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Foreword 

It is our pleasure to welcome you to the Proceedings of AIAI 2006, the 3rd IFIP 
t h . Conference on Artificial Intelligence Applications & Innovations being held from 7 till 

9* of June, in Athens, Greece. Artificial Intelligence applications build on a rich and 
proven theoretical background to provide solutions to a wide range of real life problems. 
The ever expanding abundance of information and computing power enables researchers 
and users to tackle highly interesting issues for the first time, such as applications 
providing personalized access and interactivity to multimodal information based on user 
preferences and semantic concepts or human-machine interface systems utilizing 
information on the affective state of the user. The purpose of the 3rd IFIP Conference on 
Artificial Intelligence Applications and Innovations (AIAI) is to bring together 
researchers, engineers and practitioners interested in the technical advances and business 
and industrial applications of intelligent systems. AIAI 2006 is focused on providing 
insights on how AI can be implemented in real world applications. 

The response to the 'Call for Papers' was overwhelming, attracting submissions from 23 
countries. The task of the Technical Program Committee was very challenging putting 
together a Program containing 87 high quality contributions. The collection of papers 
included in the proceedings offer stimulating insights into emerging applications of AI 
and describe advanced prototypes, systems, tools and techniques. AIAI Proceedings will 
interest not only academics and researchers, but IT professionals and consultants by 
examining technologies and applications of demonstrable value. 

Eight (8) Special Sessions dedicated to specific AI applications are affiliated within the 
AIAI 2006 conference: 

- Adaptive Learning Systems Engineering (organized by Symeon Retalis, 
Andreas Papasalouros and Kostas Siassiakos) 

- Advances in Artificial Intelligence for Integrated Surveillance and Monitoring 
Systems (organized by Dimitris Vergados and Christos Anagnostopoulos) 



XIV 

- Computational Intelligence in Software Engineering (organized by Andreou Andreas 
and Efstratios Georgopoulos) 

- Computational Intelligence in Medical Imaging (organized by Efthyvoulos Kyriacou 
and Ilias Maglogiannis) 

- Digital Rights Management Techniques and Interoperability of Protection Tools 
(organized by Sofia Tsekeridou) 

- Emerging Multimodal Interfaces (organized by John Soldatos, Dimitris Tzovaras and 
Kostas Karpouzis) 

- Intelligent Analysis of Medical and Biological Data (organized by Vasileios 
Megalooikonomou and Despina Kontos) 

- Semantics in Multimedia Analysis and Natural Language Processing (organized by 
Anastasios Delopoulos, Vangelis Karkaletsis, George Paliouras and Manolis 
Wallace) 

The wide range of topics and high level of contributions will surely guarantee a very 
successful conference. We express our special thanks to all who have contributed to the 
organization and scientific contents of this conference, first to the authors of the papers, 
then to the special session organizers and finally to the reviewers and members of the 
Program and Organization Committees. 

June, 2006 AIAI2006 Conference Chairs: 

Ilias Maglogiannis, University of Aegean, Greece, 

Kostas Karpouzis, ICCS/NTUA, Greece, 

Max Bramer, University of Portsmouth, UK 
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Local Ordinal Classification 

Sotiris B. Kotsiantis 
Educational Software Development Laboratory 

Department of Mathematics 
University of Patras, Greece 

sotos@math.upatras. gr 

Abstract. Given ordered classes, one is not only concerned to maximize the 
classification accuracy, but also to minimize the distances between the actual 
and the predicted classes. This paper offers an organized study on the various 
methodologies that have tried to handle this problem and presents an 
experimental study of these methodologies with the proposed local ordinal 
technique, which locally converts the original ordinal class problem into a set 
of binary class problems that encode the ordering of the original classes. The 
paper concludes that the proposed technique can be a more robust solution to 
the problem because it minimizes the distances between the actual and the 
predicted classes as well as improves the classification accuracy. 

1 Introduction 

Ordinal classification can be viewed as a bridging problem between the two standard 
machine-learning tasks of classification and regression. In ordinal classification, the 
target values are in a finite set (like in classification) but there is an ordering among 
the elements (like in regression, but unlike classification). 

Although Machine Learning (ML) algorithms for ordinal classification are rare, 
there are a number of statistical approaches to this problem. However, they all rely 
on specific distributional assumptions for modeling the class variable and also 
assume a stochastic ordering of the input space [9]. The ML community has mainly 
addressed the issue of ordinal classification in two ways. One is to apply 
classification algorithms by discarding the ordering information in the class attribute 
[2]. The other is to apply regression algorithms by transforming class values to real 
numbers [9]. This paper proposes a local ordinal technique that locally converts the 
original ordinal problem into a set of binary problems encoding the ordering of the 
original classes. Experimental results show that this technique minimizes the 
distances between the actual and the predicted class, as well as improves the 
prediction accuracy. 

Please use the following format when citing this chapter: 
Kotsiantis, Sotiris, 2006, in IFIP Intemational Federation for Information Processing, Volume 204, 
Artificial Intelligence Applications and Innovations, eds. Maglogiannis, I., Karpouzis, K., Bramer, 
M., (Boston: Springer), pp. 1-8 



2 Artificial Intelligence Applications and Innovations 

This paper is organized as follows: the next section discusses the different 
techniques that have been presented for handling ordinal classification problems. In 
section 3, we describe the proposed technique. In Section 4, we present the 
experimental results of our methodology using different distribution algorithms and 
compare these results with those of other approaches. In the fmal section of the paper 
we discuss further work and some conclusions. 

2 Techniques for Dealing with Ordinal Problems 

Classification algorithms can be applied to ordinal prediction problems by discarding 
the ordering information in the class attribute. However, some information that could 
improve the performance of a classifier is lost when this is done. 

The use of regression algorithms to solve ordinal problems has been examined in 
[9]. In this case each class needs to be mapped to a numeric value. However, if the 
class attribute represents a truly ordinal quantity, which, by definition, cannot be 
represented as a number in a meaningful way, there is no upright way of devising an 
appropriate mapping and this procedure is ad hoc. 

Another approach is to reduce the multi-class ordinal problem to a set of binary 
problems using the one-against-all approach [2]. In the one-against-all approach, a 
classifier is trained for each of the classes using as positive examples the training 
examples that belong to that class, and as negatives all the other training examples. 
The estimates given by each binary classifier are then coupled in order to obtain 
class probability membership estimates for the multi-class problem [2]. 

A more sophisticated approach that enables classification algorithms to make use 
of ordering information in ordinal class attributes is presented in [7]. Similarly with 
previous method, this method converts the original ordinal class problem into a set of 
binary class problems that encode the ordering of the original classes. However, to 
predict the class value of an unseen instance this algorithm needs to estimate the 
probabilities of the m original ordinal classes using m - 1 models. For example, for a 
three class ordinal problem, estimation of the probability for the first ordinal class 
value depends on a single classifier: ?r{Target < first value) as well as for the last 
ordinal class: Vx{Target > second value). Whereas, for class value in the middle of 
the range, the probability depends on a pair of classifiers and is given by 

Vx(Target > first value) * (1 - ?v{Target > second value)). 

3 Proposed Technique 

The proposed technique is based on the previous referred sophisticated technique 
[7]; however, we do not apply this technique globally but locally. If all training 
instances are taken into account when classifying a new test case, the classifier 
works as a global method, while when the nearest training instances are taken into 
account, the classifier works as a local method, since only data local to the area 
around the testing instance contribute to the classification. 
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Generally, local methods have significant advantages when the probability 
measure defined on the space of symbolic features for each class is very complex, 
but can still be described by a collection of less complex local approximations [1]. 
The proposed algorithm builds the required number of classifiers for each point to be 
estimated, taking into account only a subset of the training points. This subset is 
chosen on the basis of the preferable distance metric between the testing point and 
the training point in the input space. 

In other words, the proposed technique consists of the four steps in Fig. 1. 

1. Determine a suitable distance metric. 
2. Find the k nearest neighbors using the selected distance metric. 
3. Estimate the probabilities of the m original ordinal classes with m - 1 models using as 

training instances these k instances 
4. The estimates given by each binary classifier are then coupled in order to obtain class 

probability membership estimates ^ _ _ 
Fig. 1. Local Ordinal Technique 

The proposed ensemble has some free parameters such as the distance metric. In 
our experiments, we used the most well known -Euclidean similarity function- as 
distance metric. We also used k=50 since about this size of instances is appropriate 
for a simple algorithm to built a precise model [6]. 
A key feature of our method is that it does not require any modification of the 
underlying learning algorithm; it is applicable as long as the classifier produces class 
probability estimates. In the following section, we empirically evaluate the 
performance of our approach with the other well known techniques. 

4 Experiments 

To test the hypothesis that the above method improves the generalization 
performance on ordinal prediction problems, we performed experiments on real-
world ordinal datasets donated by Dr. Arie Ben David 
(http://www.cs.waikato.ac.nz/ml/weka/). We also used well-known datasets from 
many domains from the UCI repository [3]. However, the used UCI datasets 
represented numeric prediction problems and for this reason we converted the 
numeric target values into ordinal quantities using equal-size binning. This 
unsupervised discretization method divides the range of observed values into three 
equal size intervals. The resulting class values are ordered, representing variable-size 
intervals of the original numeric quantity. This method was chosen because of the 
lack of numerous benchmark datasets involving ordinal class values. 

All accuracy estimates were obtained by averaging the results from 10 separate 
runs of stratified 10-fold cross-vaHdation. It must be mentioned that we used the free 
available source code for most algorithms by the book [11]. In the following we 
present the empirical results obtained using Decision Stump (DS) [8], RepTree [11] 
and Naive Bayes (NB) [5] algorithms as base learners. All of them produce class 
probability estimates. 
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Table 1 shows the results for the DS algorithm applied (a) without any 
modification of DS, (b) in conjunction with the ordinal classification method 
presented in Section 2 (Ordinal DS), (c) in conjunction with the multiclass 
classification method presented in Section 2 (Multiclass DS) and (d) using the 
proposed technique (Local Ordinal DS). 

In Table 1, for each data set the algorithms are compared according to 
classification accuracy (the rate of correct predictions) and to mean absolute error: 

| A - ^ I | + | ; ^ 2 - ^ 2 | + - + K - ^ . | 
n 

where p: predicted values and a: actual values. Moreover, in Table 1, we represent as 
"v" that the specific algorithm performed statistically better than the proposed 
method according to t-test with p<0.05. Throughout, we speak of two results for a 
dataset as being "significant different" if the difference is statistical significant at the 
5% level according to the corrected resampled t-test [10], with each pair of data 
points consisting of the estimates obtained in one of the 100 folds for the two 
learning methods being compared. On the other hand, "*" indicates that proposed 
method performed statistically better than the specific algorithm according to t-test 
withp<0.05. 

As one can observe from the aggregated results in Table 1, the proposed 
technique is more accurate than the remaining approaches from 2% to 5%. 
Moreover, it manages to minimize the distances between the actual and the predicted 
classes. The reduction of the mean absolute error is about 27% compared to the 
Ordinal DS and 30% compared to the simple DS, while it exceeds the 138% 
compared to the Multiclass DS. It must be also mentioned that the proposed method 
is statistically more accurate and has statistically less mean absolute error than the 
remaining methods in numerous datasets. 

Similarly, Table 2 shows the results for the NB algorithm applied (a) without any 
modification of NB, (b) in conjunction with the ordinal classification method 
presented in Section 2 (Ordinal NB), (c) in conjunction with the multiclass 
classification method presented in Section 2 (Multiclass NB) and (d) using the 
proposed technique (Local Ordinal NB). 

As one can see from the aggregated results in Table 2, the proposed technique is 
more accurate in classification accuracy than the remaining techniques from 2% to 
5%. Furthermore, it minimizes the distances between the actual and the predicted 
classes. In detail, the reduction of the mean absolute error is about 25% compared to 
the Ordinal NB and 17% compared to simple NB, while it overcomes the 158% 
compared to Multiclass NB. It must be also stated that the proposed method is 
statistically more accurate and has statistically less mean absolute error than the 
remaining methods in a lot of datasets. 

Similarly, Table 3 shows the results for the RepTree algorithm applied (a) 
without any modification of RepTree, (b) in conjunction with the ordinal 
classification method presented in Section 2 (Ordinal RepTree), (c) in conjunction 
with the multiclass classification method presented in Section 2 (Multiclass 
RepTree) and (d) using the proposed technique (Local Ordinal RepTree). 
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As one can notice from the aggregated results in Table 3, the proposed technique 
is more accurate in classification accuracy than the remaining techniques from 1% to 
2%. What is more, it minimizes the distances between the actual and the predicted 
classes since the reduction of the mean absolute error is about 15% compared to the 
Ordinal RepTree and simple RepTree, while it overcomes the 138% compared to 
Multiclass RepTree. The proposed method is also statistically more accurate and has 
statistically less mean absolute error than the remaining methods in many datasets. 

Table 1. Results for DS algorithm 

Dataset 

auto93 

autoHorse 

autoMpg 

autoPrice 

bodyfat 

Cleveland 

Cloud 

Cpu 

Era 

Esl 

fishcatch 

housing 

hungarian 

Lev 

lowbwt 

pharj^x 

servo 

Strike 

swd 

accuracy 
MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 

Local 
Ordinal DS 

80.90 
0.14 

95.24 
0.04 

79.67 
0.14 

88.11 
0.09 

97.57 
0.02 

70.32 
0.21 

84.69 
0.11 

98.09 
0.01 

25.69 
0.18 

65.53 
0,09 

97.35 
0.03 

79.58 
0.15 

79.06 
0.15 

61.79 
0.20 

57.25 
0.30 

68.98 
0.25 

89.72 
0.09 

98.85 
0.01 

56.11 
0.26 

Multiclass 
DS 

80.57 
0.34* 
91.17 
0.30* 
79.76 
0.35* 
89.80 
0.31* 
99.12 
0.29* 
71.63 
0.37* 
87.72 
0.32* 
97.76 
0.28* 

22.08* 
0.20* 

44.48* 
0.20* 

92.37* 
0.30* 
74.81 
0.36* 
81.78 
0.34* 

43.86* 
0.31* 
61.80 
0.39* 
73.85 
0.37* 

83.36* 
0.31* 
99.06 
0.27* 

51.38* 
0.36* 

Ordinal 
DS 

79.59 
0.18 

89.63* 
0.09* 
78.01 
0.20* 
89.80 
0.10 

99.12 
0.01 

71.14 
0.26* 
83.43 
0.13 

97.76 
0.02 

24.13 
0.18* 

53.72* 
0.13* 

92.37* 
0.07* 
75.77 
0.23* 
81.78 
0.20* 

49.03* 
0.25* 
61.90 
0.31 

73.85 
0.25 

83.24* 
0.13* 
99.06 
0.01 

54.56 
0.29* 

DS 

81.32 
0.18 

91.17 
0.09* 
79.61 
0.21* 
86.05 
0.13* 

91.98* 
0.10* 
71.93 
0.26* 
84.51 
0.14* 
98.24 
0.02 

21.81* 
0.19* 

43.03* j 
0.16* 
90.56* 
0.10* 

70.39* 
0.28* 
81.78 
0.20* 

42.40* 
0.26* 
61.90 
0.31 

73.85 
0.25 

83.36* 
0.12* 
99.06 
0.01 

51.80* 
0.30* 



Artificial Intelligence Applications and Innovations 

Veteran 

AVERAGE 

accuracy 
MeanError 
accuracy 

MeanError 

90.45 
0.10 

78.25 
0.13 

91.26 
0.31* 
75.88 
0.31 

90.80 
0.11 

76.43 
0.16 

91.26 
0.11 

74.80 
0.17 

Fable 2. Results forNB algorith 

Dataset 

auto93 

autoHorse 

autoMpg 

autoPrice 

bodyfat 

Cleveland 

Coud 

Cpu 

Era 

Esl 

fishcatch 

housing 

hungarian 

Lev 

lowbwt 

pharynx 

servo 

Strike 

swd 

Veteran 

AVERAGE 

accuracy 
MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 

m 
Local Ordinal 

NB 
84.36 
0.10 

95.14 
0.03 
82.56 
0.12 

90.31 
0.07 
88.96 
0.08 

72.45 
0.19 

90.30 
0.07 

97.81 
0.01 

23.25 
0.18 

67.37 
0.09 
97.42 
0.02 
81.44 
0.13 
81.17 
0.13 
59.95 
0.20 

60.10 
0.29 

70.17 
0.24 
87.59 
0.10 

99.19 
0.01 
50.17 
0.27 
89.31 
0.09 

78.45 
0.12 

Multiclass 
NB 

76.28 
0.33* 
91.06 
0.29* 
80.65 
0.32* 
91.51 
0.30* 

79.64* 
0.32* 
74.82 
0.34* 
91.70 
0.30* 
97.56 
0.28* 
24.73 
0.20* 
66.84 
0.19* 
89.92* 
0.30* 

74.76* 
0.34* 
83.95 
0.31* 

56.24* 
0.31* 
58.79 
0.39* 
71.09 
0.36* 
87.24 
0.31* 
99.06 
0.27* 

57.31V 
0.35* 
88.48 
0.32* 
77.08 
0.31 

Ordinal 
NB 

74.01 
0.17* 
90.87 
0.06* 

70.11* 
0.20* 
91.45 
0.06 

77.22* 
0.16* 
75.51 
0.18 
92.04 
0.07 
94.87 
0.04* 
25.07 
0.18 

54.65* 
0.12* 
88.13* 
0.08* 

56.15* 
0.29* 
83.95 
0.12v 
57.95 
0.23* 
58.52 
0.30 

71.13 
0.25 
86.48 
0.12* 
99.06 
0.02* 

56.01V 
0.26v 
88.70 
0.12* 
74.59 
0.15 

NB 

76.18 
0.16 

90.67* 
0.06* 
78.89 
0.15* 
90.25 
0.07 

81.34* 
0.13* 
73.31 
0.19 
89.95 
0.08 
97.56 
0.02 
24.88 
0.18 
67.52 
0.10* i 
90.10* 
0.07* 

73.14* 
0.19* 
83.95 
0.12v 
56.12* 
0.23* 
59.53 
0.30 
70.52 
0.25* 
87.12 
0.12* 
99.05 
0.02* 

56.77V 
0.26v 
86.88 
0.13* 
76.69 
0.14 1 
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Table 3. Results for RepTree algorithm 

Dataset 

auto93 

autoHorse 

autoMpg 

autoPrice 

bodyfat 

Cleveland 

Cloud 

Cpu 

Era 

Esl 

fishcatch 

housing 

hungarian 

Lev 

lowbwt 

pharynx 

servo 

Strike 

swd 

Veteran 

AVERAGE 

accuracy 
MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 

Local 
Ordinal 
RepTree 

82.41 
0.14 

94.45 
0.05 

81.68 
0.14 
88.86 
0.09 
96.78 
0.03 

71.08 
0.21 

86.32 
0.12 

98.04 
0.01 

25.68 
0.18 

66.08 
0.10 

96.71 
0.03 

80.43 
0.16 

78.62 
0.17 

63.16 
0.20 

56.87 
0.32 

69.79 
0.28 

93.31 
0.06 

98.97 
0.01 

56.99 
0.27 

89.20 
0.11 

78.77 
0.13 

Multiclass 
RepTree 

79.73 
0.35* 
92.34 
0.29* 
81.34 
0.34* 
87.99 
0.31* 
98.88 
0.27* 
71.73 
0.36* 
88.54 
0.31* 
97.00 
0.28* 
19.24* 
0.20* 

60.59* 
0.19* 
94.88 
0.28* 
79.51 
0.34* 
78.70 
0.34* 

60.43* 
0.31* 
58.89 
0.40* 

65.06* 
0.40* 
91.42 
0.30* 
99.21 
0.27* 
57.45 
0.35* 
91.26 
0.31* 
77.71 
0.31 

Ordinal 
RepTree 

80.14 
0.20* 
94.01 
0.07 
80.66 
0.17* 
88.35 
0.10 
98.88 
O.Olv 
68.39 
0.26* 
87.78 
0.11 
96.95 
0.04* 
26.20 
0.18 
62.65 
0.11 

94.05 
0.05 

79.03 
0.18 
78.46 
0.19 
60.79 
0.20 
58.47 
0.34 

65.01 * 
0.34* 
92.71 
0.07 
99.21 
0.01 
57.68 
0.26 

91.19 
0.11 

78.03 
0.15 

RepTree 

80.06 
0.19* 
93.17 
0.07 
80.41 
0.17* 
87.81 
0.11 
98.80 
O.Olv 
71.36 
0.24* 
88.70 
0.10 
97.29 
0.03* 
26.60 
0.18 
62.37 
0.11* 
94.70 
0.04 
78.65 
0.18 
78.46 
0.19 

59.87* 
0.21* 
58.63 
0.33 

65.31* 
0.34* 
90.72 
0.08* 
99.21 
0.01 
56.46 
0.27 
90.90 
0.12 
77.97 
0.15 
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5 Conclusion 

This paper is devoted to the problem of learning to predict ordinal (i.e., ordered 
discrete) classes. The local ordinal classification method discussed in this paper is 
applicable in conjunction with any learning algorithm that can output class 
probability estimates. According to our experiments in synthetic and real ordinal data 
sets, it manages to minimize the distances between the actual and the predicted 
classes, without harming but actually improving the classification accuracy in 
conjunction with DS, RepTree and NB algorithms. Drawing more general 
conclusions from these experimental data seems unwarranted. Our results so far 
show that the proposed methodology for predicting ordinal classes can be naturally 
derived from classification algorithms, but more extensive experiments will be 
needed to establish the precise capabilities and relative advantages of this 
methodology. 

For large datasets, the benefit of local ordinal models is somewhat offset by the 
cost of storing and querying the training dataset for each test set instance. For this 
reason, in a following project we will focus on the problem of reducing the size of 
the stored set of instances while trying to maintain or even improve generalization 
performance by avoiding noise and over-fitting. In [4], numerous instance selection 
methods that can be combined with the proposed technique can be found. 
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Abstract. Many students who enrol in the undergraduate program on 
informatics at the Hellenic Open University (HOU) fail the introductory 
course exams and drop out. We analyze their academic performance, derive 
short rules that explain success or failure in the exams and use the accuracy of 
these rules to reflect on specific tutoring practices that could enhance success. 

1 Introduction 

The Hellenic Open University's (HOU) primary goal is to offer university-level 
education using distance learning methods and to develop the appropriate material 
and teaching methods to achieve this goal. The HOU offers both undergraduate and 
postgraduate studies and its courses were initially designed and first offered in 1998 
following the distance learning methodology of the British Open University. The 
HOU was founded in 1992 and currently (2005) nearly 25,000 students are enrolled. 

The undergraduate programme in informatics is heavily populated, with more 
than 2,000 enrolled students. About half of them currently attend junior courses on 
mathematics, software engineering, programming, databases, operating systems and 
data structures. A key observation is that substantial failure rates are consistently 
reported at the introductory courses. 

Such failures skew the academic resources of the HOU system towards filtering 
the input rather than polishing the output, from a quantitative point of view. Even 
though this may be perfectly acceptable from an educational, political and 
administrative point of view, we must analyse and strive to understand the 
mechanism and the reasons of failure. This could significantly enhance the ability of 
HOU to fine-tune its tutoring and admission policies without compromising 
academic rigour. 

Please use the following format when citing this chapter: 
Kalles, Dimitris, Pierrakeas, Christos, 2006, in IFIP Intemational Federation for Information 
Processing, Volume 204, Artificial Intelligence Applications and Innovations, eds. Maglogiannis, I., 
Karpouzis, K., Bramer, M., (Boston: Springer), pp. 9-18 



10 Artificial Intelligence Applications and Innovations 

There are two key educational problems that have been identified as being core 
aspects of these failures. The first is that these courses are heavy on mathematics and 
adult students have not had many opportunities to sharpen their mathematical skills 
since high-school graduation (which has typically occurred at about 10 years prior to 
enrolling at HOU). The second is that the lack of a structured academic experience 
may have rendered dormant one's general learning skills and attitudes. 

Our approach to investigating this problem uses increasingly rudimentary 
technology for data analysis. We use genetic algorithms to derive short decision trees 
that explain student failure [1,2]. 

In this paper we expand that work by investigating differences in the accuracy of 
the induced models. We focus on short models that are easier to communicate among 
peers and question whether these differences might be attributed to the versatility of 
the tutoring practices. The results support our intuition about which practices better 
smooth out the disadvantages that arise due to some students' special circumstances. 
These results are now used as supporting data when we attempt to convince fellow 
tutors of the potential of some specific tutoring practices. 

This paper is structured in three subsequent sections. In the next section, we 
briefly review the problem of predicting student performance at large, and the related 
techniques we have been using at HOU. We then single out three modules which 
have clearly different policies in dealing with students who have failed an exam and 
devise a set of experiments to observe whether these policies can be evaluated by a 
machine learning model. Finally, we argue about the ability to carry out these 
experiments at a larger scale and discuss the potential implications of our findings 
from an educational point of view. 

2 Background 

The work reported in this paper is part of an effort to analyze data at an institutional 
level, so we first briefly cover some essential background. We first present the 
application domain, then we present some key aspects of the technology used and, 
finally, we summarize the results obtained to date. 

2.1 Operational issues 

The educational philosophy of Open Universities around the world is to promote 
"life long education" and to provide adults with "a second educational chance" [3]. 
The method used is known as "distance learning" education, hence the widely used 
acronym ODL standing for Open-and-Distance-Leaming. 

In open and distance learning, dropout rates are definitely higher than those in 
conventional universities. Relatively recently, the Open Learning joumal published a 
volume on issues on student retention in open and distance learning, where 
similarities and differences across systems is discussed, highlighting issues of 
institutions, subjects and geographic areas [4]. 

The vast majority (up to 98%) of registered students in the "Informatics" 
program, upon being admitted at HOU, selects the module "Introduction to 
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Informatics" (ESfFlO). Following that, and according to university recommendations, 
they will typically select the modules "Fundamental Software Engineering" (INFl 1) 
and "Mathematics" (INF 12). These modules are the most heavily populated and 
serve as test-beds for experimentation. 

A module is the basic educational unit at HOU. It runs for about ten months and 
is the equivalent of about 3-4 conventional university semester courses. A student 
may register with up to three modules per year. For each module, a student is 
expected to attend five plenary class meetings throughout the academic year (a class 
contains about thirty students). Each meeting is about four hours long and may be 
structured along tutor presentations, group-work and review of assigned homework. 
Furthermore, each student must turn in some written assignments (typically four or 
six), which contribute towards the fmal grade, before sitting a written exam. 

We have embarked on an effort to analyze the performance of high-risk students 
[1, 2, 5]. Key demographic characteristics of students (such as age, sex, residence 
etc), their marks in written assignments and their presence or absence in plenary 
meetings may constitute the training set for the task of explaining (and predicting) 
whether a student would eventually pass or fail a specific module. It is important to 
mention that the great majority of students dropped out after failing to deliver the 
first one or two written assignments. It is, thus, reasonable to assert that predicting a 
student's performance can enable a tutor to take early remedial measures by 
providing more focused coaching, especially in issues such as priority setting and 
time management. 

2.2 Summarizing the technology: decision trees and genetic algorithms 

Fig. 1. A sample decision tree 

A decision tree [6] for the failure analysis problem could look like the one in Figure 
1. In essence, it conveys the information that a mediocre grade at an assignment, 
tumed in at about the middle (in the time-line) of the module (containing 4 
assignments altogether), is an indicator of possible failure at the exams, whereas a 
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non-mediocre grade refers the alert to the last assignment. An excerpt of a training 
set that could have produced the above tree could be the one shown in Table 1. 

Table 1. A sample decision tree training set 

Assgni 

4.6 
9.1 
7.6 

Assgn2 

7.1 
5.1 
7.1 

Assgns 

3.8 
4.6 
5.8 

Assgn4 

9.1 
3.8 
6.1 

Exam 

PASS 
FAIL 
PASS 

Genetic algorithms can directly evolve binary decision trees [7] that explain and/or 
predict the success/failure patterns of junior undergraduate students. To do so, we 
evolve populations of trees according to a fitness function that allows for fme-tuning 
decision tree size vs. accuracy on the training set. At each time-point (in genetic 
algorithms dialect: generation) a certain number of decision trees (population) is 
generated and sorted according to some criterion {fitness). Based on that ordering, 
certain transformations {genetic operators) are performed on some members of the 
population to produce a new population. This is repeated until a predefined number 
of generations is reached (or no further improvement is detected). 

These concepts form the basis of the GATREE system [8], which was built using 
the GAlib toolkit [9]. A mutation may modify the test attribute at a node or the class 
label at a leaf A cross-over may exchange parts between decision trees. 

The GATREE fitness function is: 

fitness{Treei)= CorrectClassifiedf * 
sizef + X 

The first part of the product is the actual number of training instances that a 
decision tree (a member of a population) classifies correctly. The second part of the 
product (the size factor) includes a factor x which has to be set to an arbitrary big 
number. Thus, when the size of the tree is small, the size factor is near one, while it 
decreases when the tree grows big. This way, the payoff is greater for smaller trees. 
Of course, this must be exercised with care since we never know whether a target 
concept can be represented with a decision tree of a specific size. 

2.3 Summarizing past findings and setting the context 

Initial experimentation [1] consisted of several Machine Learning techniques to 
predict student performance with reference to the final examination. The WEKA 
toolkit [10] was used and the key finding, also corroborated by our tutoring 
experience, is that success in the initial written assignments is a strong indicator of 
success in the examination. A surprising finding was that demographics were not 
important. 

Follow-up experimentation [2] using the GATREE system [8] initially produced 
significantly more accurate and shorter decision trees. That stage confirmed the 
qualitative validity of the original findings (also serving as result replication) and set 
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the context for experimenting with accuracy-size trade offs. That experimentation 
spanned three academic years, covered the three introductory modules INF 10, INFl 1 
and INF2, and validated that genetic induction of decision trees could indeed 
produce very short and accurate trees that could be used for explaining failures. 

We have already documented that drop-out is a significant issue in ODL 
universities. What is most important, however, is that drop-out usually occurs early 
in the studies. Failure on a senior year course should simply postpone graduation as 
the fundamental commitment to studying has been already made. However, failure in 
a junior course, and for the HOU case, this refers to the INF 10, INFll and INF 12 
modules, can contribute to a decision to drop out both because the learning 
investment is not yet large enough to warrant a certain attitude of persistence and 
because the student may not have had the time to familiarize oneself with the 
distance learning mode of education (which, given time, allows one to dovetail 
studying more effectively with other activities). 

By regulations, a student who fails a module examination can sit the exam on the 
following academic year. Such students are only assigned to student groups for 
examination purposes and the group tutor is responsible for marking their papers 
only; we thus refer to them as "virtual" students (should they fail their exam for a 
second year, they must take the module afresh, in which case they are conventionally 
assigned to a group and cease to be virtual). 

Virtual students are not entitled to attending plenary sessions, and to having their 
assignments graded by the group tutor (as a matter of fact they are not even 
requested to submit assignments). In practice this regulation may be relaxed by a 
tutor, who may opt to extend an invitation to attend some plenary sessions to these 
virtual students usually. Usually, all tutors of a module will either accept or decline 
to relax the regulation. Of course, there is no focused follow-up of the progress of 
virtual students, as opposed to the case with typical students. 

Any attempt to address these realities involves a political decision that must 
necessarily take into account the university's administrative regulations. 

One step taken by tutors of the INF 10 and INFll modules is to hold a plenary 
marking session of tutors for each module after an examination, and to discuss 
variations in individual marking styles based on a predefined assignment of points to 
exam questions. This is especially important for problems that involve design or 
prose argumentation. We note that this practice is not widespread within HOU. 

A further ad hoc step taken (during the 2003-4 academic year) by the INFll 
tutors was to group all virtual students in one group and assign one experienced tutor 
to that group, as opposed to the usual practice of distributing virtual students across 
tutors. These students were fully supported by an asynchronous discussion forum 
and by synchronous virtual classrooms. The tutor did neither hold a physical meeting 
nor correct any assignments. This was in line with the HOU regulations and, 
coincidentally, served as a convenient constraint on the "degrees of freedom" of the 
educational experiment. 

We now establish interesting indicators on the effectiveness of these approaches. 
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3 The experimental environment 

We use GATREE for all experiments (even the basic version allows for unlimited 
experimentation with the x parameter in the fitness function, essentially treating x as 
an accuracy-vs.-size bias "knob"). 

For all experiments we used the default settings for the genetic algorithm 
operations (cross-over probability at 0.99, mutation probability at 0.01, error rate at 
0.95 and replacement rate at 0.25). All experiments were carried out using 10-fold 
cross-validation, on which all averages are based. Because the data sets are 
reasonably large, ranging from 500 to 1000 student records, and because 10-fold 
cross-validation is a widely acceptable testing methodology, we opt to not report 
standard deviations. The experiments were made with a 
generations/population: 150/150 configuration. 

All data refer to the 2003-4 academic year. They do not differentiate between 
typical and virtual students. 

Our methodology is the following: we attempt to use the student data sets to 
develop success/failure models represented as decision trees. We then use the 
differences between the models derived when we omit some attributes to reflect on 
the importance of these attributes. The results are then used to comment on 
alternative educational policies for dealing with virtual students. 

We first try to deal with the issue whether we might be able to obtain an overall 
(typical and virtual students included) model that deals with explaining (and, 
ultimately, predicting) exam success, across the three modules that have three 
distinct policies. 

The first experimental session attempted to produce short decision trees that 
could be used to explain the failure model of students in each module. For this, the x 
knob was set to 1000 (the minimum possible value). For each module, four (4) 
experimental batches were conducted and the results are shown in Table 3. 

Table 2. Results for x=1000, gen/pop: 150/150 GATREE decision trees 

Data Set Accuracy (in %) Size (in nodes) 
3 
3 

INF 10: 
INFIO: 
INFIO: 
INFIO: 

INFll: 
INFll : 
INFll: 
INFll: 

INF12: 
INF12: 
INF12: 
INF12: 

Basic 
Basic T 
Basic Y 
Basic_TY 

Basic 
Basic T 
Basic Y 
Basic_TY 

Basic T 
Basic T 
Basic Y 
Basic TY 

78.20 
78.20 
82.58 
82.02 

82.82 
82.05 
81.28 
81.54 

62.37 
63.39 
67.97 
68.81 


