similarities with ordinary ANNs. 

Likewise, they consist of neurons that have weights 

and biases that are adjusted in the learning 

process. The whole network still expresses a 

single differentiable score function and has a cost 

function attached to the last fully connected layer. 

However, contrary to normal feed-forward neural 

networks, CNNs operate on the explicit assumption 

that the inputs are images, which allows them to 

encode certain properties into the architecture of 

the network. This makes the implementation of the 

forward function more efficient and vastly reduces 

the number of parameters [72].

A CNN usually consists of three types of layers: 

a convolutional layer, a pooling layer and a fully-

connected layer [73]. A convolutional layer takes 

advantage of the spatial relationships of the input 
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Figure 4-11 | Neuron/perceptron of  

an artificial neural network
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neurons. The inputs of a convolutional neuron 

come from a specific area of neurons in the input 

layer. This narrowed-down receptive field allows 

the convolutional network to work in a far more 

focused manner than a conventional neuron. The 

receptive field of the neuron is equivalent to the 

filter size. The extent of the connectivity along 

the depth axis is always equal to the depth of the 

input volume. The connections are local in space, 

but always full along the entire depth of the input 

volume.

The pooling layer is commonly inserted in between 

successive convolutional layers in the network 

architecture. Its function is to reduce the spatial 

size of the representation to decrease the amount 

of parameters, and also to control overfitting. The 

pooling layer operates independently on every 

depth slice of the input and resizes it spatially.

Neurons in a fully connected layer have full 

connections to all activated neurons in the previous 

layer. This is also common in regular feed-forward 

neural networks. As a result, their activations can 

be computed with a matrix multiplication followed 

by a bias offset. Most CNN architectures consist 

of varying numbers of convolutional, pooling, and 

fully-connected layers.

4.3.9	 Recurrent neural networks

RNNs are a special type of ANNs. They can be 

applied to supervised and unsupervised but also 

reinforced learning. While ANNs take their current 

input data into account assuming independence 

from previous data, RNNs are able to consider 

previous data. While the neurons of an ANN have 

only the inputs from previous layers, the neuron of 

an RNN has dependencies on its previous outputs, 

because such outputs have loops (Figure 4-12). 

This enables this type of algorithms to include 

sequence prediction problems, for instance 

context of words or temporal aspects [74]. 
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This also means that during the training phase 

the order of input data plays an important role. 

In practice, RNNs receive an input and compute 

their state by using current and prior inputs. This 

is repeated until all stored previous states are 

processed and the output is calculated. During 

training, the obtained result is then compared 

to the actual correct result. The weights of the 

network can then be updated. The only difference 

with regard to common ANNs is the fact that 

the backpropagation has to take all the stored 

previous time steps into account. An overview of 

how backpropagation through time works is given 

in [75].

Since in reality it is not possible to store all 

previous steps in a common RNN, information is 

lost over time [76]. To tackle this problem, a variety 

of architectures have been developed, such as 
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bidirectional RNNs, LSTMs and gated recurrent 

units (GRUs). Bidirectional RNNs not only consider 

previous but also future elements. To do so they 

use two neurons, one for the forward loop and one 

for the backward loop. They are then connected 

to the next forward neuron and vice versa  

(Figure 4-13) [77].

LSTM networks include so-called gated cells, 

where information can be stored. During prediction 

the cell decides which information will be stored, 

used or forgotten. The input and output gates 

let information pass or block them according to 

trained weights. By combining the current input, 

the previous state and the memory of the cell, 

this architecture is able to identify the long-term 

dependencies in datasets [79].

Figure 4-12 | Recurrent neural network
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Figure 4-13 | Architecture of a bidirectional 

recurrent neural network
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Figure 5-1 | Relevance of common AI systems on different industry domains

Section 5
Deployment of artificial intelligence

With the maturing of chips, datasets and platforms, 

the technical and industrial foundations for AI have 

gradually strengthened to support a wider range of 

real-life applications. Technological breakthroughs 

in algorithmic developments such as image 

recognition and NLP will continue to enlarge the 

number of use cases served by AI. McKinsey 

expects that by 2025 the global AI application 

market will reach a total value of USD 126 billion, 

and AI will become the breakthrough point for the 

development of many smart industries [78].

As one of the core driving forces for the 

transformation of many traditional industries, AI has 

given rise to new technologies and products that 

build upon progress made in semantic recognition, 

speech recognition, face recognition and the like. 

A broad view of industry needs on different AI 

capabilities is summarized in Figure 5-1 using a 

heat map to suggest the importance of the needs 

for a specific industry. The value scale is between 

0 and 100, with 0 meaning that the feature is not 

needed and 100 meaning that the feature is of 

utmost importance for the industry sector. The 

table illustrates a mapping of exemplary AI systems 

on different industry domains.
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5.1	 Artificial intelligence in smart 
homes

With the development of AI technology, the smart 

home domain has gradually evolved towards the 

concept of a control centre that connects individual 

devices scattered across the home to form a 

complete smart home ecosystem. Built upon the 

IoT, a smart home ecosystem is composed of 

hardware (e.g. smart appliances, security control 

equipment, furniture), software systems, and cloud-

based platforms. It integrates speech recognition, 

visual recognition, deep learning domain models, 

user portraits and other technical means to actively 

understand the needs of users.

Smart homes aim at achieving device interoper-

ability and device self-learning, and through the 

collection and analysis of user behaviour data can 

provide personalized services to make homes 

safer, more comfortable and more energy-efficient. 

At the same time, such systems can also improve 

the efficiency of home appliances, reduce energy 

and natural resource consumption, and create 

a more sustainable and healthier home style. 

The smart home industry can also promote the 

evolution of the incumbent home appliance market 

and contribute to the continuous development and 

industrialization of AI.

Major home appliance manufacturers are today 

actively developing smart home solutions. Mature 

applications include smart refrigerators, smart 

air conditioners, smart washing machines, smart 

water heaters, smart kitchen appliances, smart 

speakers, and many other smart appliances 

reflecting the concept of “all things connected”. 

Companies have developed products that can 

interconnect and mutually control various home 

appliances and gather large amounts of data for 

prediction and analysis tasks. Internet-based 

capabilities have generally been well received by 

consumers.

The fields of smart homes and AI are closely 

integrated and continuously developing. Recent 

advances in machine learning, pattern recognition 

and IoT technology have brought interactivity to 

higher levels, making residential devices more 

intelligent and user-friendly. Products are evolving 

gradually from being mobile phone-centric to 

focusing on new and innovative human-machine 

interaction modes. Looking ahead, AI technology 

will enable smart homes to shift from passive to 

active intelligence and may even substitute people 

in some of their decision-making tasks. Most 

industry stakeholders today foresee AI opening 

broader and exciting opportunities for the smart 

home market.

Three smart home scenarios are described in 

subsections 5.1.1 to 5.1.3 below: smart television 

control system, bathroom self-service system, and 

intelligent food identification system.

5.1.1	 Smart television control system

Smart television control is aimed at providing 

intelligent, personalized, and/or energy-saving 

television services. Face recognition techniques 

have significantly matured thanks to improvements 

in imaging technology. Compared with fingerprints, 

face recognition offers a higher degree of accuracy, 

and algorithms are less impacted by environmental 

factors such as light and noise. A smart television 

control system can gather face images of family 

members through a built-in camera and provide 

personalized services. For instance, the system can 

switch to a preferred television channel depending 

on who is sitting in front of the television. Parental 

control can also be automatically activated when a 

child is watching the television.

The system can calculate the optimal viewing 

distance depending on the current scene. Volume, 

brightness and saturation of the screen can be 

adjusted automatically to provide the viewer with 

the optimal watching experience. The television 

can also detect if the viewer has fallen asleep and 

subsequently turn down volume, brightness and 

saturation. When no one is watching, the system 

Deployment of artificial intelligence
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Figure 5-2 |  Intelligent food identification system

Deployment of artificial intelligence

can make an inquiry, and if no response is received, 

can shut down automatically.

5.1.2	 Bathroom self-service system

The bathroom is a relatively private, interactive 

and frequently-used area for households. Bathing 

may require people to control the temperature of 

the water heater. But due to water vapour, the 

equipment cannot be directly touched. Therefore, 

non-contact control capability might provide 

value. At the same time, people may have other 

needs during bathing, such as hairdressing. In this 

context, smart home services may enrich the life of 

modern families and address diversified household 

needs across various geographies and cultures.

As an example, an intelligent self-service bathroom 

system for the Chinese market provides users 

with convenient, interactive capabilities and 

rich information through multi-directional voice 

interaction. While bathing, the user can conveniently 

use his or her voice to control the angle of the mirror, 

the intensity and angle of the shower spray and 

the temperature. At the same time, the user can 

also obtain content recommendations regarding 

beauty, music, fitness and the like from other home 

appliances such as pads through voice control.

5.1.3	 Intelligent food identification system

A smart food ingredient recognition system is 

illustrated in Figure 5-2. It is equipped with a 

high-definition camera to perform identification 

of ingredients inside the refrigerator. Through 

visual identification of such ingredients, the 

system supports one-click shopping, ready-to-

buy shopping, planning a reasonable diet, and 

early reminder of food ingredients. It can provide 

several benefits to the users, including convenient 

operation, real-time recording, advising healthy 

eating, and optimizing household expenses.

Real-time interaction with the refrigerator can be 

achieved through a mobile phone. The user can as-

sess the current content of the refrigerator remotely 

and plan the purchase of food in advance and from 

any location. Other benefits include reminders of food 

consumption deadlines, rational use of refrigerator 

space, or one-click purchase of ingredients without 

the need to go to the supermarket. At the same 

time, daily food consumption is recorded in a cloud 

database and combined with big data analysis to 

provide an assessment of eating habits and advice 

on balanced and healthier diets. Based on eating 

habits, seasonal supplies and dietary restrictions, 

the system can also recommend personalized 

recipes.

Workplace
Market

Household users

Advanced server

Database
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5.1.4	 Challenges for smart homes

Smart homes are building upon the progressing 

maturity of the IoT, adding AI to the home 

automation field, but technological limitations 

exist, such as real-time learning, detection 

probability, and embedded processing power. 

Other challenges are adding multi-user support 

as well as data availability issues that may cause 

difficulties in collecting sufficient reliable data for 

machine learning. Machine learning usually treats 

the most common content in data as truth, while 

excluding statistically rare content. This cognitive 

method is still different from that of humans and 

may lead to the occurrence of cognitive bias and 

misunderstanding.

In terms of the need to solve specific problems, 

the proportion of actual, reliable and credible data 

in the total amount of data may fail to reach the 

lower limit of machine learning requirements. This 

is especially true for a smart home environment, 

where most data comes from small IoT devices, 

such as sensors or lamps. The algorithms in a 

smart home need to be able to adapt to different 

data streams. They should be robust in responding 

to changes in data streams, for example when a 

user changes the location of a television from the 

living room to the sleeping room. Thus, a high 

degree of robustness is required.

Issues such as personalization, privacy and 

security are also important. Personalization 

and privacy could be based on user profiles, 

customization of services, and device settings in 

daily life. The security perspective therefore needs 

to be addressed, because smart terminals may 

be illegally invaded and controlled, and personal 

information can be revealed. In addition, AI-

enabled systems may also harm humans.

When equipping critically private areas, such 

as bathrooms, with smart devices, a guarantee 

must be included that information will be handled 

confidentially. Nor should further information 

derived from the data interfere with people’s 

privacy. While such persons might agree to the 

collection of energy data in order to optimize 

consumption, they might see the analysis of their 

daily routines based on such information as an 

intrusion of their privacy.

5.2	 Artificial intelligence in smart 
manufacturing

Smart manufacturing is fundamentally the 

integration of ICT with advanced manufacturing 

techniques. All manufacturing activities are 

potentially impacted: design, production, 

management and service.

A smart factory is a networked factory in which 

data from supply chains, design teams, production 

lines and quality control is linked to form a highly 

integrated, intelligent platform that will help 

in redefining future production lines. With the 

growing need for flexibility to suit a diverse range 

of production domains, the manufacturing sector 

has to rely on automation, machine learning and 

other fields of AI to meet these rising challenges.

Through machine learning, systems have the 

ability to learn from experience, with the result 

that they are constantly improving. This enables 

manufacturing to be faster, more flexible and 

specifically scalable by providing predictive insights 

to manage everything from plant effectiveness to 

selecting optimal suppliers and gauging pricing 

against demand [87].

Another benefit of AI in manufacturing is support of 

economic growth, whereby AI is used to manage 

capital efficiency, including labour requirements 

and machinery schedules to realize on-demand 

production, improve operating efficiency, shorten 

product cycles, enhance production capacity, reduce 

downtime and ultimately achieve cost savings.

Some key applications of AI for the manufacturing 

sector are described in subsections 5.2.1 to 5.2.4 

below.

Deployment of artificial intelligence
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5.2.1	 Predictive maintenance

Traditional manufacturing lines may have already 

produced many unqualified products when the 

production equipment fault alarm occurs, resulting 

in losses to the entire enterprise. By virtue of 

the equipment operation data collected in real-

time, predictive maintenance can identify fault 

signals through machine learning algorithms so 

as to achieve early detection and maintenance of 

defective equipment. Ultimately, this would reduce 

maintenance time and equipment costs, improve 

equipment utilization and avoid the losses caused 

by equipment failures [88] [89]. Fault prediction 

and fault localization and diagnosis are two key 

mechanisms for predictive maintenance.

§§ Fault prediction

The key performance indicators (KPIs) of a device 

or network in a factory usually indicate a gradual 

deterioration trend. Any hardware or service 

failure is usually preceded by an unstable or 

degraded operating state (Figure 5-3). Passive 

processing following a failure not only affects the 

service experience, but also takes a long time to 

troubleshoot.

Deployment of artificial intelligence
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The service is available

Degraded but perceived as available

Degraded but perceived as unavailable

The service is unavailable

Sub health state

Failure state

Figure 5-3 | Device/network health

Through the KPI prediction of a device or network, 

service disruption, network resource inefficiency 

and deterioration can be prevented. There are 

two main methods for device or network fault 

prediction, illustrated in Figure 5-4:

§§ Case 1: The black curve reflects the current 

device or network health status before time 

point “Now”. The red curve is a trend that can 

be obtained from historical data of the black 

curve. An alert will be raised when the trend 

falls below a threshold.

§§ Case 2: The black curve is the same as in Case 

1. The red curve is a prediction curve based 

on a prediction algorithm and historical data 

from the black curve. If the deviation exceeds 

a threshold, an alert will be raised to report the 

anomaly.

§§ Fault localization and diagnosis

If the device in the factory is defective or improperly 

operated, it may cause the fault to spread and 

generate network or service faults. Quick location 

of the fault helps to shorten the fault recovery time 

and reduce losses.

After the fault of the device/network/service in a 

factory has occurred, network performance and 

status data, such as log, alarm, KPI, configuration 

and topology, are collected. Then, correlation 

analysis is performed to determine which metrics 

or parameters are abnormal, so that the faulty 

device can be quickly located and the root cause 

of the fault can be identified (Figure 5-5).

There are two directions of correlation analysis for 

fault localization and diagnosis:

§§ In the horizontal direction, according to the 

network service topology, the metrics of all the 

devices on the path need to be put together to 

perform the related line analysis.

§§ In the vertical direction, the physical layer 

metric, network layer metric and application 

layer metric of the device need to be put 

together to perform the related line analysis.
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Figure 5-4 | Two cases of device/network fault prediction

Figure 5-5 | Fault localization and diagnosis based on correlation analysis

Case 1: Performance monitoring Case 2: Anomaly detection

Fault 
predict
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5.2.2	 Collaborative robots

Another use case for AI results from the 

development of collaborative robots, also called 

cobots [90]. Cobots are industrial robots capable 

of working together with humans in the production 

process without being spatially separated from 

them by protective devices. The unique feature 

of these robots is that they can work directly with 

humans.

There is an important prerequisite for this type of 

human/robot collaboration: it must be ensured 

that the robot cannot cause injury to humans. 

This is often not a problem for small, lightweight 

robots. However, the more difficult the tasks the 

robot has to perform when working with humans, 

the more relevant this requirement becomes. For 

example, robots that lift heavy castings can cause 

considerable injury to humans due to their size and 

weight.

To minimize the enormous risk potential posed 

by such large robots, conventional protections 

via sensors are often no longer sufficient. In 

this context, the use of AI prevents various 

opportunities. Techniques such as gesture and 

intention recognition can be used to adapt the robot 

to human behaviour. For example, the fusion of 

sensor data collected by cameras or radars can be 

evaluated so that the robot can dynamically adapt 

to its environment. The aim is not only to let the 

robot react to its environment and the surrounding 

people, but also to actively prevent accidents.

This fused sensor data can be used to classify 

the worker’s currently executed gesture using 

algorithms. This means gestures can already be 

identified and recognized during their execution, 

before they are fully completed. Thus, the indicated 

gesture of the worker can already give the aligned 

AI system an idea of what the next work step is. 

This result can be used to preventively adjust the 

reaction to the worker’s behaviour. This process is 

illustrated in Figure 5-6 [91].

Deployment of artificial intelligence

Gestures are often visually recorded, usually via 

the skeleton. The advantage of machine learning 

resides in the classification of gestures. While 

ensemble methods have often been used until 

now, machine learning or deep learning algorithms 

are increasingly gaining popularity due to very 

good results [92].

The problem of collaborative robots becomes 

particularly complex and safety-relevant when 

several robots have to interact with a human and 

with each other. In such a case, the robots must 

react not only to the worker’s behaviour, but also to 

the behaviour of the other robots to avoid collisions.

5.2.3	 Quality control

The detection of defects such as surface defects, 

internal failure and edge damage of products is 

traditionally carried out by human vision. This can 

lead to a high defective rate due to fatigue caused 

by high working strength, especially in the chip 

industry, household appliance industry or textile 

industry. Intelligent online detection techniques 

Figure 5-6 | Human robot interaction
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depend on sensors to acquire product images and 

rely on computerized vision algorithms to improve 

detection speed and quality and avoid loss caused 

by leak detection or faulty detection. Automated 

quality control can greatly reduce the fault rate in 

applications such as chip manufacturing. At the 

same time, through analyzing what has caused 

the products to be defective, it can decrease the 

rejection rate of products and optimize product 

design and fabrication to lower quality control costs.

Automated image recognition (AIR) is an illustrative 

example coming from back-end manufacturing 

of integrated circuits. AIR systems were initially 

developed to address the need for automatic 

detection of images using X-ray machines. Through 

the combination of computer software and imaging 

hardware technology, the accuracy and reliability 

of visual detection can be improved and optimized 

to avoid too much dependence on human eyes.

X-ray machines are used in this application to depict 

the internal structure of semiconductor devices. In 

general, a batch of products are equipped with 

20 to 50 reels and one reel can cover all devices 

after shooting 5 to 10 images. Images will finally be 

saved in a storage server connected to the internet. 

An example of image pattern is shown in Figure 5-7.

Deployment of artificial intelligence

Figure 5-7 | Original image of pattern shot Figure 5-8 | Visual detection

The AIR server consists of several functions, such 

as the core image identification algorithm and 

operator call, preliminary image evaluation (only 

qualified images are allowed for further automatic 

identification), tracking of the cut-off time of image 

shooting, product information matching, etc. 

Ineffective images will be automatically picked 

up and rearranged for the follow-up secondary 

manual visual detection filtering.

The automatic identification module of the server 

filters the original images. The small amount of 

unsure failed devices filtered by the system is then 

rechecked through human eyes, in order to detect 

the actual failed devices. Figure 5-8 shows an 

example of an unsure device list and its locations 

after rearrangement. Operators identify the actual 

failed devices and mark them on the interface 

for the convenience of detecting out the material 

objects in the reel.

The client is provided with a user interface for 

additional reworking, which is used to require 

recheck of defective products through visual 

detection. In terms of acceptance check of image 

quality, the client is provided with the capability 

for the end user to assess the quality of images 

(brightness, grey scale, contrast) produced by 
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every X-ray machine. The system will remind the 

user to adjust the shooting parameters so as to 

meet the requirements of automatic identification.

5.2.4	 Challenges in smart manufacturing

Smart manufacturing brings a number of challenges, 

in particular when applying AI-related technologies. 

One of the key concerns can be summarized 

as “humans in command”. To avoid any abuse 

or misuse, smart manufacturing should adopt a 

humans-in-command approach to AI that requires 

that machines remain machines and people retain 

control over these machines at all times.

The biggest challenge in using AI for cooperative 

robots is the robustness of data acquisition and 

algorithms. It must always be ensured that the 

algorithms behave as intended. Especially when 

working cooperatively with people at risk, the 

overall system must always behave in a predictable 

manner. This is still a big challenge, particularly with 

neural networks, which can lead to unexpected 

outcomes, especially with unforeseen variations of 

inputs. This problem occurs, for example, when the 

neural network falls into a local minimum. Network 

decisions resulting from these local minima are 

often not intended by the developer.

While the development of AI and robotics can 

increase industrial competitiveness, which in turn 

could lead to the creation of new jobs, there is 

also a significant risk that work currently done by 

humans may be increasingly taken over by robots. 

In light of the changing dynamics of labour markets, 

education and training (including vocational training, 

lifelong learning and training and re-training at work) 

will become even more important in the future. New 

skills and competences will be required to deal with 

the increased use of robots and automation.

Other challenges in smart manufacturing include 

the availability of large amounts of high-quality 

data to train AI algorithms, as well as the need to 

structure these data into meaningful information 

and domain models.

Deployment of artificial intelligence

5.3	 Artificial intelligence  
in smart transportation  
and the automotive sector

Smart transportation has a very broad market 

potential (e.g. private vehicles, public transportation, 

parking, logistics, emergency services) and is 

largely acknowledged to require AI technologies. 

With the dramatic increase in the number of 

vehicles, especially in large cities, services such as 

traffic management and congestion control, and 

the recent surge of self-driving vehicles, all call for 

the large-scale use of AI technologies (e.g. image 

analysis, route optimization, object identification). 

Capabilities offered by AI will not only be deployed 

in end devices (e.g. mobile phones) but also on the 

edge (e.g. cars) and on the cloud (data centres), as 

illustrated in Figure 5-9.

5.3.1	 Autonomous driving

A self-driving car, also known as a driverless car, is a 

vehicle that uses an intelligent computer system to 

implement autonomous driving. Such vehicles rely 

on intelligent path planning technology, computer 

vision and global positioning system technologies 

to enable on-board computing systems to operate 

safely and without human intervention.

Self-driving vehicles are developing rapidly, with 

industry giants and start-ups ready in the starting 

blocks to plan or release autonomous vehicles 

in a short-term timeframe. Five levels of vehicle 

automation are defined by the National Highway 

Traffic Safety Administration (NHTSA) [95]:

§§ Non-automation (level 0). Driver in complete 

control at all times.

§§ Function-specific automation (level 1). Automa-

tion of one or more specific functions.

§§ Combined function automation (level 2). 

Automation of at least two primary control 

functions designed to work together.

§§ Limited self-driving automation (level 3). Driver 

can cede full control of all safety-critical 



54

Deployment of artificial intelligence

Figure 5-9 | Application of AI technologies in smart transportation

functions under certain conditions. The vehicle 

monitors for conditions requiring transition 

back to drive control.

§§ Full self-driving automation (level 4). Vehicle is 

designed to perform all safety-critical driving 

functions.

Clearly, the higher the level of automation is, the 

more responsibilities of driving will be handled 

by vehicles. This implies that AI technologies are 

required both inside the vehicles and in the cloud 

(Figure 5-10), including but not limited to:

§§ Taking control of the vehicle. This includes 

starting, braking, turning and other auto-

piloting capabilities, without the intervention 

of humans (removing the burden on drivers or 

intervening when the human is incapable of 

doing so).

§§ Identifying driver status, car condition, road 

condition and surrounding environment 

(e.g. pedestrians, animals, obstacles). The 

identification and analysis of surrounding 

objects require extensive machine learning 

capabilities. Furthermore, the analysis needs 

to be performed with a very low latency to 

facilitate driving. As a matter of fact, traditional 

general-purpose CPUs will not be able to 

provide the required computing performance 

and efficiency for AI algorithms in such 

scenarios. Dedicated accelerators are needed 

(both within the vehicles and in the cloud) 

for model training, inference and emulation 

tailored to AI workloads.

§§ Enabling fleet management, or the autonomous 

piloting of an organized group of vehicles, 

which can be extensively used in logistics and 

delivery services.

5.3.2	 Traffic management

Traffic management plays an essential role in 

smart transportation. With population and vehicles 

growing across the globe, managing the heavy 

traffic in urban areas has become a challenging 
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yet essential task for governments, police forces 

as well as car companies. According to a report 

by The Economist [94], expenses caused by traffic 

congestion already amounted to USD 200 billion 

(0,8% of GDP) in 2013 across France, Germany, 

the United Kingdom and the United States. 

Therefore, optimizing traffic flow, reducing traffic 

jams, and minimizing the emissions of vehicles will 

substantially contribute to increasing productivity, 

quality of living, and environmental protection. 

To achieve these objectives, wider and better 

utilization of AI technologies is needed.

Examples of applications include:

§§ Traffic flow analysis. By using machine learning 

and data mining, real-time traffic data (e.g. on 

vehicles, pedestrians, congestion, accidents) 

in multiple streets or in a wider area can be 

analyzed and cross-examined for traffic 

route optimization, traffic control to avoid 

congestions, and reduction of emissions.

§§ Optimization of traffic lights. Instead of statically 

determining traffic light switching (which today 

does not consider real-time traffic conditions), 

AI algorithms can be utilized to analyze and 

predict real-time traffic situations, and provide 

dynamic traffic light switching to optimize the 

passing of vehicles and pedestrians.

§§ Inspection of violation of rules and regulations. 

These tasks traditionally involve intensive 

human labour. Even with AI algorithms in 

image and video processing, performance 

is still limited due to a lack of resources 

and computing power. However, with more 

powerful processing platforms accelerating AI 

workloads, videos and images can be analyzed 

in much higher volume, leading to reduced 

labour cost, higher accuracy, and enhanced 

performance.

Other examples include smart parking, surveillance 

cameras or smart logistics.

Deployment of artificial intelligence

Figure 5-10 | Enabling autonomous vehicles with AI technologies
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5.3.3	 Traffic robots

Another development of AI in transportation is the 

use of intelligent traffic robots, which are deployed 

for road junction traffic control. Using AI technology, 

such robots are able to monitor traffic conditions, 

obtain traffic information, and perform road traffic 

commands at challenging road intersections. They 

can also remind pedestrians to abide by traffic 

regulations, enhance pedestrian safety awareness, 

and reduce the workload of traffic police through 

arm commands, light tips, voice alerts, and safety 

message delivery. In addition, robots can use 

image recognition to record pedestrian violations 

to enhance overall safety at road junctions.

5.3.4	 Challenges in smart transportation

Safety, security and privacy are some of the 

major concerns of users for smart transportation. 

With sensors built into each vehicle and the 

implementation of advanced AI technologies for 

self-driving, the data and even the destiny of human 

beings fall into the hands of computers. Recent 

accidents of autonomous cars have further raised 

concerns. Safety, security and privacy issues are 

therefore among the foremost challenges for smart 

transportation.

Policy, laws, regulations, and standards related to 

smart transportation constitute another set of im-

portant challenges that will need to be addressed. 

Standards may be related to technology 

implementations of smart transportation, for 

instance to ensure secure transmission, storage 

and processing of collected data. Regulations 

or laws may be related to the use of AI in smart 

transportation, for example by car manufacturers 

or service providers.

Another challenge is the availability of 

heterogeneous computing platforms tailored to 

AI workloads on cloud, edge and end devices to: 

1) integrate an increasing amount of data from 

vehicles, pedestrians and infrastructure, and be 

able to transmit, store and analyze these data 

efficiently; 2) be able to run AI workloads (e.g. 

model training and inference) rapidly and efficiently, 

and support the (semi-)real-time decision-making 

of traffic management and autonomous driving. 

On the one hand, platform architectures need to 

be improved or innovated to catch up with the 

evolution of AI workloads and algorithms. On the 

other hand, performance needs to be constantly 

enhanced to satisfy the increasing demands (e.g. 

latency, data volume, connectivity) of users and 

applications. In addition, platforms also need to be 

scalable to integrate new components or functions.

Eventually, there will be a pressing need for full AI 

stacks. Capabilities such as image analysis and 

face recognition may be required in all subsystems 

(i.e. end devices, edge and cloud). For instance, 

drivers may install AI-enabled software in their 

mobile phones to pre-process data related to 

driver status. An edge component (e.g. built-in 

within a vehicle) can process a larger amount of 

data generated by the vehicle and collected from 

the environment. In the meantime, the cloud/data 

centres will gather a huge amount of data from all 

the vehicles, traffic flows and the environment as 

well as historical data, to perform analyses such as 

route optimization, traffic guidance, or other forms 

of macro-management.

5.4	 Artificial intelligence  
in smart energy

The energy sector can be classified as primary 

energy (e.g. oil, gas, coal) and secondary energy 

(e.g. electricity). As previously mentioned, the 

exhaustion of natural resources and impact of 

climate change are becoming a not too distant 

reality. To resolve these problems, countries across 

the world are implementing counterstrategies 

focusing on the optimization of energy supply and 

demand management.

The purpose of smart energy is not only to increase 

the yield rate in energy production, transmission 

and consumption, but also to enable efficient 

Deployment of artificial intelligence
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energy management. The emphasis so far has 

been on reducing energy losses to the largest 

extent. ICT convergence, including the growth in 

IoT, big data and AI, is becoming the driving force 

to achieve technological innovation in the energy 

sector. It can improve the estimation of supply 

and demand during production and consumption 

phases and enables services for transacting 

energy between different buildings and equipment. 

Moreover, through analyzing information collected 

via communication technologies, optimization of 

energy savings has the potential to reach a level 

never seen before. According to IDC, the smart 

energy market may reach USD 516 billion by 2020.

5.4.1	 Grid management and operations

A smart grid is an intelligent electrical grid system 

that improves efficiency in energy production, 

transmission and consumption by enabling 

interactions between suppliers and consumers 

through the use of ICT. While in the traditional 

electrical grid electricity is unilaterally supplied 

from large power plants to the final customer, the 

smart grid is subject to bidirectional electric power 

flow. In other words, the final consumer is both a 

consumer of external electricity when necessary 

but also a supplier who can provide electricity 

back to the grid when there is a local surplus, for 

instance due to renewable production.

AI technology can be used to support real-time 

monitoring, operation and maintenance of power 

equipment within the smart grid. It can provide 

fault diagnosis capabilities as well as remediation 

measures in the initial stages of failures in order to 

improve equipment operation stability and power 

generation efficiency. Machine learning allows to 

identify minor pattern changes in various operating 

conditions to implement effective preventive 

maintenance.

Leveraging the powerful prediction capabilities 

of machine learning, various utilities and large 

corporations across the world have managed to 

optimize the efficiency of their energy infrastructure 

by typically 10% to 15%. AI can also predict with 

high accuracy the peak demand and supply 

of electricity, in particular when dealing with 

distributed renewable energy generation. This in 

turn can help consumers cut down significantly on 

their energy bills.

5.4.2	 Consumer engagement and services

Smart grids are typically equipped with distributed 

advanced metering infrastructure (AMI) and smart 

meters which support bidirectional communication 

between producers and consumers of energy. 

Web portals can be used to gather and display 

various energy-related data as well as identify 

consumption habits in order to adapt electricity 

production and consumer prices using various AI 

algorithms. On the other end, advanced platforms 

allow large industrial consumers to perform more 

sophisticated trading of electricity fitting their 

specific business needs.

In addition, AMI offers opportunities for new 

services such as monitoring the elderly or people 

with disabilities through remote analysis of 

electricity usage patterns. Scenarios may include 

alerting relevant persons or bodies if for instance 

the light is not turned off late in the evening or if the 

electricity usage does not increase in the morning.

5.4.3	 Integrated smart energy platforms

Building upon the need for further consumer 

engagement, many utilities across the world are 

deploying smart energy platforms that integrate 

a wide range of services that can be enabled 

thanks to AI technologies. One example of such a 

platform is HUB-PoP (hyperconnected ubiquitous 

bridge – platform of platforms) from the Korea-

based utility KEPCO. As shown in Figure  5-11, 

HUB-PoP provides a unified, cloud-based platform 

connecting various subsystems such as power 

grid operations, management support, customer 
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management and new energy businesses including 

renewables. Data analysis and AI algorithms can be 

executed on the platform to provide the customer 

with various innovative services.

One of these services is an automated chat bot 

dialog system allowing the processing in parallel 

of multiple customer requests. Using machine 

learning techniques, the chat bot is fed with 

knowledge accumulated through consultations 

and online inquires in order to be continuously 

improved.

5.4.4	 Challenges in smart energy

As illustrated by a few use cases, AI technology 

can be applied to various applications and services 

in the energy sector. However, given the scale and 

longevity of energy infrastructures, introduction 

of new equipment and technologies is slow and 

often complicated. Reaching an appropriate return 

on investment typically takes much more time 

than in other, faster-moving industries. Effective 

cooperation between the public and private sectors 

is often a prerequisite to justify such technology 

investments. 

Moreover, with the emergence of demand side 

resources that are implemented in a relatively 

uncoordinated fashion, this could cause the grid 

to be unstable and, in extreme cases, cause flows 

exceeding design capacities. This is where AI 

could play a role in furthering central grid planning 

and design [93].

The distribution of input data represents a 

challenge in the analysis of the energy network. 

These are currently available in a distributed form 

on different platforms. In order for correlations 

between input data to be detected by an AI 

algorithm, they would first have to be collected and 

standardized. Problems may also arise if this data 

has not been collected in a uniform manner. For 
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example, it would have to be considered whether 

data was collected as time-invariant or how it is 

scaled. In many cases, the handling and evaluation 

of data also plays an important role when such 

data can be used to analyze a person’s privacy. 

The power consumption and pattern analysis can 

be used to determine when a person is at home 

and what he or she is doing. Advanced analyses 

could additionally be used to determine which 

person is present in the household on the basis 

of energy usage behaviour predictions, even if it is 

not explicitly stated or desired. This data privacy 

challenge represents a major concern that utilities 

need to address with appropriate security and 

policy measures.

Deployment of artificial intelligence
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Section 6
Artificial intelligence challenges

A number of technical, ethical, trustworthiness, and 

regulation-related challenges need to be dealt with 

in order to deploy AI technologies across industries 

described in the previous section. For example, 

when implementing AI in the transportation and 

automotive sectors, safety and security are among 

the primary challenges. For smart manufacturing, 

safety and trustworthiness are major concerns.

Some challenges are shared among different 

application domains, for instance ethics and social 

impact, computational power and efficiency of the 

AI infrastructure, availability and quality of data, etc. 

Addressing these challenges will be instrumental 

to accelerating the adoption of AI technologies 

across multiple industries.

6.1	 Social and economic 
challenges

AI has the potential to profoundly influence both 

society and markets. By enabling automation in 

several domains, starting with manufacturing but 

also including procedural professions such as 

the practice of law, AI has the ability to impact 

the employment market by both destroying 

and creating jobs. In that respect, certain skills 

developed by humans such as the application of 

creativity, will become more and more important 

in the future. There will be an increasing number 

of jobs where humans will work together with AI 

systems, resulting in new work environments.

Also, as AI can recommend goods and services to 

its users, sometimes in a hidden and automated 

manner, it is clear that AI opens up the possibility to 

actively affect and influence consumers’ opinions.

6.1.1	 Changes in decision-making

AI is expected to participate increasingly in 

decision-making, especially in routine processes. 

Even when trained correctly a technology can 

make mistakes. The question is how humans and 

AI systems can cooperatively make decisions 

in a sufficiently diligent manner. However, it is 

still unclear how the respective advantages of AI 

and human reasoning could be combined in an 

appropriate way. For developers, the challenge 

of creating a perfect algorithm is unrealistic. The 

more complex an algorithm is, the greater the 

impact it will have on society or industry, and the 

more human judgment will be needed to ensure 

adequate quality in decision-making [13].

This has significant implications concerning the 

responsibility of decision-making. In a complex 

system it is hard to differentiate whether the 

human or the AI system is accountable. AI can 

give the impression of being responsible for 

decision-making although it remains dependent 

on statistical correlation. This could lead decision 

makers to deny any accountability and transfer it to 

AI systems [13].

6.1.2	 Advanced supply chain operations

With AI, laboriously sifting through catalogues and 

price quotes simply to submit an order will be a 

thing of the past. Instead, requesters will only need 

to take a photograph of the item they desire, which 

will then be automatically matched with suppliers’ 

available stock. If the requester intends to order 

a completely new item, a simple description of its 

requirements will be enough for the AI system to 
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submit price requests, assess supplier’s quotes 

and select the most appropriate item according 

to price, quality and delivery times. If a specific 

component is needed but key information required 

to reorder the item such as its part number 

or specifications are missing, AI too could be 

used to identify the item and suggest a suitable 

replacement.

If AI systems begin to make all these decisions, 

some markets will be profoundly disrupted in the 

near future. Consumers will no longer visit physical 

shops but will obtain all products by a single 

click. Intermediaries will lose relevance when 

supply chains change. As consumers’ choices 

will be increasingly influenced by AI algorithms, 

transparency of recommendations will become 

a bigger challenge. If, for example, a smart 

refrigerator decides autonomously about food 

suppliers and its owner’s diet, it can disrupt entire 

markets such as grocery shops. Also, consumers 

and market participants will have to be protected 

from the misconduct of suppliers recommended 

by AI systems.

6.2	 Data-related challenges

AI requires massive sets of data to train machine 

learning algorithms. However, data sharing and 

distribution is today constrained in different 

industry sectors by the lack of appropriate rules 

and regulations. This has led practitioners in various 

industries to isolate their data and set boundaries 

for data sharing, following their own commercial 

interests. In spite of the accumulation of a 

considerable amount of data in those industries, 

the data islands issue has been an obstacle to the 

realization of the full potential of AI.

In addition, the overall data availability issue causes 

difficulties in collecting enough reliable data for 

machine learning algorithms. These algorithms 

work differently from human brains and usually 

treat the data content as basic truth, without 

taking into account statistically rare content. This 

may lead to cognitive bias and misunderstanding 

when applying AI techniques. When trying to solve 

specific problems, the proportion of reliable and 

credible data in the total amount of data collected 

may fail to reach the lower limit of machine learning 

requirements.

6.2.1	 Selection of training data

Cases in which AI systems exhibit gender or racial 

bias because the training data itself was biased 

have received increased media attention [96]. 

When developing an AI model, the relevance, 

quantity and quality of the data used in its 

development are critical.

First, the available data must be relevant to solving 

the problem at hand, which given the size of the 

involved datasets is not always easy to determine. 

Data scientists therefore need some kind of 

understanding of how and to what end the data will 

be used. Assessing the relevance of the data has 

become a multidisciplinary task involving not only 

data scientists but also domain experts. Second, 

in order for the model to perform accurately 

there must be enough data so that it can learn to 

generalize from the dataset. And third, the quality 

of the training dataset must be representative of 

the data the model will encounter once deployed.

Whether these conditions are met can often only 

be confirmed after several rounds of initial training 

and testing with a variety of different models. 

This process is highly iterative, requiring the data 

scientists to adjust the training data and models 

several times while relying on their business 

understanding, and testing the data to verify the 

performance of the models. The testing data itself 

can hereby present a problem if it was not split 

properly from the original dataset. Before training, 

datasets are split into the data which is shown to 

the model for training and data which is withheld 

from the model during training and used to test the 

quality of the model. To ensure that the training data 

can test the quality of the model accurately, the 
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split should be such that the testing data, just like 

the training data, simulates real-world conditions 

(e.g. for a predictive model, each testing data point 

should have a timestamp after the last timestamp 

in the training data).

Even when the model meets or exceeds expectations 

by performing accurately almost all of the time, it is 

critical to spend additional time verifying that the 

mistakes made by the model are not so severe as 

to undermine the usability of the entire application. 

If, for example, the model were to classify images 

correctly in 98% of cases but classified 0,2% of 

images incorrectly in a way that was biased and 

offensive [97], the model could not be deployed 

even though the overall error rate is very low.

Such cases will often be the result of human bias 

being present in the training data itself which the 

model has learned to apply [98] [99]. Even removing 

attributes prone to biases from training data (such 

as race, gender, sexual orientation or religion) may 

not be sufficient to eliminate such biases from the 

model, as other variables may serve as proxies for 

them. Although technical methods to control bias 

exist, none are perfect and further interdisciplinary 

research is needed to develop more refined 

approaches [100].

Ensuring that as the collection of data increases 

it also becomes more representative and free of 

biases would be an important first step toward 

remedying this problem. Until then, further work is 

needed to develop methods of checking for and 

correcting biases in training data and models.

6.2.2	 Standardized data

As noted already, the success of AI is highly 

dependent on the amount, variety and quality of 

the data used. In the course of the current digital 

transformation, massive amounts of data can 

already be accessed or generated via various 

channels (e.g. linked open data, numerous sensors, 

existing databases). Diversity is a given but also 

a challenge. Pre-processing and describing data 

for proper understanding can significantly improve 

analytical results. In the future, this time-consuming 

step will be streamlined thanks to standardized 

data types, forms and information models.

The question that arises is how heterogeneous 

information and datasets can be understood and 

interpreted appropriately, especially across several 

AI applications, without first discovering the 

meaning of relevant datasets. In order to achieve 

this, a manufacturer-independent, unambiguous 

information model of the data is necessary. 

Semantic technologies are well proven to ensure 

a uniform representation of information that is 

understandable for machines and humans, and to 

make data available in a clear and comprehensive 

form. Based on this, suitable semantic tools 

facilitate the derivation of implicit knowledge and, 

as such, represent a form of efficient data pre-

processing.

Semantic interoperability therefore requires that 

systems not only exchange relevant data or make 

it available for further processing, but that the 

interpretations of the data exchanged by the sender 

and receiver are the same. Semantic conflicts may 

occur, for example, when identical data points 

are described by different terms or different data 

points by identical terms.

However, the understanding of heterogeneous data 

must not only be guaranteed and standardized 

semantically, but also syntactically. Syntactic 

interoperability of datasets means that the structure 

and format in which the data is exchanged are well 

defined. If two systems, for example, use different 

formats or structures to provide or process relevant 

data, there will be syntactic conflicts. Standardized 

exchange formats and communication protocols 

on different levels and communication channels 

will overcome these barriers.
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6.3	 Algorithm-related challenges

Challenges also exist related to the algorithms used 

in AI. Some of the most notable problems in the 

deployment of these algorithms are robustness, 

the ability to adapt to new tasks and their lack of 

interpretability.

The safety of AI algorithms and the resulting risks 

for users represent an increasingly important 

challenge for complex systems. It must be 

ensured that algorithms behave correctly, i.e. that 

an algorithm or programme correctly solves the 

problem described in its specification for any input 

data. This remains an enormous challenge for 

machine learning algorithms, in particular neural 

networks. For example, there is often no clearly 

defined specification of which problem the neural 

network has to solve. In addition, the complexity of 

the algorithms makes it difficult or even impossible 

to understand the decision-making process. Some 

of these challenges are outlined in greater detail 

below.

6.3.1	 Robustness

The term robustness associated with machine 

learning means that the algorithm makes right 

decisions even if the inputs differ from the training 

data. A robust algorithm is therefore stable 

against an adversarial input and has no significant 

deviation in terms of performance between training 

and application datasets [101] [102] [103].

While robustness was already an issue in the 

past, future trends will boost its importance. In 

particular, the success of reinforced learning has 

contributed to the growing research of robust 

algorithms. As described in subsection 4.1.3, this 

category of machine learning algorithms uses 

agents that interact with their environment and 

with other agents. This leads to a very complex 

system of interactions and changing environments, 

which makes it difficult to predict the outcome and 

the actions of the agent [101].

The trend of using algorithms for decision-

making has probably the greatest effect in term 

of robustness. The more impact these decisions 

have, the more important is their capability to react 

correctly in a real environment.

Two scenarios are associated with decision-

making. Either the system recommends a 

decision to its operator, who reviews and verifies 

the recommendation, or the system enforces 

its decisions automatically. The latter poses the 

problem that in the case of new input data the 

system does not necessarily realize that it made 

a mistake. Therefore, decisions are not passed 

on for verification and can lead to damages to 

infrastructures or even humans. This could be for 

instance a misclassification of scans for patients 

suffering from cancer and who may not receive 

proper treatment, or accidents caused by machine 

learning systems overloading the power grid.

Some of the reasons for the failure of AI algorithms 

within this context are mismatched datasets, 

outliers and the programming of the system itself. 

Mismatched datasets that do not match real-word 

data lead to an algorithm that cannot perform well. 

If there are profound differences, for example due 

to outliers, performance can also decrease [102]. 

Algorithms need to be able to adapt to variations 

in datasets without varying too much from the 

expected output.

Several research directions are currently being 

undertaken in the area of algorithm robustness: 

verification (i.e. how to build a system that works 

the right way); validity (i.e. ensuring that the system 

satisfies the right objectives and does not perform 

undesirable actions); security (i.e. how to prevent 

manipulations of the system by a third party); and 

control (i.e. necessity that in the end a human can 

control the system and therefore fix it if problems 

occur) [104]. Multiple approaches can increase 

the robustness of AI algorithms, such as data pre-

processing to train AI systems, removing mismatches 

and outliers, change and anomaly detection, as well 

as hypothesis testing and transfer learning [102].
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6.3.2	 Transfer learning

Machine learning implementations nowadays are 

customized products. Variables are chosen to 

fit the exact problem and the training data must 

come from the application field. This ensures that 

the algorithm performs perfectly for its application. 

While humans are able to transfer knowledge from 

previous experiences to new problems in order to 

solve them, machines do not have this capacity. 

If changes are influencing the provided data 

distribution that lead to outdated data or similar 

application fields, training data has to be recollected 

and the algorithm trained again. To reduce the cost 

and effort involved, transfer learning can help move 

knowledge from one application to another [105].

As illustrated in Figure 6-1, the objective of transfer 

learning is to enable the use of training data from 

different application fields, with different distribution 

or different tasks. Several issues need to be dealt 

with, such as how to determine which knowledge 

can be transferred. If the training data originates 

from another application field, the information 

transferred may be relevant or not. Many issues 

are still open with regard to this approach, such as 

how and when the knowledge can be transferred, 

but improvements are on their way. Breakthroughs 

in transfer learning could make machine learning 

much easier to apply and reduce the cost and time 

of development.

The robustness of algorithms is an essential factor 

when the entire system needs to be safe for human 

interaction, such as in cobots or autonomous cars.

6.3.3	 Interpretability

Most AI algorithms, especially neural networks, are 

described as “black boxes”. This means that input 

data and network outcomes can be understood, 

but not how the algorithm reaches its result. This 

is a critical challenge for AI since understanding 

models is one of the most important starting points 

for a wide acceptance by end users. While some 

models such as regression or decision trees are 

understandable for data scientists and AI experts, 

the dimensionality of the data flow and complexity 

of most other algorithms are usually too high to be 

properly understood.
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This means that such algorithms do not provide 

a clear explanation of why they made a certain 

prediction. They merely provide a probability, which 

is often hard to interpret. This makes it difficult and 

often impossible to verify that a trained algorithm 

functions as expected. Sometimes millions of 

model parameters are involved, and no one-

to-one relationship between input features and 

parameters. Therefore, combinations of multiple 

models using many parameters often affect the 

prediction. Some of these also require a large 

amount of data to achieve high accuracy.

But there is not only the algorithm itself that poses 

a problem. The transformation of raw data into data 

that can be processed by mathematical models 

can make even simple algorithms not interpretable 

by humans. Some methods have been proposed 

to allow the interpretation of neural networks in 

application fields such as NLP or image recognition. 

Other approaches try to locally approximate complex 

algorithms through simple, understandable models 

to enhance interpretation [106].

As AI algorithms are deployed in a growing number 

of sectors, including areas with highly sensitive 

data such as medicine or finance, interpretability 

will certainly grow in significance and continue 

to constitute one of the great conceptual and 

technical challenges of AI in the future [107]. As 

the adequate verification and validation of AI 

algorithms remain highly problematic, their impact 

can be shown through the objective function of an 

algorithm.

6.3.4	 Objective functions

A key focus of concern involves an AI system’s 

objective functions, which if incorrect or imprecise 

can lead to negative side effects or reward 

hacking. Negative side effects might include for 

example harm to goods or humans provoked 

by the system because operating in this manner 

allows it to achieve its objective more rapidly. 

On the other hand, reward hacking entails the 

inadequate completion of the system’s task 

because it found an unforeseen alternative way 

of satisfying its reward function [106]. A system’s 

objective function should also not stand in the way 

of the system being shut down or modified, even 

when this impacts the system’s ability to achieve 

its objective [106].

Even when the objective function is stated correctly, 

systems will need to be able to perform correctly 

when scalability issues fall within their supervision, 

e.g. when providing frequent feedback on the 

system’s performance is too expensive [108].

As already mentioned previously, poor training 

data can lead to extremely undesirable outcomes. 

A question that therefore needs to be addressed 

is how a system should behave when confronted 

with unfamiliar data that it did not encounter in 

the training phase, e.g. fail gracefully rather than 

carry out an action that is wrong and offensive 

[109]. Poor training data aside, testing and training 

environments for reinforcement learning agents 

also need to be safe and isolated to contain any 

negative impact that their exploration might cause 

[101].

6.4	 Infrastructure-related 
challenges

To run AI applications with satisfactory performance 

(especially under real-time constraints), computing 

speed and infrastructure efficiency need to 

be steadily increased. Not only is customized 

hardware needed to accelerate AI workloads, but 

also software stacks, libraries or tool chains, which 

enable the deployment of AI tasks on platforms 

with optimized utilization of underlying resources.

6.4.1	 Hardware bottlenecks

AI and deep learning in particular require parallel 

processing of massive amounts of data, which 

traditional computing architectures can hardly 

support. Currently used GPUs and FPGAs have 
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a number of technical limitations that restrain the 

implementation of the most advanced AI algorithms. 

For example, the GPU that was first introduced 

into deep learning has three main limitations: it is 

unable to fully exploit the advantages of parallel 

computing; the hardware structure is fixed without 

programmability; and deep learning algorithmic 

effectiveness remains to be improved. In the new 

computing era, the core chip will determine the 

infrastructure and ecosystem of AI. Processor 

capabilities are therefore considered as a major 

bottleneck in advancing AI development.

In that respect, the design and architecture of 

heterogeneous computing platforms (which 

integrate a variety of accelerators to address 

diverse AI workloads) is an essential subject for 

AI research and commercial implementation. In 

addition, hardware resources provided within 

cloud infrastructures have become an emerging 

trend given their scalability, reliability and 

automated resource management. Also, cloud-

native application programming interfaces (APIs), 

for instance containers, are utilized to provide 

consistent interfaces, wide support and easy 

deployment of AI applications.

Since AI technologies may be implemented on 

different systems or subsystems (cloud, edge or 

end devices), the platform design should be tailored 

to the individual needs and resource limitations 

of the system. For instance, a cloud server may 

run more sophisticated algorithms and process a 

larger volume of data (e.g. for model training) than a 

mobile device. Therefore, hardware design needs 

to take into consideration the coordination of AI 

capabilities on the various systems or subsystems.

6.4.2	 Lack of platforms and frameworks

Reusable and standardized technical frameworks, 

platforms, tools, and services for AI development 

are yet to be matured. Although a few open 

source AI learning systems and deep learning 

libraries have been made available by well-known 

technology giants, fully modular and standardized 

AI ecosystems of architectures, frameworks, 

application models, assessment and visualization 

tools and cloud services, may still take some time 

to reach an appropriate maturity level.

6.5	 Trustworthiness-related 
challenges

It is widely acknowledged that AI is a topic 

involving many different stakeholders who need to 

cooperate and work together. For example, in the 

field of predictive maintenance for manufacturing, 

faults rarely appear. To adequately feed AI 

algorithms, both manufacturers and users have to 

share data, provide expert knowledge and work 

together towards an efficient implementation. A 

number of issues, such as ensuring trust, need to 

be addressed in order to facilitate this cooperation.

6.5.1	 Trust

Machine learning algorithms rely on the data 

provided. Complete and accurate data is therefore 

essential for automated decision-making. Potential 

issues such as poor data quality or even intentional 

manipulation can lead to worthless results and 

even negative effects for the user of the algorithm.

Trust between stakeholders is essential. Solutions 

addressing the trustworthiness of data sources 

could possibly be offered by certification 

technologies. Electronic certificates from a 

centralized and trusted issuer combined with data 

sealing are options to establish trust between 

parties. However, this solution aims solely at 

installing trust between partners and does not 

address the data quality issue. For this purpose, 

one could collect a trusted data pool or use an 

evaluation or assessment algorithm to avoid faulty 

databases. Meta-algorithms then could help keep 

the AI system reliable and transparent over time, 

providing information on the origin and distribution 

of the sources used [13].
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6.5.2	 Privacy

The development of AI depends on the use of data 

training algorithms. In this process, a large amount 

of data needs to be collected, analyzed, and 

used. The value of data is increasingly prominent. 

Developers, platform providers, operating systems 

and terminal manufacturers, as well as other third 

parties in the value chain, have access to these 

data and are able to upload, share, modify, trade, 

and leverage user-supplied data to some extent.

In addition, since AI systems generally require 

higher computing capabilities, many companies 

and governments have begun to store data on the 

cloud. However, the privacy protection of the cloud 

also has hidden threats. How to collect and use 

data legally and in compliance with existing and 

future laws is a critical issue for any AI player.

6.5.3	 Security

Technical abuse, flaws, and the development of 

future super AI all pose security threats to human 

society. The impact of AI on humans largely 

depends on how people use and manage it. In the 

hands of criminals, AI can certainly lead to major 

security problems. For example, hackers may 

launch cyberattacks through software that can 

self-learn and mimic the behaviour of AI system 

users, and constantly change the method to stay in 

the system for as long as possible. Some technical 

defects lead to abnormal work, also placing the 

AI system at risk. For instance, the black box 

model used for deep learning makes the model 

uninterpretable; improper design can therefore 

lead to abnormal operation. In addition, if security 

measures are not effective enough, driverless cars, 

robots and other AI devices may harm humans and 

be challenged from a legal perspective.

6.6	 Regulatory-related challenges

Appropriate regulation is still lacking in many AI 

fields. Finding a balanced regulatory approach to AI 

developments that promotes and supports industrial 

innovation, productivity and competitiveness, while 

simultaneously ensuring high levels of security and 

health, consumer protection, social security and 

protection of rights and freedoms is an important 

priority for many governments across the world.

While a few early legislative steps have been taken 

in areas such as driverless cars and drones, no 

AI-specific regulatory body exists anywhere in the 

world, and there is also a lack of legal research on 

AI. In Europe, for example, robotics and AI aspects 

are covered by different regulatory agencies 

and institutions at national and European levels. 

No central European body exists to provide the 

technical, ethical, and regulatory expertise and 

oversight of developments in these areas. This lack 

of coordination hinders timely and well-informed 

responses to the new opportunities and challenges 

arising from these technological developments.

The six key crosscutting regulatory themes 

identified in the European Parliament Committee 

on Legal Affairs report on AI concern a wide range 

of policy areas. The areas where, according to 

the Committee’s position, action is necessary as 

a matter of priority include the automotive sector, 

elderly care, healthcare and drones.

6.6.1	 Liability

The issues of foreseeability, interpretability and 

causality that are emerging with new AI-based 

products will make it increasingly difficult to 

address liability issues such as product defects, 

which may create a large liability gap. Facing 

these anticipated liability challenges, the need for 

new rules and regulations, for instance in tort and 

contract laws, will become increasingly critical for 

many industries. Legal certainty on liability is of 

paramount importance for innovators, investors 

and consumers, providing them with the legal 

framework they need.

However, the complexity of digital technologies 

makes it particularly difficult to determine who is 
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liable, and to what extent, in case of failures. For 

example, existing legal categories are insufficient 

to adequately define the legal nature of robots 

and consequently attribute rights and duties, 

including liabilities for damages. Under the current 

legal framework, robots cannot be held liable per 

se for acts or omissions that cause damage to 

third parties. In a scenario in which a robot can 

take autonomous decisions, traditional rules are 

insufficient to activate a robot’s liability, since 

they would not allow identification of the party 

responsible for providing compensation, and 

to require this party to make good the damage 

caused.

In the European Union, it is expected that by mid-

2019 the European Commission (EC) will issue 

guidance on the interpretation of the Product 

Liability Directive in the light of technological 

developments, to ensure legal clarity for consumers 

and producers in case of defective products.

6.6.2	 Privacy

Regulations such as the General Data Protection 

Regulation (GDPR) in the European Union are in 

part intended to address these problems, yet 

how this will be implemented by data protection 

authorities remains to be seen [24]. A delicate 

balance will have to be struck between data privacy 

and enabling AI industries to flourish. In fact, AI 

itself will soon help ensure that personal data is 

safe by enabling sophisticated anonymization and 

encryption methods. Federated learning could 

ensure that personal data never has to leave 

consumers’ devices to train an AI system, as 

the system is trained in parallel directly on every 

device [110]. In addition, AI could limit the exposure 

of sensitive information (e.g. health records) by 

conducting tasks without requiring a human to 

access the data, thereby increasing privacy.

The GDPR is a set of significant regulatory changes 

to data protection and privacy in the European 

Union which also addresses automated decision-

making by AI systems. Specifically, the GDPR gives 

persons “the right not to be subject to a decision 

(without their explicit consent or authorization 

by European Union or Member State law, Article 

22(2) GDPR [111]) based solely on automated 

processing, including profiling, which produces 

legal effects concerning him or her or similarly 

significantly affects him or her”, Article 22(1) GDPR 

[111]. It also gives persons “the right to obtain 

human intervention on the part of the controller, to 

express his or her point of view and to contest the 

decision”, Article 22(3) GDPR [111].

In addition, Articles 13-15 of the GDPR require that 

persons be told when automated decision-making 

that falls under Article 22 is conducted; be provided 

with meaningful information about the underlying 

decision process of the algorithm; and be informed 

of the consequences of the automated process 

and its significance [112].

Although it remains unclear how data protection 

authorities will implement the GDPR in practice, 

the transparency requirements for AI decision-

making are likely to be the key challenge that 

both corporations and regulators will have to 

address. The objective hereby should be to strike 

a balance between maintaining data privacy and 

transparency and allowing data-driven business 

models to flourish. Allowing a healthy AI ecosystem 

is not just relevant from an economic perspective 

but also necessary to enable further technological 

research that can improve the ability of companies 

to ensure transparency.

6.6.3	 Ethics

Although the most severe implications from these 

issues will only be seen in more advanced and 

futuristic AI systems, a proactive approach to 

addressing them as early as possible is not only a 

prudent approach but may also avoid costly (if not 

impossible) retrofitting in the future.

A more immediate concern is the need for AI 

systems (e.g. self-driving cars) to make ethical 
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choices in their decision-making processes (e.g. 

injuring a pedestrian or avoiding the pedestrian 

and potentially injuring the driver or passengers) 

[113]. This example illustrates how AI safety is not 

just a technical problem but also a policy and 

ethical issue which will require an interdisciplinary 

approach to protect the users of such technologies, 

neutral bystanders and the companies that will 

develop them, as the latter may face important 

legal challenges. While research organizations and 

companies have begun addressing these issues, 

closer cooperation between all concerned parties 

at the international level is needed.

AI is progressively replacing humans in several 

decision-making processes. Intelligent robots also 

need to comply with the ethical constraints and 

rules of human society when they make decisions. 

For example, assume there are three pedestrians 

on the sidewalk in front of a driverless car that 

cannot brake in time: should the system choose 

to ram into these three pedestrians or instead 

swerve toward a pedestrian on the other side of 

the road? The application of AI in the daily lives 

of human beings is at the centre of fundamental 

ethical challenges that will need to be tackled. If 

the design of AI systems is not aligned with ethical 

and social constraints, such systems may operate 

according to a logic that differs from that of humans 

and may lead to dramatic consequences.

In addition, after granting decision-making rights 

to machines, people will face a new ethical issue: 

is the machine qualified to take such decisions? As 

intelligent systems acquire knowledge in specific 

fields, their decision-making capabilities will begin 

to surpass those of human beings, meaning that 

people may become dependent on machine-led 

decisions in an increasing number of domains. 

This type of ethical challenge will urgently require 

particular attention in any future AI development.

Artificial intelligence challenges
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Section 7
Standardization gaps in artificial intelligence

Standardization plays both a supporting and 

a leading role in AI development. It is not only 

essential to promoting industrial innovation, but 

also to improving the quality of AI products and 

services, ensuring user safety and creating a fair 

and open industry ecosystem.

Following the preceding review of today’s AI 

landscape and its main challenges, some of the 

fundamental requirements for standardization can 

be derived. This section first provides an overview 

of existing standardization efforts related to AI and 

then highlights some of the standardization and 

industrial gaps that will lead in the next section to 

final recommendations.

7.1	 Standardization activities  
in artificial intelligence

Standardization in the area of AI is still at a very 

early stage. Although some aspects of AI or 

supporting technologies have been part of the 

scope of existing standardization groups for quite 

some time, new groups are now being formed 

to address the field of AI from a more extensive 

and holistic perspective. The following sections 

provide an overview of the current standardization 

landscape, including the organizations depicted in 

Figure 7-1.

Figure 7-1 | Standardization landscape on AI
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Standardization gaps in artificial intelligence

7.1.1	 ISO/IEC JTC 1

ISO/IEC JTC 1, which is a joint technical committee 

formed between IEC and ISO on IT issues, has been 

performing work in the field of AI terminology for a 

long time. The former vocabulary working group of 

JTC 1 issued the following series of International 

Standards on AI terminology:

§§ ISO/IEC 2382-28:1995, Information technology 

– Vocabulary – Part 28: Artificial intelligence – 

Basic concepts and expert systems

§§ ISO/IEC 2382-29:1999, Information technology 

– Vocabulary – Part 29: Artificial intelligence – 

Speech recognition and synthesis

§§ ISO/IEC 2382-31:1997, Information technology 

– Vocabulary – Part 31: Artificial intelligence – 

Machine learning

§§ ISO/IEC 2382-34:1999, Information technology 

– Vocabulary – Part 34: Artificial intelligence – 

Neural networks

These historical parts have now been merged into 

the common JTC 1 standard for IT vocabulary: 

ISO/IEC 2382:2015 [11].

ISO/IEC JTC 1/SC 42

This subcommittee was established in November 

2017 to address the specific standardization 

requirements of AI. The scope of JTC 1/SC 42 is 

to serve as the focus entity and proponent for JTC 

1’s standardization programme on AI, and provide 

guidance to JTC 1, IEC and ISO committees 

developing AI-related applications. Topics forming 

a part of the work of this subcommittee are:

§§ Foundational standards

§§ Computational approaches and characteristics 

of AI

§§ Trustworthiness

§§ Use cases and applications

§§ Big data

§§ Societal concerns

After its first plenary held in April 2018, JTC 1/ 

SC 42 established WG 1 on foundational Stand-

ards, comprising the following first two approved 

projects: Artificial intelligence concepts and 

terminology (ISO/IEC 22989); Framework for 

artificial intelligence systems using machine 

learning (ISO/IEC 23053).

The plenary of JTC 1/SC 42 also established three 

study groups:

§§ SG 1: Computational approaches and 

characteristics of artificial intelligence systems, 

in order to study different technologies used by 

AI systems (e.g. machine learning algorithms, 

reasoning), including their properties and 

characteristics; existing specialized AI systems 

(e.g. computer vision, NLP) to understand 

and identify their underlying computational 

approaches, architectures, and characteristics; 

and industry practices, processes and 

methods for the application of AI systems.

§§ SG 2: Trustworthiness, in order to investigate 

approaches to establish trust in AI systems 

through transparency, verifiability, explainability, 

controllability, etc.; engineering pitfalls and 

an assessment of typical associated threats 

and risks to AI systems with their mitigation 

techniques and methods; approaches to 

achieve robustness, resiliency, reliability, 

accuracy, safety, security, privacy, etc. in AI 

systems; and types of sources of bias in AI 

systems with a goal of minimization of such 

bias, including but not limited to statistical bias 

in AI systems and AI-aided decision-making.

§§ SG 3: Use cases and applications, in order 

to identify different AI application domains 

(e.g. social networks, embedded systems) 

and the different contexts of their use (e.g. 

healthcare, smart home, autonomous 

cars); collect representative use cases; and 

describe applications and use cases using the 

terminology and concepts defined in projects 

ISO/IEC 22989 and ISO/IEC 23053, and 

extend the terms as necessary.
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Other JTC 1 subcommittees

As AI is a transversal technology affecting 

many other IT fields and applications, other 

JTC 1 subcommittees have been producing 

standardization work that is connected to AI as a 

driver or supporting technology:

§§ JTC 1/SC 24: Computer graphics, image 

processing and environmental data 

representation

§§ JTC 1/SC 27: IT security techniques

§§ JTC 1/SC 35: User interfaces

§§ JTC 1/SC 37: Biometrics

§§ JTC 1/SC 38: Cloud computing and distributed 

platforms

§§ JTC 1/SC 40: IT service management and IT 

governance

§§ JTC 1/SC 41: Internet of Things and related 

technologies

7.1.2	 IEC

Several IEC committees have looked at AI as one 

element potentially contributing to their programme 

of work. Examples include:

§§ SC 45A: Instrumentation, control and electrical 

power systems of nuclear facilities, has carried 

out a study on AI, with the aim of applying 

emerging IT and electronic technologies to 

advance computer and information systems 

supporting and regulating nuclear instruments 

and control requirements.

§§ TC 100: Audio, video and multimedia systems 

and equipment, develops Standards related 

to wearable devices and has initiated a topic 

for discussion entitled “usage scenarios of 

wearable devices” that included elements of AI 

and virtual reality.

§§ TC 124: Wearable electronic devices and 

technologies, was formed recently to take 

charge of the development of technical 

Standards on the electrical engineering, 

materials and personal safety of wearable 

technology. It is foreseen that such devices 

and technologies will be widely used within the 

context of AI applications.

7.1.3	 ISO

Several ISO committees are concerned with 

preparing Standards related to AI applications, 

such as:

§§ TC 22: Road vehicles, formulates basic 

Standards for road vehicles and is also 

studying standardization challenges related to 

intelligence and connected cars.

§§ TC 68: Financial services, works on 

standardization for the financial and banking 

sector. New trends are covered by about 58 

Standards of this committee.

§§ TC 299: Robotics, covers the field of robotics 

standardization for various uses.

7.1.4	 ITU

In the area of AI, ITU-T has a Focus Group on 

machine learning for future networks including 5G 

(FG-ML5G). The objectives of this group include 

[81]:

§§ Helping the adoption of machine learning 

in future networks, including architecture, 

interfaces, use cases, protocols, algorithms, 

data formats, interoperability, performance, 

evaluation, security and protection of personal 

information.

§§ Studying, reviewing and surveying existing 

technologies, platforms, guidelines and 

standards for machine learning in future 

networks.

§§ Identifying aspects enabling safe and trusted 

use of machine learning frameworks.

Standardization gaps in artificial intelligence
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§§ Reviewing and studying how to train, adapt, 

compress and exchange machine learning 

algorithms in future networks, and how multiple 

algorithms interact with each other.

§§ Identifying possible requirements of machine 

learning applied to future networks, taking 

into account a variety of fixed and mobile 

communication stacks, and promoting the 

development of new machine learning methods 

that will be able to meet these requirements.

§§ Identifying possible requirements on network 

functionality, interfaces and capabilities to use 

machine learning.

§§ Identifying standardization challenges in 

machine learning for communications.

§§ Producing a gap analysis and a roadmap 

of machine learning in order to identify the 

relevant scope of ITU-T recommendations on 

these topics.

7.1.5	 IEEE

The IEEE mainly focuses in this area on studying 

ethical aspects of technical standards related 

to AI. In March 2016, the IEEE Standards 

Association launched the Global Initiative for 

Ethical Considerations in Artificial Intelligence and 

Autonomous Systems, with the aim of helping 

people deal with the threats posed by AI and 

developing ethical design principles and standards 

that range from data privacy to fail-safe engineering 

[82].

Under this umbrella, the IEEE has approved so far 

the following standardization projects:

§§ IEEE P7000: Model process for addressing 

ethical concerns during system design

§§ IEEE P7001: Transparency of autonomous 

system

§§ IEEE P7002: Data privacy process

§§ IEEE P7003: Algorithmic bias considerations

§§ IEEE P7004: Standard for child and student 

data governance

§§ IEEE P7005: Standard for transparent employer 

data governance

§§ IEEE P7006: Standard for personal data 

artificial intelligence agent

§§ IEEE P7007: Ontological standard for ethically 

driven robotics and automation systems

§§ IEEE P7008: Standard for ethically driven 

nudging for robotic, intelligent and autonomous 

systems

§§ IEEE P7009: Standard for fail-safe design of 

autonomous and semi-autonomous systems

§§ IEEE P7010: Wellbeing metrics standard for 

ethical artificial intelligence and autonomous 

systems

§§ IEEE P7011: Standard for the process of 

identifying and rating the trustworthiness of 

news sources

§§ IEEE P7012: Standard for machine readable 

personal privacy terms

7.1.6	 ETSI

ETSI has an Industry Specification Group (ISG) on 

Experiential Networked Intelligence (ENI), whose 

goal is to develop standards for a cognitive network 

management system incorporating a closed-loop 

control approach. This approach is based on a 

“monitor-analyze-plan-execute” model and will be 

enhanced by learning capabilities.

The envisaged cognitive network management 

system enables the steering of the usage of available 

network resources and services according to the 

real-time evolution of user needs, environmental 

conditions and business goals. Decisions taken by 

the system rely on detailed information about the 

complex states of network resources and policies 

expressing operators’ preferences.

Standardization gaps in artificial intelligence
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The unique added value of the ISG ENI approach is 

to quantify the operator experience by introducing 

a metric and the optimization and adjustment of the 

operator experience over time by taking advantage 

of machine learning and reasoning.

Different types of policies will be reviewed in 

this group in order to drive adaptive behavioural 

changes using various AI mechanisms. The ISG 

ENI will wherever applicable review and reuse 

existing standardized solutions for legacy and 

evolving network functions such as resource 

management, service management, orchestration 

and policy management.

7.1.7	 Standardization activities in China

§§ National information technology 

standardization network (SAC/TC 28)

SAC/TC 28 mainly addresses AI standardization 

work related to vocabulary, user interfaces, 

biometric features recognition and other fields.

In the area of terminology and vocabulary, four basic 

national standards have been issued so far, such 

as GB/T 5271.28-2001: Information technology 

– Vocabulary – Part 28: Artificial intelligence – 

Basic concepts and expert systems. The user 

interface subcommittee is preparing multiple 

national standards and has set up motion sensing 

interaction and brain-computer interface working 

groups to carry out relevant standardization 

studies. It has submitted the international proposal 

“information technology emotive computing user 

interface framework”, which has been approved.

The biometric features recognition committee 

has prepared standards related to fingerprint, 

face and iris recognition. In addition, the big data 

standard working group of the national information 

security standardization technical committee, the 

working group on cloud computing standards and 

the working group on national sensor network 

standards are also making efforts to formulate basic 

standards to support the relevant technologies 

and applications of AI.

§§ National technical committee for 

automation systems and integration 

(SAC/TC 159)

Under SAC/TC 159, SC 2 on robot equipment takes 

charge of complete industrial robots, including 

system interfaces, components, controllers, etc. 

It has released several standards such as GB/T 

17887-1999: Industrial robots – Automatic end 

effector exchange systems – Vocabulary and 

presentation of characteristics.

§§ National technical committee for audio, 

video, multimedia and equipment  

(SAC/TC 242)

SAC/TC 242 has made studies on relevant 

standards for audio, video, and smart healthcare 

products. Current standards include for instance 

subjective evaluation methods for virtual reality 

audio (2017-0279T-SJ).

§§ National technical committee on 

information security (SAC/TC 260)

SAC/TC 260 has formulated security-related 

standards in areas such as biometric features 

recognition, smart cities and intelligent 

manufacturing by focusing on AI technology.

§§ National technical committee on 

intelligent transport systems (SAC/TC 268)

SAC/TC 268 has carried out standardization work 

in the area of intelligent transportation. It has also 

formulated standards such as GB/T 31024.2-2014: 

Cooperative intelligent transportation systems – 

Dedicated short range communications – Part 2: 

Specification for medium access control layer and 

physical layer.

7.1.8	 Standardization activities in the 

United States

At the time of writing, the United States does not 

currently have any policies or standards in place 

related to AI nor does it appear that their creation 

is a priority for the current administration. Several 

Standardization gaps in artificial intelligence
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US-headquartered private companies working 

with AI have come together along with several 

multinational firms to form the Partnership on AI, 

which intends to develop and share best practices. 

There are also an increasing number of research 

institutes and non-governmental organizations 

working on policy, ethics and safety issues related 

to AI. Rather than relying on government, it 

appears that collaborative private initiatives such 

as the Partnership on AI are the most likely source 

of some sort of standard for US-based companies 

in the foreseeable future.

It is relevant to note that the previous administration 

did have a greater interest in setting policies and 

standards and published two widely cited reports 

on the challenges and opportunities of AI. However, 

these documents are only accessible as part of the 

official archive of the previous administration and, 

at the time of writing, it is not entirely clear how or if 

they will be leveraged by the current administration.

7.1.9	 European AI Alliance

AI is impacting critical European industries such as 

healthcare, agriculture or public administration. It 

is also driving business opportunities for European 

industry, SMEs and start-ups, and contributes to 

productivity growth in Europe. Therefore, the EC 

is setting up a European AI Alliance to discuss the 

future of AI [80].

The EC has committed to developing a compre-

hensive strategy on AI to address the legitimate 

concerns of ensuring trust and awareness, including 

all relevant stakeholders (businesses, academics, 

policy makers, consumer organizations, trade 

organizations, and other representatives of the 

civil society). As a consequence, the EC plans to 

establish a European AI Alliance to act as a multi-

stakeholder forum to engage in all aspects of AI 

development and its impact on society and the 

economy.

The first step toward establishing this European AI 

Alliance is to create a high-level expert group on AI 

that will serve as a steering group for the alliance’s 

work and in addition will have the task of advising 

the EC on mid to long-term AI challenges and 

opportunities. The expert group will support the 

EC on engagement and outreach mechanisms with 

other initiatives and propose AI ethics guidelines. 

The call for high-level experts was completed in 

April 2018 and the group is supposed to initiate its 

activities in the second half of 2018.

7.1.10	 Consortia and other organizations

The issues of standards and rules for AI have 

received an increasing amount of attention not only 

from the public but also from companies, research 

institutions, and industry consortia. Technology 

companies themselves are increasingly consider-

ing the ethical, economic and social consequences 

of the AI products and services they are developing, 

as well as the standards and rules that might be 

required.

Several of the world’s largest technology 

companies have even created dedicated ethics 

teams and established supervisory boards 

to help answer some of these questions and 

monitor their company’s efforts. Most activities 

today concentrate on raising public awareness 

and developing internal codes of conduct for 

developers and designers. Such efforts are not 

aimed at producing one-size-fits-all solutions, but 

rather developing an informed company opinion 

through internal trials on what sorts of standards 

and rules might work best.

This type of internal work lays a valuable foundation 

for engaging a variety of other stakeholders. 

Perhaps the most prominent initiative in the public 

perception aimed at bringing stakeholders together 

is the Partnership on AI, a growing consortium of 

over 50 of the largest technology companies and 

AI-focused research organizations. Its aim is to 

Standardization gaps in artificial intelligence
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ensure that AI benefits people and society. This will 

be achieved through collaborative research on the 

impact and design of AI systems, the development 

and sharing of best practices, as well as public 

education and the engagement of a wide variety of 

external stakeholders [84]. While the Partnership 

on AI is still in the building phase, and has yet 

to publish any research, it has the necessary 

ingredients to make a valuable contribution to the 

debate in the near future.

Other organizations such as the Royal Society [85] 

and the Information Technology Industry Council 

[86] are highlighting areas in which further work on 

standards is required. In addition to the work of 

private companies and consortia, there are more 

than a dozen reputable research organizations 

currently considering the implications of AI 

developments, often to ensure the safe creation of 

general AI.

7.2	 Standardization gaps

This subsection lists some of the open 

standardization gaps that need to be addressed 

in order to resolve the challenges listed in previous 

sections. With the development of technology 

and the increase of application scenarios, many 

standards need to be improved or supplemented. 

These gaps can range from coordinated 

development of open source and standardization 

to neural network representation methods, 

performance evaluation, machine learning 

algorithms and security gaps related to AI.

7.2.1	 Harmonized data models and 

semantics

As already stressed in section 6.2.2, machine 

learning is dependent on the data with which it is 

trained. However, machine learning applications 

can depend on different data sources distributed 

over various domains. When data lacks semantic 

capabilities, the AI system will not be able to 

adequately use these different data sources, 

because they are not processed in a way 

understandable to both machines and humans. 

Additionally, data structure and format have to 

be unified. Especially for machine learning this 

problem represents an important issue, because 

for many applications, data is needed from different 

sources.

Domain-specific efforts to standardize information 

and data models already exist today. However, 

there is a lack of coordination among these efforts. 

For the benefit of AI, it would be necessary to 

coordinate and ensure a homogenous approach to 

standardizing information and data models across 

different domains.

7.2.2	 Common ontology based on data 

models

There are already a variety of activities concerning 

ontologies in different domains. Because machine 

learning will not be restricted to one domain, but 

often will include multiple domains, these domain-

dependent ontologies have to be harmonized. 

An effort is needed to coordinate the activities 

between different domains and standardize a 

common ontology.

7.2.3	 Verification of artificial intelligence 

algorithms

The verification of AI algorithms is needed to 

ensure that they are compliant with all applicable 

safety requirements. AI algorithms differ from other 

algorithms mainly in that they change during their 

runtime. Changes in the environment can also 

have an effect on the functioning of a self-learning 

algorithm. The accurate documentation of an AI 

algorithm task is challenging and may benefit from 

standardization. It would be desirable to clarify 

which requirements an AI algorithm, or the entire 
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system in which it is located, would have to be 

verified against. It is also questionable whether 

a one-off verification is useful or whether cyclical 

checks are appropriate [83].

AI systems need certification specifications on 

different aspects such as function, performance, 

security, compliance or interoperability to secure 

AI product quality and availability to support 

a sustainable development of the AI industry. 

Certification may include testing, evaluation, and 

other tasks. The evaluation object can be an 

automatic driving system, a service robot, or other 

AI products. The evaluation results can be obtained 

through measurable indicators and quantifiable 

evaluation systems based on standardized 

procedures and methods.

7.2.4	 Benchmarking and evaluation of 

artificial intelligence infrastructures

With infrastructures and platforms constantly 

being developed with innovative design, improved 

architecture and new hardware components, 

standards are needed for benchmarking and 

evaluation of the platforms, in terms of function, 

performance or scalability. The infrastructure 

evaluation can use either generic machine 

learning algorithms or scenario-specific workloads 

(e.g. condition monitoring, surveillance video). 

Benchmarking and evaluation may help users 

choose the platforms most suitable to their 

individual needs.
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Section 8
Conclusions and recommendations

This White Paper has shown clear evidence 

that AI can be deployed across a broad range 

of applications that contribute to addressing 

some of the most pressing challenges called 

megatrends. As AI is already having a profound 

impact on society, businesses and individuals, 

it is now foreseen to become one of the driving 

forces for radical innovation in most industry 

sectors, whether manufacturing, energy, finance, 

education, transportation, healthcare or retail.

Specific use cases have been described in the 

White Paper for four application domains (smart 

homes, smart manufacturing, smart transportation, 

and smart energy), but the wide applicability of 

current AI systems across multiple industry sectors 

has also been clearly demonstrated.

Serious challenges are being generated by AI in 

societal, economic and regulatory fields. Whether 

related to trustworthiness, privacy, safety of 

human/machine interactions, or the impact on the 

workforce, these issues will need to be addressed 

urgently by a broad base of stakeholders and 

in a coordinated way. As these challenges will 

be common to all nations across the globe, the 

White Paper has also insisted on the need for an 

international approach to tackle them. In particular, 

governments, regulators and policy makers will 

have to carefully understand and address major 

ethical issues that are emerging with the rapid 

deployment of AI.

Industry and the research community will also 

have to address a number of technical challenges 

that may impede the deployment of AI across 

some application domains. Issues related to 

data, algorithms, hardware and computing 

infrastructures are among today’s most difficult 

limitations to exploiting the full potential and 

achieving the most exciting promises of AI. From 

that perspective, standardization and conformity 

assessment are expected to play an instrumental 

role in facilitating the market adoption and social 

acceptance of emerging AI technologies.

The following subsections outline the main 

recommendations of this White Paper, to industry 

in general, to regulatory bodies, and finally to the 

IEC and its committees.

In addition, further forward-looking AI applications 

are presented in  .

8.1	 Industry recommendations

A wide range of industry stakeholders are involved 

in the AI ecosystem. These industry players are 

expected to benefit from AI technology but need 

to contribute with coordinated efforts to the 

availability of high-quality data, to the continuous 

performance improvement in AI infrastructure, and 

to increasing the security of AI systems. These 

efforts will eventually lead to increased awareness 

of AI’s benefits to the society and accelerate its 

wide adoption.

§§ Develop guidelines for datasets

Training datasets are one of the most important 

factors in the performance of an algorithm. 

Special requirements are placed on these 

datasets, depending on the application area. 

It is recommended to create guidelines to 

estimate how large the quantities for training, 

validation and testing should be. This could help 
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companies successfully and securely implement 

AI. Furthermore, guidelines on data requirements 

would help businesses when requesting customer 

data, by affording them a neutral entity to which 

to refer.

§§ Develop guidelines for security within  

AI systems

AI has a profound impact on the security of 

information systems. On the one hand, these can 

be used to create new types of hack bots or viruses 

that constantly adapt to new countermeasures. 

On the other hand, they can also create additional 

security holes for companies by providing new 

access points for attacks. Training data could be 

used to try to influence the system by specifically 

controlling a bias in the datasets. It is therefore 

necessary for companies to identify the security 

effects that the use of AI will have before applying 

them, in order to take appropriate security 

measures.

8.2	 Regulatory recommendations

AI deployments are accompanied by a substantial 

regulatory uncertainty, which will be seen by 

industry and the research community as an obstacle 

to investing in AI. In addition, it is obvious that AI 

contributes to specific governmental projects such 

as the Digital Single Market in Europe. Therefore, 

successful market deployment of AI will require 

coordinated regulatory activity between multiple 

stakeholders (industry, governments, research 

community, SMEs, consumer organizations, and 

others). The regulatory activities described below 

are recommended.

§§ Address AI within privacy policies

The European GDPR is addressing some aspects 

of the abuse of individual privacy rights, such as 

automated decision-making and profiling without 

the user’s consent. There remain however a number 

of privacy concerns that need to be addressed.

There is evidence that some hackers are reverse-

engineering the training data to retrieve privacy 

data from individuals and misusing this confidential 

data. Also, the processes of algorithm design 

and training need to be inclusive and should 

fully consider the interests of disadvantaged 

groups. They should establish special rules for 

extreme ethical situations. In that respect, relevant 

standards, laws and policies on security, ethics 

and privacy should be urgently improved.

Where AI is distributed within the cloud, it will be 

critical that individuals have sufficient trust in the 

process to send their private data to the cloud 

without worrying about infringement of their 

privacy. Moreover, AI developers need to adopt 

appropriate technical means to protect individuals 

in the process of collecting and using data and to 

prevent personal information from being subject to 

leaking, falsification and damage.

§§ Include AI in security, ethics and other 

policies

While the current AI industry is in a period of 

vigorous development, it should seriously consider 

the formulation and implementation of future 

industry supervision measures and should fully 

consider the responsibilities and faults in the 

process of AI development and deployment.

The issue of supervision of the AI industry is not a 

problem faced by a single group. It involves a wide 

range of social, systemic, and complex issues 

which require enterprises, governments, users, 

technology organizations and other third parties to 

participate and work together to build a sustainable 

AI ecosystem.

The relevant safety regulations should be 

formulated and improved. The ethical requirements 

of AI technology should be set in accordance with 

a broad consensus formed among the society as 

a whole.

Conclusions and recommendations
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8.3	 Recommendations addressed 
to the IEC and its committees

The IEC, as a globally recognized standards 

development organization, is in a unique position to 

help address some of the AI challenges described 

in this White Paper, in order to ensure the social 

and market relevance of upcoming AI technological 

developments. Building upon its track record and 

reputation for addressing the safety of electrical 

systems, the IEC can play an instrumental role 

in accompanying the tremendous changes and 

mitigating the concerns brought about by AI. 

Accordingly, it is recommended that the IEC take 

the actions described below.

§§ Promote the central role of JTC 1/SC 42  

in horizontal AI standardization

As JTC 1/SC 42 has established its programme of 

work and begun its standardization activities, the 

IEC should promote this subcommittee as the key 

entry point for basic and horizontal standardization 

of AI worldwide. In close cooperation with ISO, 

the IEC should also ensure active collaboration 

and possible joint work by individual IEC and ISO 

committees with JTC 1/SC 42 on aspects related 

to AI technologies. To avoid duplication of work 

and foster quick market acceptance, the IEC 

should encourage external organizations, whether 

standards-setting bodies or industry consortia, to 

liaise and collaborate with JTC 1/SC 42.

§§ Coordinate the standardization of data 

semantics and ontologies

As the success of AI is highly dependent on the 

quality and proper interpretation of the data 

used, standardization of data types, forms and 

information models will be critical for the acceptance 

and successful deployment of AI across various 

industry sectors. Semantic interoperability and 

standardized ontologies will be core elements 

to ensure consistency and homogeneity of AI 

implementations. Without duplicating existing 

work, the IEC should take the lead in landscaping, 

coordinating and facilitating the convergence of 

existing standardization activities that address this 

data-related challenge, both internally (e.g. SC 3D, 

domain-specific committees such as TC 57 and 

TC 65, JTC 1/SC 32, JTC 1/SC 41) and by reaching 

out to external entities (e.g. ISO, eCl@ss).

§§ Develop and centralize AI-related use 

cases

As AI is making its way through an increasing  

number of application domains, the IEC should 

encourage its technical committees to develop 

AI-related use cases by applying the IEC  62559 

methodology for further incorporation into the 

upcoming IEC Use Case Management Repository 

(UCMR). The IEC should also reach out to 

external organizations, whether standards-setting 

organizations or industry consortia involved 

in AI standardization, to promote its use case 

development approach.

§§ Develop AI reference architecture with 

consistent interfaces

To guide the development of AI platforms, a 

reference architecture for AI systems needs to 

be established, which will enable software and 

hardware vendors to position their products in the 

ecosystem and contribute to the interoperability 

between components and subsystems. The 

interfaces between heterogeneous computing 

units, as well as interfaces for AI task scheduling 

and resource utilization need to be agreed upon, to 

foster a simplified deployment of AI workloads on 

heterogeneous computing platforms.

§§ Explore the potential for AI conformity 

assessment needs

As AI is generating unprecedented ethical and 

trustworthiness challenges and threats, assessing 

the conformity of AI algorithms as well as the 

products and services making use of them is 

expected to be in high demand. Dealing with the 

black box issue and certifying the behaviour of 
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algorithms that continuously evolve and adapt to 

their environment will be huge challenges. As a 

unique organization developing both International 

Standards and Conformity Assessment Systems, 

the IEC should launch a study to identify and 

roadmap AI conformity assessment needs and 

opportunities.

§§ Foster a dialogue with various society 

stakeholders about AI

The IEC is ideally positioned to initiate and foster 

a dialogue about the impact of AI on society and 

industry by gathering all interested stakeholders 

(industry, governments, regulators, policy makers, 

etc.). By leveraging its international standing and 

neutrality, the IEC should collect inputs from 

these stakeholder groups to feed its AI Standards 

development activities, continue to build trust in its 

processes, and ensure its deliverables are used in 

AI-related regulatory and legislative work.

§§ Include AI use cases in testbeds involving 

the IEC

The previous IEC White Paper on edge intelligence 

[12] recommended that testbeds be deployed to 

gain feedback on IEC standardization activities. 

Within the spirit of this recommendation, AI 

use cases within testbeds will be essential to 

gather feedback on AI technology gaps and 

standardization needs. It will be difficult to justify 

deploying a specific testbed for AI, but the feedback 

on the AI-related architectures and standards-

driven AI implementations will be essential to 

identifying standardization and technology gaps. 

In addition, new machine learning capabilities, 

algorithms and data and ontology models may 

benefit from testbeds comprising AI use cases. It 

is therefore recommended to add AI-related use 

cases to future testbeds involving the IEC.

Conclusions and recommendations
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Annex A
Future developments

A.1	 Biology-inspired artificial 
intelligence

While neural networks are inspired by how the 

human brain operates, they do not try to mimic it. 

Actually, it appears to be extremely difficult to copy 

the mechanisms of the human brain, since today 

it is still not fully understood how the brain really 

functions. However, there is a large consensus of 

opinion that a better understanding of how learning 

works in the human brain will lead to superior 

machine learning algorithms. Some think that it 

could be an essential step towards the creation of 

a general AI.

There are several theories on how learning 

mechanisms might work in the brain, and several 

algorithms based on these theories have been 

developed. While they do not try to create an 

exact copy of the brain, they attempt to imitate 

some central regions of the brain, usually limited 

to the neocortex. Other regions of the brain, such 

as the limbic system, have received relatively little 

attention by the machine learning community so 

far. While it is not yet clear whether one of these 

approaches could replicate the human brain in 

some ways, there are nevertheless a few notable 

developments that have taken place over recent 

years.

One of these approaches is hierarchical temporal 

memory (HTM). At first glance, this structure looks 

like a neural network, but fundamentally differs from 

it. An HTM is a hierarchically structured network 

of nodes. These nodes have the ability to learn 

and store information. The structure is designed 

to display time-varying data hierarchically. Data 

coding within the HTM is available in a form called 

sparse distributed representation [114], which is 

comprised of bit vectors in a pattern where each bit 

has a semantic meaning. This model was inspired 

by a theory of how the human brain learns [115].

In summary, it still seems unlikely at this point 

in time that a general AI could be created in the 

near future. However, the latest findings in brain 

research, like the European Human Brain Project 

[116], can give impetus for new types of machine 

learning algorithms.

A.2	 Human/artificial intelligence 
interaction

The use of AI opens up new opportunities for 

human-machine interaction. Whereas until today 

machines have usually been only tools operated 

in a certain way, sophisticated AI algorithms could 

make machines better adapted to humans in the 

future.

The early stages of such improved interactions can 

already be seen in many assistance systems, which 

are frequently used in mobile devices or in the 

home. However, as of today, it is usually the people 

who have to adjust to the machine. Requests must 

be formulated in a certain way so that the machine 

can process them. However, the ultimate goal is 

for the machine to adapt to people. In summary, 

AI serves as an interface so that human-machine 

interactions can operate smoothly.

An example of such interaction is a telephone service 

hotline. Most automatic answering machines only 

respond to certain words or numbers entered by 

the caller. In the future, such automatic queries will 

be carried out by an AI system that dynamically 
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responds to the caller’s questions and needs, thus 

avoiding frustration and stress.

AI is one of the central components for new 

safety concepts, especially when it comes to 

handling machines. This is particularly important in 

robotics. Most autonomous robots found at home 

today are vacuum cleaner robots. In the future, 

however, much larger, possibly humanoid, robots 

could be used at home or in public environments. 

Such robots must be able to recognize their 

environment, and especially the human beings 

in it, in order to ensure the safety of the latter. 

This advanced understanding of a changing 

surrounding environment is only possible with 

advanced machine learning techniques.

A.3	 Artificial intelligence-enabled 
digital twin

Digital twins, which are digital models of physical 

objects and processes, are enabled by the IoT in 

which connected devices collect and share data 

about themselves and their surroundings. By 

bundling the data collected by a physical device 

in real-time, digital twins mimic the status of their 

physical counterpart. Such virtual twins can then 

be analyzed and experimented with to improve 

their physical counterpart’s performance [117]. 

The rise of digital twins therefore has a profound 

impact on product development, by enabling 

engineers not only to test new designs in a virtual 

space but also to monitor their performance on an 

ongoing basis. As a result, AI can support such 

simulations, predict the future performance of the 

device and make recommendations for possible 

improvements. Interesting applications for the use 

of digital twins include, for example, applications 

for turbines, to better understand and monitor their 

performance, or for equipment in remote locations. 

Issues can be spotted more easily or scenarios 

can be tested prior to installation to account for the 

various environmental factors of new or unusual 

locations. 

Particularly where streams of data are involved 

that go beyond numerical sensor readings, such 

as video and audio, AI can add significant value by 

incorporating them into the analyses. Audio feeds 

can thus be analyzed to detect signs of impending 

malfunctions and enable proactive maintenance, 

while real-time video of a production process could 

be used to identify defects with great accuracy and 

speed [118].

Aside from enabling the analysis of this type of 

data at great speeds, AI can facilitate a productive 

interaction between AI-powered digital twins 

and humans. AI-powered bots can be leveraged 

to enhance the interactions between humans 

and digital twins (or for that matter any physical 

object), thereby improving user experience and 

productivity. Rather than laboriously examining 

technical logs or simply receiving a command from 

the AI system, the user will be able to investigate 

problems and opportunities alongside the AI 

system, using natural language to interact with the 

digital twin of a given mechanical component as 

they would with a human co-worker [119].

Not only will this development boost human 

productivity, but it will greatly increase the 

acceptance of such systems by underscoring their 

function as a support, rather than a replacement 

for human labour. Indeed, with fully implemented 

digital twin capabilities, an organization could 

create a workforce that comprises both its human 

capital and mechanical capital.

A.4	 Automated machine learning

As of today, there are various examples of 

automated machine learning. One is reinforcement 

learning, which uses agents to learn directly from 

raw input data. The agents interact with their 

environment and receive a reward or punishment 

depending on their actions. By seeking to maximize 

the reward, they learn to make the right choices. 

There exist reinforcement learning algorithms, for 

Future developments
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Future developments

example which successfully learned how to play 

50 Atari games without obtaining any additional 

knowledge about the rules of the games [120].

Another approach to automated machine learning 

is to automate the development of machine learning 

models. These systems autonomously create 

new child networks and train them. Depending 

on their performance they then detect points for 

improvements for subsequent attempts. Thus, 

the model improves the network and learns which 

parts of the architecture achieve good results [121] 

[122].

The trend to use automated machine learning to 

reduce the effort of training and modelling will 

likely further accelerate in the future. This raises 

the question of how to remain in control of the 

developed algorithms as well as how to deal 

with the fact that there could be more and more 

interactions between different AI applications 

improving each other.
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