Artificial Intelligence (Introduction to)

2003-2004

Instructor

Dr Sergio Tessaris

- Researcher, faculty of Computer Science
- Contact
 - web page: <u>tina.inf.unibz.it/~tessaris</u>
 - email: tessaris@inf.unibz.it
 - phone: 0471 315 652
 - room 229 (2nd floor, left wing)
- Research interests
 - Knowledge Representation
 - Knowledge Representation and Databases
 - Semantic Web

Introduction

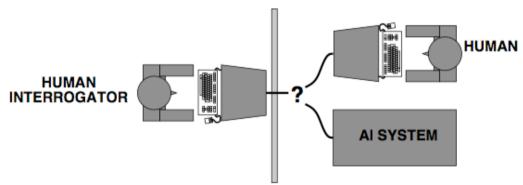
What is AI?

- Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59, 433-460.
 - I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think".
- "Can machines behave intelligently?"
 - Turing Test : an operational definition
- "AI is the science and engineering of making intelligent machines which can perform tasks that require intelligence when performed by humans"

Why study AI?

- scientific curiosity
 - try to understand entities that exhibit intelligence
- engineering challenges
 - building systems that exhibit intelligence
- some tasks that seem to require intelligence can be solved by computers
 - e.g. playing chess
- progress in computer performance and computational methods enables the solution of complex problems by computers
- humans may be relieved from tedious or dangerous tasks
 - e.g. demining or cleaning the swimming pool

What is AI?


Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally
"The exciting new effort to make computers think machines with minds, in the full and literal sense" [Haugeland, 1985] "[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning" [Bellman, 1978]	"The study of mental faculties through the use of computational models" [Charniak and McDermott, 1985] "The study of the computations that make it possible to perceive, reason, and act" [Winston, 1992]
"The art of creating machines that perform functions that require intelligence when performed by people" [Kurzweil, 1990] "The study of how to make computers do things at which, at the moment, people are better" [Rich and Knight, 1991]	"A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes" [Schalkhoff, 1990] "The branch of computer science that is concerned with the automation of intelligent behavior" [Luger and Stubblefield, 1993]

Thinking humanly: Cognitive Science

- tries to construct theories of how the human mind works
- uses computer models from AI and experimental techniques from psychology
- most AI approaches are not directly based on cognitive models
 - often difficult to translate into computer programs
 - performance problems
- Cognitive Science is mainly distinct from AI

Acting humanly: The Turing test

 Operational test for intelligent behaviour: the Imitation Game

- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

The Turing test

- not much work on systems that pass the test
 Problem: Turing test is not reproducible, constructive, or amenable to mathematical analysis
- Loebner Prize

www.loebner.net/Prizef/loebner-prize.html

- Total Turing Test
 - includes video interface and a "hatch" for physical objects
 - requires computer vision and robotics as additional capabilities

Thinking Rationally: Laws of Thought

- mathematical logic as tool: notation plus derivation rules
- problems and knowledge must be translated into formal descriptions
- the system uses an abstract reasoning mechanism to derive a solution
- Problems:
 - Not all intelligent behaviour is mediated by logical deliberation
 - Resource limitations: There is a difference between solving a problem in principle and solving it in practice under various resource limitations such as time, computation, accuracy

Acting rationally

- rational behaviour: doing the right thing
- The right thing: that which is expected to maximize goal achievement, given the available information
- Doesn't necessarily involve thinking (e.g., blinking reflex) but thinking should be in the service of rational action
- Advantages:
 - More general
 - Its goal of rationality is well defined

Short history of AI (late 40s, 50s)

- artificial neurons (McCulloch and Pitts, 1943)
- learning in neurons (Hebb, 1949)
- chess programs (Shannon, 1950; Turing, 1953)
- neural computer (Minsky and Edmonds, 1951)
- official birth in summer 1956
 - gathering of a group of scientists with an interest in computers and intelligence during a two-month workshop in Dartmouth, NH
 - "naming" of the field by John McCarthy
 - many of the participants became influential people in the field of AI

Short history of AI (late 50s, 60s)

- Early successes
 - Logic Theorist (Newell and Simon, 1957)
 - able to proof most of the theorems in Ch2 of Principia Mathematica
 - General Problem Solver (Newell and Simon, 1961)
 - imitate human problem-solving methods (thinking humanly)
 - Shakey the robot (SRI)
 - logical reasoning and physical activity
 - Microworlds
 - ANALOGY: geometric analogies (Evans, 1968)
 - STUDENT: algebraic problems (Bobrow, 1967)
 - blocks world (Winston, 1970; Huffman, 1971; Fahlman, 1974; Waltz, 1975)
 - neural networks (Widrow and Hoff, 1960; Rosenblatt, 1962; Winograd and Cowan, 1963)
 - machine evolution/genetic algorithms (Friedberg, 1958)

Short history of AI (late 60s, 70s)

- AI and reality
 - lacks of "common sense" (e.g. ELIZA)
 - microworlds aren't the real thing: scalability and intractability problems (NP-completeness)
 - neural networks can learn, but not very much (Minsky and Papert, 1969)
- Knowledge-based systems: knowledge is separate from reasoning
 - expert systems
 - frames
 - logic based knowledge representation systems (80s-90s)
- knowledge representation schemes become useful

Short history of AI (80s)

- Al becomes an industry
 - Expert systems: Digital Equipment, Teknowledge, Intellicorp
 - Lisp machines: LMI, Symbolics
 - Constraint programming: ILOG
 - Robotics: Machine Intelligence Corporation, Adept, ABB
 - Speech understanding
- the return of neural networks
 - genetic algorithms and artificial life
- falling of Expert systems (late 80s)
 - feeding rules into a reasoning system is not enough
 - knowledge acquisition is a bottleneck

Short history of AI (last decade)

- AI becomes less philosophical, more technical and mathematically oriented
 - grounded on formal proofs or experimental evidence (vs intuition)
 - e.g. speech recognition, planning, Knowledge Representation
- Agents everywhere
 - agent architectures (e.g. SOAR)
 - agent perspective glues various AI fields
- Information management
 - to help humans in dealing with information
 - data mining (e.g. on the Web)
 - question answering

Applications of AI

- Deep Blue
 - Defeats Kasparov, Chess Grand Master IBM 1997
 - www.research.ibm.com/deepblue
- PEGASUS (Speech understanding for ticketing)
 - www.sls.lcs.mit.edu/sls/applications
- Al in computer games
 - ai.eecs.umich.edu/people/laird/Game-AI-Resources.htm
- information agents
 - question answering (e.g. <u>www.ai.mit.edu/projects/infolab</u>)
 - The Text REtrieval Conference: <u>trec.nist.gov</u>

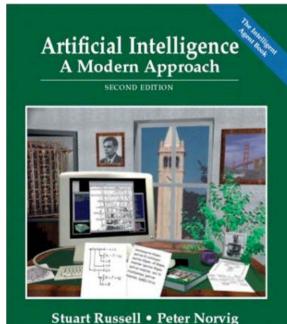
Applications of AI

- Honda ASIMO <u>www.asimo.com</u>
- unmanned vehicles
 - CMU Autonomous Helicopter (HELI)
- Mars PathFinder rover
 <u>mars.jpl.nasa.gov/MPF/rover/about.html</u>
- RoboCup <u>www.robocup.org</u>
 - robot teams playing football
 - RoboCup rescue
- Sony Aibo <u>www.aibo.com</u>

Course Overview

Objectives

- provide an insight into the fundamental techniques used in AI
 - each topic would require a course by itself
- strong algorithmic perspective
 - you are expected to code
- grounded on mathematical tools
 - much less on cognitive science


Laboratories

- hands on the keyboard
 - implementing the algorithms and techniques discussed during the lectures
- programming language is Java
 - AI programming languages are usually Lisp and Prolog
 - but you can do everything in Java (you just need to be more disciplined)
 - nothing is preventing you to learn Lisp or Prolog
- outcomes of the labs will be part of the assessment
 - not essential, but you will be required more during the final exam

Textbook

Artificial Intelligence: A modern approach by Stuart Russell and Peter Norvig

- <u>aima.cs.berkeley.edu</u>
- one of the leading books for undergraduate AI courses
- extensive material and source code available from the web site (several programming languages)
- 57th most cited computer science publication ever (source citeseer.nj.nec.com)

Prentice Hall Series in Artificial Intelligence

Prerequisites (modules)

- Required:
 - Introduction to Programming
 - Algorithms and Complexity
- Suggested:
 - Logic
 - Probability Theory and Statistics
 - 2nd year students should follow these courses

Prerequisites

to follow this course and pass the exam you need

- a good understanding of algorithms and algorithm design
- not to panic at the appearance of a mathematical formula
- avoid the episodic approach to lessons attendance

Practical issues

- Course slides: <u>www.unibz.it/inf/acs/courses/all_03_04/ai</u>
- Course timetable:
 - Thu 8:30-10:30 (E412)
 - Fri 8:30-9:30 (E412)
- Labs timetable:
 - Fri 9:30-11:30 (E431) starting from 17/10/2003
- next week (9,10 October) there are <u>no AI lessons</u>
- Thu 16 October there is no lesson (Industry day)

Agents

What is an Agent?

- an agent can be anything that
 - operates in an environment
 - perceives its environment through sensors
 - acts upon its environment through actuators
 - maximizes progress towards its goals
- conceptual tool to analyse systems:
 - robots, softbots, speed traffic lights, thermostats
- we are interested in Intelligent Agents
 - pursuit goals that require intelligence

Examples of Agents

- human agent
 - eyes, ears, skin, taste buds, etc. for sensors
 - hands, fingers, legs, mouth, etc. for actuators
- robot
 - camera, infrared, bumper, etc. for sensors
 - grippers, wheels, lights, speakers, etc. for actuators
- software agent (softbot)
 - functions as sensors
 - information provided as input to functions in the form of encoded bit strings or symbols
 - functions as actuators
 - results deliver the output

Agent or Program

- our criteria so far seem to apply equally well to software agents and to regular programs
- autonomy
 - agents solve tasks largely independently
 - programs depend on users or other programs for "guidance"
 - autonomous systems base their actions on their own experience and knowledge
 - requires initial knowledge together with the ability to learn
 - provides flexibility for more complex tasks

Agents and Environments

- an agent perceives its environment through sensors
 - the complete set of inputs at a given time is called a percept
 - the current percept, or a sequence of percepts may influence the actions of an agent
- it can change the environment through actuators
 - an operation involving an actuator is called an action
 - actions can be grouped into action sequences

Performance of Agents

- Behavior and performance of IAs in terms of agent function:
 - Perception history (sequence) to Action Mapping:

 $f: \mathcal{P}^* \to \mathcal{A}$

 Ideal mapping: specifies which actions an agent ought to take at any point in time

• Performance measure: a *subjective* measure to characterize how successful an agent is (e.g., speed, power usage, accuracy, money, etc.)

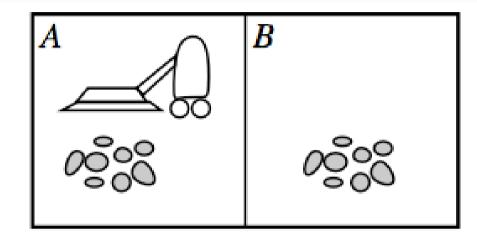
Rationality: do the right thing

- Rational Action: The action that maximizes the expected value of the performance measure given the percept sequence to date
 - Rational = Best
 Yes, to the best of its knowledge
 - Rational = Optimal
 Yes, to the best of its abilities
 - (and its constraints)

- Rational ≠ Omniscience
- Rational ≠ Successful
- problems:
 - what is "the right thing"
 - how do you measure the "best outcome"

Omniscience

- a rational agent is not omniscient
 - it doesn't know the actual outcome of its actions
 - it may not know certain aspects of its environment
- rationality takes into account the limitations of the agent
 - percept sequence, background knowledge, feasible actions
 - it deals with the expected outcome of actions


Look it up!

- a table is simple way to specify a mapping from percepts to actions
 - tables may become very large
 - all work done by the designer
 - no autonomy, all actions are predetermined
 - learning might take a very long time
- mapping is implicitly defined by a program
 - rule based
 - neural networks
 - algorithm

Structure of Intelligent Agents

- Agent = architecture + program
- Agent program: the implementation of agent's perception-action mapping
- Architecture: a device that can execute the agent program (e.g., general-purpose computer, specialized device, robot, etc.)

Vacuum-cleaner world

- Percepts: location+tile status [A, Dirty], [A, Clean], [B, Clean], [B, Dirty]
- Actions: Left, Right, Suck, NoOp
- Goal: clean the floor

Vacuum-cleaner agent: it sucks!

[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A,Clean], [A,Clean]	Right
[A,Clean], [A,Dirty]	Suck
[A,Clean], [B,Clean]	Left
[A,Clean], [B,Dirty]	Suck
[A,Dirty], [A,Clean]	Right
[A,Dirty], [A,Dirty]	Suck
• • •	
[A,Clean], [A,Clean], [A,Clean]	Right
[A,Clean], [A,Clean], [A,Dirty]	Suck
•••	

if status == Dirty
 then Suck
else
 if logation == D

if location == A

then Right

else Left

Performance Evaluation

vacuum agent

- number of tiles cleaned during a certain period
 - based on the agent's report, or validated by an objective authority
 - doesn't consider expenses of the agent, side effects
 - energy, noise, loss of useful objects, damaged furniture, scratched floor
 - might lead to unwanted activities
 - agent re-cleans clean tiles, covers only part of the room, drops dirt on tiles to have more tiles to clean, etc.

Cleaning Robots

- Cleaning Robot contest
 - <u>http://www.service-robots.org/cleaningrobotscontest/</u>

Software Agents

- also referred to as "softbots"
- live in artificial environments where computers and networks provide the infrastructure
- may be very complex with strong requirements on the agent
 - World Wide Web, real-time constraints,
- natural and artificial environments may be merged
 - user interaction
 - sensors and actuators in the real world
 - camera, temperature, arms, wheels, etc.

Mobile agents

- Programs that can migrate from one machine to another
- Execute in a platform-independent execution environment
- Require agent execution environment (places)
- Mobility not necessary or sufficient condition for agenthood
- Practical but non-functional advantages:
 - Reduced communication cost (eg, from PDA)
 - Asynchronous computing (when you are not connected)
- Applications:
 - Distributed information retrieval
 - Telecommunication network routing

Information agents

- Manage the explosive growth of information
- Manipulate or collate information from many distributed sources
- Information agents can be mobile or static
- information on the Web or in document corpora
 - ontologies for annotating Web pages (services)
 - data mining on unstructured data
 - question answering using knowledge intensive of statistical methods

Environments

- determine to a large degree the interaction between the "outside world" and the agent
 - the "outside world" is not necessarily the "real world" as we perceive it
- in many cases, environments are implemented within computers
 - they may or may not have a close correspondence to the "real world"

Environment Properties

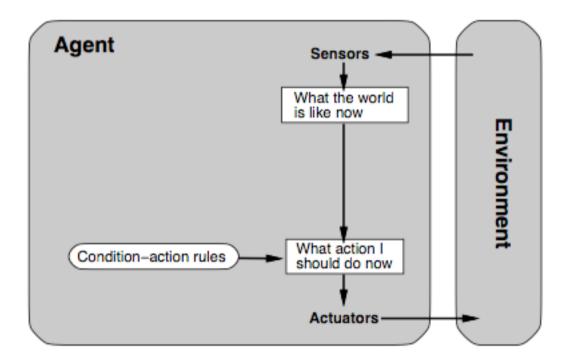
- Fully observable vs. partially observable
 - Fully observable: sensors can detect all aspects of the environment
 - Effectively fully observable: relevant aspects
- Deterministic vs. stochastic
 - Deterministic: next state determined by current state and the agent' actions
 - Partial observable could be stochastic from the agent's view point
- Episodic vs. sequential
 - Agent's experience divided into episodes; subsequent episode do not depend on actions in previous episodes
- Static vs. dynamic
 - Dynamic: Environment changes while agent is deliberating
 - Semi-dynamic: environment static, performance scores dynamic
- Discrete vs. continuous
 - Discrete: Finite number of percepts and actions
- Single agent vs. multi-agent
 - Competitive, cooperative, and communication

Environment types

Environment	Observable	Deterministic	Episodic	Static	Discrete
Vacuum cleaner	Yes	Yes	Yes	Yes	Yes
Virtual Reality	Yes	Yes	Yes/No	No	Yes
Internet shopping	No	No	No	No	Yes

- agent design is mainly influenced by the environment
- often the abstraction influences the description of the environment
- Real world is
 - partially observable, stochastic, sequential, dynamic, continuous

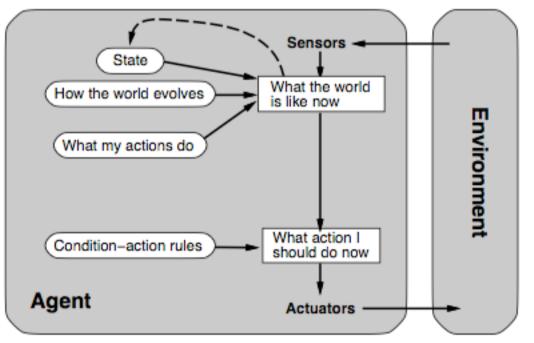
Environment Programs


- environment simulators for experiments with agents
 - gives a percept to an agent
 - receives an action
 - updates the environment
- often divided into environment classes for related tasks or types of agents
- frequently provides mechanisms for measuring the performance of agents

Agent types

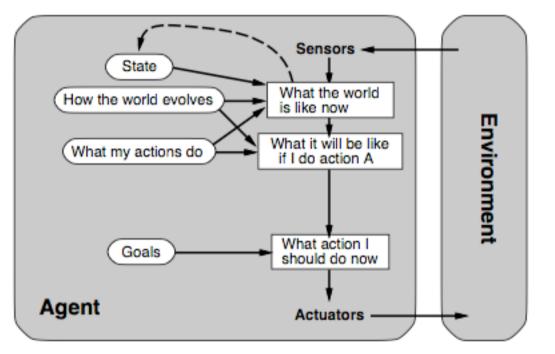
- Four basic types in order of increasing generality
 - simple reflex agents
 - model based reflex agents (with state)
 - goal-based agents
 - utility-based agents
- All these can be turned into learning agents

Simple reflex agents


- Simple look-up table, mapping percepts to actions, is out of the question (too large, too expensive to build)
- Many situations can be summarized by condition-action rules (humans: learned responses, innate reflexes)

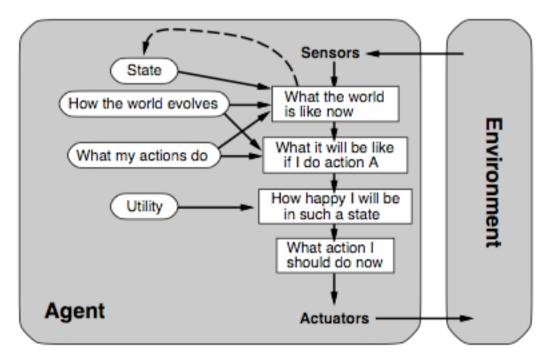
• Implementation: easy; Applicability: narrow

Model-based reflex agents (with state)


- Sensor information alone is not sufficient in case of partial observability
- Need to keep track of how the world evolves
 - Evolution: independently of the agent, or caused by the agent's action
 - Knowledge about how the world works Model of the world

Agents

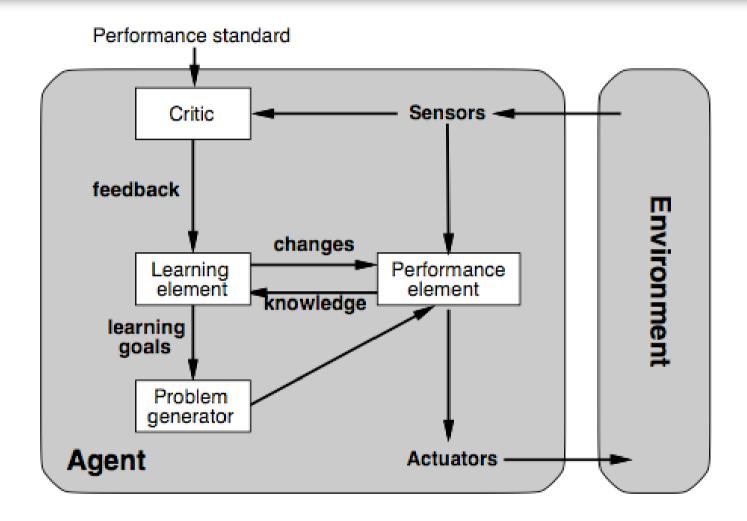
Goal-based agents


- State and actions don't tell where to go
- Need goals to build sequences of actions (planning)

- Goal-based: uses the same rules for different goals
- Reflex: will need a complete set of rules for each goal

Utility-based agents

- Several action sequences to achieve some goal (binary process)
- Need to select among actions and sequences (preferences)
- Utility: state → real number
 - express degree of satisfaction and specify trade-offs between conflicting goal



Agents 51

Learning agents

- Learning element: making improvements
- Performance element: selecting external actions (entire former agents)
- Critic: collecting feedback on how the agent is doing?
- Problem generator: suggesting (exploratory) actions (experiments)

Learning agents

Agents 53