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This paper has two objectives. First, the identification and communication of a research 

endeavor driving towards an aerospace artificial intelligence design and research assistant. 

The second objective is to present the evaluation of a proof of concept to employ a neural 

network to aerospace vehicle sizing. This test is part of the development effort to arrive at an 

intelligent assistant. The goal is to test the viability of a machine learning augmented synthesis 

tool with the intent to decrease the time to design convergence. The topic is approached from 

three avenues. First, a consideration of intelligence itself as best defined by humanity is 

considered, with the objective to identify key components to intelligence. The consideration of 

both natural and artificial intelligence provides direction into the definition of requirements 

for the system. This is the second avenue of approach. The second avenue leading to the overall 

objective, is the definition of a proposed artificial intelligence design environment. A key 

component to this system is identified as a readily modular synthesis approach that is both 

quick and computationally attractive. This requirement leads to the development and 

subsequent comparison of a neural network synthesis architecture compared to a standard 

synthesis software approach—the objective of this document. In order to test and demonstrate 

overall functionality, the case study chosen to be implemented is a hypervelocity lifting body 

reentry vehicle. The learning sets include five primary design parameters. The final outcome 

is the evaluation of a machine learning algorithmic approach to synthesis from a learned 

design data set versus the execution results of the subroutine developed synthesis code.  

I. Nomenclature 

AI  = Artificial Intelligence 

AVD  = Aerospace Vehicle Design 

AVD-DBMS = Aerospace Vehicle Design Database Management System 

AVD_AI  = Aerospace Vehicle Design Artificial Intelligence 

Splan  = Planform Area 

W  = load 

τ  = Slenderness ratio 

ΔV  = Velocity Required 

II. Introduction 

ROM the early aerospace vehicle product gestation phase onwards, the future projects engineer is challenged to 

develop a level of assurance when committing resources towards a product aimed at achieving the envisioned 

impact on the future market years later. The success of a product is dependent on the quality of the underlying early 

forecasts. Consequently, the forecasting team or future projects environment is responsible to identify the available 

product solution space and risk topographies resulting in the correct choice of the facilitating technologies baseline 

design, architecture, or program. 
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Envision the next-generation rocket scientist, a human aerospace design engineer, supported by an artificial 

intelligence (AI) assistant that correctly and comprehensively supports the design of aerospace vehicles or space 

transportation architectures with respect to highly multi-disciplinary domains stemming from the marketplace, the 

environment, politics, economics, and technology founded in an ever-changing real world. This is the overall objective 

of this research. 

Presented in this document is a proposition for the development of a conceptual design phase artificial intelligence 

design and decision aid tool to augment and enhance the efficiency of the design engineer and decision-maker alike. 

This chapter presents the contextual background of the research and the research objective. This is followed by the 

discussion of intelligence and the identification of a research endeavor to develop an artificial intelligence (AI) 

solution concept to assist the conceptual technology forecasting or future projects team member. This paper concludes 

with the presentation of the current state of the research, specifically the test of aerospace reentry vehicle synthesis 

via a neural network.  

III. Problem Identification 

 An aerospace vehicle is a product of a 

specific sequence of development and 

testing; this sequence of product 

development is referred to as the product 

life cycle (PLC). Classically, it can be 

broken down into six phases. The phases 

are: (1) Conceptual Design (CD), (2) 

Preliminary Design (PD), (3) Detailed 

Design (DD), (4) Flight Test, Certification, 

and Manufacturing (FT/C/M), (5) 

Operation, and (6) Incident/Accident 

Investigation (I/AI). The CD, PD, and DD 

phases are considered the general design 

phases. Each phase represents different 

inputs, tasks, and outputs—completion of 

which occurs with different toolsets and 

toolset fidelity. The design knowledge and 

freedom available, and the design change 

cost, those attributes characterize each 

phase. The result is that the CD phase is the initial critical phase responsible towards identifying the solution concept 

towards ensuring project success.  

1. Knowledge & Design Freedom 

Knowledge and design freedom during the PLC phases are not constant. Knowledge and design freedom are 

inversely related. As depicted in Figure 1, the knowledge available is minimal initially during the CD phase and 

increases nonlinearly through the PLC phases. The design freedom is exactly the opposite. The maximum design 

freedom available coincides with the point of minimum knowledge and decreases rapidly through the PLC phases.  

2. Cost 

The cost for significant design changes increases with the PLC phase. Nicolai states, “…the cost of making a 

design change is small during conceptual design but is extremely large during detail design.” [1] This nature is 

reflected in Figure 1. In order to minimize potential cost, it is imperative that the correct design be selected early 

during the design process, which principally occurs during the CD phase  

3. CD Phase  

The CD phase is the phase in which the general design is selected. As postulated by Coleman, “… [t]he 

fundamental objective of this conceptual design phase is to satisfy the designer and decision maker that the selected 

concept is worthy of preliminary design continuation.” [2] Similarly, Torenbeek reflects that “… [t]he object of this 

conceptual design phase is to investigate the viability of the project and to obtain a first impression of its most 

important characteristics.” [3] The CD phase analysis results in the determination of the primary vehicle concept, 

configuration, and key design parameters. [4] By the end of the CD phase, approximately 80% of the vehicle 

configuration is established. [5] The inverse nature of the knowledge available and design freedom, the cost of major 

design change, and the purpose of the CD phase, makes it the critical phase of the overall design process. 

 
Figure 1. PLC with design freedom, knowledge, and cost of 

change represented 
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A. Difficulties Affecting the CD Phase 

The criticality of the CD phase does not merit the exception of a tendency to difficulty mitigation or issue 

occurrence. The CD phase exhibits several design difficulty issues, two critical ones are: (1) design variable abundance 

and (2) design proficiency and multidisciplinary integration decrease. (Note however that these issues are not 

necessarily unique to the CD phase.) Each is addressed below. 

1. Design Variable Option Abundance 

The CD phase is characterized by a design freedom that translates directly into abundant design variable options 

and large datasets that require assistance in interpretation and handling. The synthesis-design process is at a “…stage 

of the design, [where] every parameter of design may correspond to a fairy large set of options.” [6] Figure 2 illustrates 

the technical architecture level combination of mission-hardware-technology elements that come together to develop 

an aerospace system. As it can be seen from the figure, the total number of possible combinations (theoretically)—

when only varying the mission and vehicle level options—increases rapidly to approximately two million distinct 

vehicle concepts. It must be noted here that this estimate does not even consider disciplinary specific parametric 

variations which if included would balloon the design options infinitely. Unsuspectingly, a large set of design 

parameters, each parameter corresponding to a large set of option combinations, translates to large datasets. The result 

is the daunting task to understand the significance of a variable among a multitude and make sense of massive 

quantities of data. This quantity is too significant for an individual to assess and comprehended all variables and 

subsequent combinations in this multidisciplinary cause-effect maze. Hence, it is critical that a physics-based AI 

capability be developed that can parametrically trace and evaluate parametric design combinations, learn to identify 

the best combinations, and ultimately augment the engineer through an AI-based learning environment. In short, the 

human designer needs AI assistance.  

 

 
Figure 2. Illustration of orbital reentry vehicle design variables exponential increase to unsurmountable 

numbers 

 

2. Design Proficiency 

The CD phase is unique in the sense that it requires idea generation and therefore creativity and experience. 

However, an interesting trend has developed; the project exposure an engineer experiences is decreasing significantly. 
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Half a century ago, an engineer could expect to work on a dozen or more projects. Today, they may be lucky to see 

the completion of more than one. [7] The result of this phenomenon is the reduction in design exposure, design 

experience, and subsequently design knowledge. All of which are invaluable to a designer. This illustrates a situation 

necessitating a system of standardized knowledge retention, transfer, and expression. 

Furthermore, there is evidence for a decreasing trend in tool integration while tool accuracy has simultaneously 

been increasing. Oza points out “…that qualitatively there is a noticeable change in product development vehicle 

sizing tool capability that spans the major eras of technology change.” [8] He has observed that tool accuracy is 

outperforming the capture of multidisciplinary effects. This is illustrated in the figure below. Although accuracy is 

important, it is problematic if the toolsets and mindset of engineers and forecasters loses the ability or understanding 

of the significance of the design multivariate observability, testability, and understandability. 

 
Figure 3. Forecasting capability: tool integration vs. tool accuracy [8] 

B.  Synthesis in Aerospace 

Recalling that the objective is to arrive at the next generation toolset for and to enhance the engineer and forecaster, 

a consideration of the progression to the current synthesis toolsets is considered. It is necessary to first understand 

current approaches and evaluate how they can be improved and advanced into an intelligent frame work. Furthermore, 

a new classification scheme is established. A summary of the synthesis review is illustrated in Figure 4. 

Chudoba [4] provides a historical review of flight vehicle design synthesis systems and tracks the evolution in 

design methodologies from the legacy textbook synthesis processes to the modern-day computerized synthesis 

systems. A hierarchy of five generations of synthesis systems is defined based on the level of increasing proficiency 

at integrating multi-disciplinary effects, see Table 1. The classification scheme selected distinguishes the multitude of 

vehicle analysis and synthesis approaches according to their modeling complexity, thereby expressing their limitations 

and potential. The first four generations of synthesis systems address modeling-complexity evolution of design 

approaches from 1905 to present day capability, highlighting primary characteristics of each class. 

The transition from Class II to Class III represents the first use of computer automation in the design environment. 

These early design methodologies are found to focus on the selected discipline-specific analysis but lack the 

multidisciplinary integration that is later implemented manually. Lovell comments that, “…initial computer 

applications were confined to aspects of structural analysis and wing design. There was some resistance to the use of 

computers in initial project design because of the complex decision-making process involved. However, they enabled 

more detailed analyses to be made and hence allowed a greater range of carpet plots with additional overlays to be 

prepared to show the effects of configuration variables on performance” [9] 

Class IV synthesis systems are identified to involve multidisciplinary integration of disciplinary analysis but are 

limited in application to a single-point design optimization and mostly applicable to one specific vehicle configuration. 

The majority of synthesis systems up to Class IV are applicable only for subsonic and supersonic aircrafts while only 
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a select few address the hypersonic vehicle class. Synthesis systems like Czysz’s Hypersonic Convergence [10] and 

PrADO Hy. [11] are identified as significant methodology implementations of Class IV type systems. 

Table 1. Five generations of evolution of CD Synthesis approach by Chudoba [4] 

 

The assessment leads Chudoba to define the requirements for the next generation of Class V - Generic Synthesis 

Capability, which is identified as a design process rather than a design tool. In this regard, the focus here is on 

developing the capability over its application. The primary emphasis in this class is on the development of modular 

and dedicated disciplinary methods libraries and their integration into a central multi-disciplinary synthesis 

architecture. 

In continuation of Chudoba’s review of synthesis approaches, Huang [12], Coleman [13], Gonzalez [14], 

Omoragbon [15] and Oza [16] have conducted additional surveys of existing aerospace vehicle synthesis approaches. 

These reviews cover a total of 126 synthesis approaches which include legacy textbook design synthesis 

methodologies and modern-day computerized synthesis systems.  

Based on these reviews, the following conclusions provide an overview summary of the existing capability and 

major drawbacks of the traditional and current design methodologies (these methodologies fall under Class IV 

according to Chudoba’s classification, see Table-1): 

1. The majority of the existing synthesis systems have been developed for aircraft design application. Only 

selected few design synthesis systems exist that address hypersonic vehicle systems. Particularly, an 

efficient and dedicated design synthesis systems for highly integrated hypersonic vehicles is still missing 

that has to quantifiably forecast the mission-configuration-technology scenarios. 

2. Synthesis is the primary integration capability that is the key to close (converge) the design through 

iterations. 

3. Synthesis system are not able to efficiently define the design solution space topography; optimization is 

a preferred approach not the total picture. 

4. Many design synthesis systems tend to have a common structure with different computational procedures. 

However, the design methodologies of synthesis systems are not transparent. There is a lack of efficient 

computerized synthesis systems and multi-disciplinary interaction at the conceptual design level. 

5. Existing synthesis systems have been developed specifically for a particular type of application (e.g. 

subsonic, supersonic, airbreather, rocket propulsion, wing body, lifting body etc.). This implies that the 

many initial assumptions and methods that are hard-coded at the development stages of the synthesis 

system and limit its application to only that specific. As the system is applied over time, it becomes 

hindered and stagnated, limited by the initial application boundaries. There is no generic synthesis system 

for the flight vehicle conceptual design that can be consistently applied to several applications and 

produce a fair non-partial assessment. This inability impedes the system’s ability to assess all available 

design options and provide the best design solution independent of hardware, configuration, and 

technology specifications. 

The final outcome of the Gonzalez [14] endeavor was the successful development of a state-of-the-art Class-V 

capability, AVD-DBMS (Aerospace Vehicle Design Database Management System). The AVD-DBMS is a proven 

(see examples [17] [18] [19]) Class-V platform that is an instrument to generate unique user-specified problem-

specific sizing code (traditionally represented by Class-IV) with complete method and process transparency. The 

AVD-DBMS is shown to provide the flexibility to rapidly create a new sizing code specifically tailored for 

independent trade execution as required by the design problem at hand. Furthermore, this allows for parallel sizing 

Class 
Design  

Definition 
Develop Time Characteristics 

Class I Early Dawn Until 1905 
Trial and error approach, experimental, no systematic 

methodology 

Class II 
Manual Design 

Sequence 
1905-1955 

Physical design transparency, parameter studies, standard 

aircraft design handbooks 

Class III 
Computer 

Automation 
1955-Today 

Computerization of methods, reduced design cycles, detailed 

exploration of the design space, discipline-specific software  

Class IV 
Multidisciplinary 

Integration 
1960-Today 

Computerized design system, MDO, data sharing, centralized 

design 

Class V Generic Design 
Future 

Generation 

Configuration independent, sophisticated design, true inverse 

design capability, Knowledgebase systems 
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studies, thus enabling designers to generate a vast number of converged solutions and identify the wider solution 

space. This capability and approach allows the designer to explore the complete design solution space and 

parametrically compare distinct design options consistently. 

The current best practice approach to synthesis is modularity as represented by the AVD-DBMS, the next step in 

synthesis is AI integration. Many approaches to incorporate a type of AI or machine learning techniques has been 

done. Common uses include expert systems, evolutionary algorithm optimization, and knowledge based systems. 

However, as in the case of the Class IV and earlier approaches, the systems are still problem specific. The next 

generational system is a AI assistant that can augment the engineer and employee dynamically the systems describe 

in this section.  

 

 

Figure 4. Synthesis System’s Reviews by AVD 

C. Summary and Outlook 

Up to this point, a consideration of the product design cycle, the CD phase significance and inherent difficulties, 

and a synthesis summary review have been discussed. From this discussion, is evident that the early phase engineer 

and forecaster require adequate assistance and augmentation through their toolsets. The current state of toolsets shows 

the need for adaptability, transparency, and modularity. The solution to which is a composable multidisciplinary 

synthesis design fabricator as found in the AVD-DBMS. The next evolution in synthesis is the full integration and 

development of AI. This brings forward the next issue, defining intelligence and laying out a next generation AI 

assistant framework. 

IV. Intelligent Assistant 

In the current chapter there are three points of discussion. First, a consideration of intelligence, both human and 

artificial intelligence, is provided. This is followed by the general solution concept for the AI assistant where system 

capability and criteria requirements are identified. The chapter ends with a development roadmap to arrive at an AI 

assistant.  

A. Intelligence 

In the following section, we address two primary questions. What is intelligence? What is artificial intelligence? 

The intent is to establish a working definition of intelligence to guide and support the definition of an artificial 

intelligence design environment and subsequent solution concept. 
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1. Human Intelligence 

The subject of human intelligence and identifying (let alone quantifying) it is a large topic unto itself and as such 

only a brief discussion is given here. The discussion of intelligence is ancient, going back thousands of years. For the 

purposes of this document, consider only the last century. A common interpretation of intelligence is the notion of 

multiple intelligences. In the late 1930s, Thurstone [20] correlated intelligence to multiple abilities, identifying nine 

(verbal comprehension, reasoning, perceptual, speed, numerical ability, word fluency, associative memory, spatial 

visualization). Gardner [21] similarly identified intelligence as multiple intelligences working together (Visual-

Spatial, Verbal-Linguistic, Bodily-Kinesthetic, Logical-Mathematical, Interpersonal, Musical, Intrapersonal, 

Naturalistic). Many of these categories such as computer vision and natural language processing are currently reflected 

in the field of AI. Intelligence has also been classified as attributes. Sternber [22] identifies three attributes of 

intelligence: (1) analytical intelligence, (2) creative intelligence, (3) practical intelligence. These attributes translate 

to applicable aspects as problem solving, application of past knowledge to new situations, and adaptability to a new 

environment respectively. With these considerations regarding the discussed various attributes of the human 

intelligence, the next section discusses artificial intelligence.  

2. Artificial Intelligence 

The definition of AI depends on the individual asked. In its broadest state, 

artificial intelligence is the mimicking of human intelligence by a computational 

means. As stated by Munakata, AI is “…the study of making computers do things 

that the human needs intelligence to do.” [23] Russel further breaks the definition 

down based upon thought process and reasoning, and behavior arriving at four 

distinct definition categories. [24] The four definition categories are (1) systems 

that think like humans, (2) systems that act like humans, (3) systems that think 

rationally, and (4) systems that act rationally. Given that the CD phase is the arena 

of the proposed research and synthesis system development is the objective, the 

broad working definition of AI, is a system that acts rationally where a “…system 

is rational if it does the ‘right thing,’ given what it knows.” [24] For the purposes 

of engineering it is logical to arrive at Russel’s definition. However, the definition 

needs to be expanded into an even more usable sense. Human intelligence is a 

multidimensional ability to apply past knowledge and experience to adapt to a new 

situation and solve a problem. If this notion of human intelligence is correlated to 

rational acting as described by Russel and combined with a best practice approach 

to engineering (see Figure 5), a working definition of artificial intelligence for 

engineering design application is arrived at. Translating this to the engineering and 

computer domain, artificial intelligence is the self-utilization of a connected 

database, knowledge base, parametric process, and logic base to arrive at and adapt 

to a new situation to solve a problem and derive new understanding of a topic 

following the rational application of an integrated, converging, and self-assessing 

process. 

B. System Concept 

Based on the consideration of the CD phase, it has been established that the CD phase is grossly hindered by the 

problem of knowledge and proficiency degradation and retention. Based on the synthesis system review, the resulting 

conclusion is that most computational toolsets are highly developed high-fidelity thus high-inertia tools that generally 

require excessive source code familiarity and user time input to produce any significant modification to allow the 

system to address unique applications and configurations not originally considered in the tool development. With these 

conditions, a next-generation system is not only logical but urgently required. This is best stated by the following:  

Currently, any design synthesis or design update depends on the designer's ideas and experience base on an 

ad hoc basis. Possible approaches to technology leaps in this area include idea stimulus approaches; use of 

artificial intelligence and knowledge-based systems to convert designer's judgments and rules of thumb into 

algorithms; techniques for visualization of the design space; multidisciplinary optimization; and automated 

synthesis or inverse engineering [25] 

To that end, the objective is to develop a Class VI system. 

The AI solution concept is now outlined and discussed in this section. The fundamental criteria requirements for 

a best-practice conceptual design toolset have been deduced through the synthesis system’s review. These criteria act 

as the merit of measure for the fundamental solution logic and define the primary characteristic attributes of the system. 

We begin by identifying several key system criteria requirements and follow with a general definition and explanation 

 

Figure 5. Design ladder  
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of the solution concept. The requirements of the system’s capability are determined by the now identified character of 

intelligence and the necessities of the highly fluid and non-static nature of the conceptual design phase.  

 

1. System Criteria Requirements 

Based on the synthesis system review, a necessity of a toolset is identified that is capable of rapid turnaround with 

a modular structure to adapt to new concepts and configurations, thus providing the designer with an advanced 

synthesis capability to develop comprehensive solution design topographies. Such a tool would require minimal user 

knowledge of the system and minimum user time investment for the output of a useable synthesis or sizing code with 

awareness of the developing world of artificial intelligence and potential future application. 

The system criteria requirements are determined by the now identified shortfalls of current synthesis systems and 

the necessities of the highly fluid and non-static nature of the conceptual design phase. The following are identified 

as the primary requirements criteria for a best-practice next-generation synthesis capability: 

• Flexibility:  modularity to handle any fidelity and unique concept or configuration. 

• Adaptability: ability to adapt to new problems, vehicles, or configurations while maintaining 

applicability and usability. 

• Expandability: ability to expand the underlying framework and capability when new data, knowledge, 

and processes are added  

• Transparency: transparent to the user and customer (if desired) of the operation of processes and 

systems, the methods, underlying knowledge and data. 

• Rapidity:  quick turnaround, able to adapt and keep up with a rapid environment and quick 

turnaround deliverable times 

• Automation:  key pre-requisite to arrive at an efficient assistant. 

 

2. System Capability Requirements 

The above requirements translate into a CD phase capability (where synthesis occurs) that is critical to design 

success. This next generation AI environment is tasked to provide the individuals involved access to the best tools 

available. Since modern synthesis methods the aerospace industry is experiencing will continue to grow in complexity, 

the AI implementation has a primary focus on time to market and cost. Since the environment will continue to become 

even more computationally rich in the data-knowledge-process domains, beyond the reasoning abilities of humans, 

automated AI synthesis is the primer with the following system requirements: 

• knowledge generation and retention through dynamic knowledge base & data base; 

• scenario based multi-disciplinary analysis (MDA) design and integration; 

• self-composing architecture capability with configuration, hardware, and mission independence; 

• visualization and interpretation of design space topography; 

• natural language interfacing; 

• rational action without human oversight; 

The objective is to create a unique system not bound by a fixed analysis structure that can self-educate, self-act, and 

do so with the best critical thinking process available. 

 

3. Concept 

 The topic of the AI research assistant aimed at augmenting hypersonic vehicle and technology forecasting are 

both areas of high impact. They necessitate advancement due to several decades of stagnation and neglect in the 

aerospace domain. The current approach to design and decision support is plagued with problems, including (a) 

dependency on disciplinary optimization to convince and assure without offering a multi-disciplinary guarantee of 

total system convergence, (b) non-standardized approach to synthesis system assembly, and (c) machine learning and 

AI being inadequately applied, frequently relegated to optimization and parameter approximation. Upon successful 

completion, this study advances the standard for design through three avenues: (1) transparency (2) design approach 

standardization and consistency (3) knowledge and data retention and derivation. This platform will enable 

organizations to innovate rapidly but more importantly experiment at lower cost and build shorter fail-cycles. It is the 

cost of experimentation that affects the frequency to experiment and it is the lack of experimentation that hinders 

knowledge expansion. 

The objective is the development of an Aerospace Vehicle Design AI assistant (AVD-AI) that represents a best 

practice implementation of an AI augmented multi-disciplinary vehicle synthesis framework that integrates a dynamic 

Data Base System (DBS), Knowledge Base System (KBS) and Parametric Process System (PPS). The AVD-AI 

system is envisioned to support the decision-making process by providing an intelligent, adaptive, and parametric 
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framework for systems design, strategic planning, and technology forecasting. AVD-AI is an evolution of the currently 

existing best practice aerospace design synthesis capability residing in the AVD Laboratory, the AVD-DBMS 

platform. 

The DBS, KBS, and PPS implementation is analogous to and emulates the human domains of memory, experience, 

and logic that enables dynamic feedback learning and decision-making capabilities of organic intelligence, see Figure 

6. The symbiosis of these modules uniquely allows this first-generation artificial design intelligence synthesis system 

to correctly solve multi-disciplinary aerospace-related problems. This next-generation artificial-design-intelligence 

assistant correctly and comprehensively supports the human decision-maker and designer of aerospace vehicles. The 

resulting system’s overall aim is at reducing cost, risk, and development time spans by accelerating the design process 

by augmenting the person with an intelligent computer assistant. 

 

 
Figure 6. Correlation of biologic intelligence foundation blocks to computer domain 

 

To create such a unique entity requires four critical elements. The elements are: (1) Database (DB), (2) Knowledge 

Base (KB), (3) Process Base (PB), and (4) a Great Intelligence (GI). The DB, KB, and PB provide the foundation of 

which the GI acts and are the common elements to many current synthesis tools. However, the implementation and 

process of integration and utilization of these three elements will be unique. Elements 1-3 have been the work of five 

different PhD projects within the AVD Laboratory over the last decade. Those research efforts focused on the first 

three elements. The following outlines the conjunction with the fourth element.  

The GI is comprised of four fundamental elements. The elements are expert system, multi-variable multi-

disciplinary optimization, Pareto Analysis, and data mining. Each element will be a different independent module. 

The expert system requires the data 

mining and Pareto Analysis to feed the 

inference system for knowledge 

deduction and induction. The Pareto 

Analysis is a logic element for the system 

to identify relevant design variables to 

execute logic algorithms. The GI will 

result in a capability to retain design 

knowledge, identify key design variables, 

provide an independent design capability 

without human logic input, provide a 

solution space identification capability, 

and derive new knowledge of the system 

studied all while acting independently and 

rationally. 

 

 

Figure 7. General AI solution concept blocks 
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C. Development Outlook 

The drive towards an intelligent assistant has been organized into a. five sequence approach. Each sequence is 

composed of individual tasks.  

Figure 8 shows an overview of the approach. The sequence’s five sub-phases with primary objectives are defined 

below.  

I.1) Preparation: Establish Situational Awareness of the current state-of-the-art in the selected AI domain through 

a dedicated literature review. Identify, test, and evaluate approaches for system use and integration. Identify and 

formulate solution concept. 

I.2) Experiment Setup: System Conditioning tasks are performed by preparing training data; fundamental system 

building blocks are populated, trained, and formulated (such systems are database, knowledgebase, methods library, 

and evaluation metrics). 

I.3) Experiment Execution: System Development occurs here through integration of fundamental building blocks 

(defined in previous step) in the AVD-DBMS platform. 

I.4) Prototype Evaluation: System Execution takes place in this sub-phase where the AVD-AI capability is 

validated through a synthesis case-study demonstrating impact of inclusion of prior knowledge on enhanced 

performance. 

At this point, research activities are in sequence 1.1. The remaining elements of this paper presents the results of 

an exploratory study to evaluate the potential for neural network application to sizing approximation. 

 

 

Figure 8. Phase I tasks, schedule, and milestones overview 

V. Synthesis Augmentation 

In the current section, the experiment setup for the machine learning approach is provided followed by the 

execution results.   

A. Purpose 

The purpose of this experiment is to test the viability of using machine learning, specifically a neural network, to 

predict sizing outputs. The objective is to identify if the approach delivers sufficiently accurate results to provide a 

first estimate to a sizing routine. It is expected that such a system could be used to provide a sufficiently accurate first 

guess of the independent convergence variables in order to accelerate the convergence process. Additionally, a 

secondary purpose is to evaluate the accuracy of a machine learning augmentation in the sizing application. In regards 

to the execution of the machine learning process, a frequent issue is that the results are obtained without a physical 

understanding of how or why the results are correct or arrived at exists. The opposite is true for this situation. The 

underlying physical models are sufficiently known, however, the execution process is time expensive. The goal is to 

skip the known physics to arrive at a suitably accurate result.  
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B. Approach 

1. Process 

After generation of the test data two sets of matrices of a) input, and b) target are needed. With the help of a built-

in Fitting App within the Neural Network toolbox, the data will be ready for the training phase. Figure 9 shows the 

process flow of the method implement. 

 

DATA
(Input,Taget)

Neural Network
Fitting

Validation & Test DATA
Network Architecture

Train Network Method Performance Check

Regression Check

NN Function

 

Figure 9. Data training flow diagram 

The following steps define the process to develop a neural network function which is utilized for this study: 

1) Pick the sample data from workspace. 

2) Define Input and Target values. 

3) Assigning Validation and Test data as fraction of the whole. 

4) Assigning the number of the desired networks. 

5) Choose a training method and train the data correspondingly. 

6) Check the performance and the regression of the data. 

7) If the desired analysis achieved, export the function code for usage. 

 

2. Data Generation 

With the help of AVD-DBMS, a total of 1200 lifting body vehicle cases have been sized for this experiment. The 

overall study is broken down into three phases, a) Gather the neural network function for all the 1200 cases, b) 

Randomly select 240 cases and re-train the network, c) Randomly select 60 cases and re-train the network. The inputs 

to the training system consist of slenderness ratio (τ), cross-section base area shape, cargo weight, and ΔV. 

Decreasing the number of training cases at each time will allow to check for the accuracy of the network study and 

the final differences. If less data proves that the system keeps it accuracy at a desired range, the run time can decrease 

drastically. The training methods used throughout this study are a) Levenberg-Marquardt b) Bayesian Regularization 

c) Scaled Conjugate Gradient. 

C. Results 

Table 2 shows the comparison results of trained data of 1200 different lifting body vehicles versus the DBMS 

calculated value. The purpose of this table is to check the accuracy of the method and check even if this approach is 

applicable. By analyzing the data, it is calculated that Bayesian Regularization Method (b) provided the higher 

accuracy for this study. Next step of this study is to reduce and eliminate the initial training data. This means, by 

training the neural network system with less number of sample data, the system can generate same accuracy in it’s 

results.  

Table 3 shows the results using only 240 points to train the system and input five random points outside of the 

trained data boundary to assess the accuracy of the trained system. It is visible that the %Error increased in comparison 

to Table 2 but is still within the desirable range. Again, the Method (b) shows a better accuracy for this study. Lastly 

the same study has been conducted but only with 60 points to train. Based on presented results in Table 4, it is clear 

that the less training point will decrease the accuracy of the system when the input outside the training boundaries are 

used. These results can now be used as initial guess into the DBMS system to help forecaster/designer to arrive at their 

desired converged vehicles is faster manner. 
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Table 2. Comparison between three neural network training methods 

  Actual Experimental % Error 

Method Splan W/Splan Splan W/Splan Splan W/Splan 

a 

P1 28.49 8750 31.33 8754 9.06 0.04 

P2 24.04 9672 28.93 9664 16.90 -0.08 

P3 51.41 6840 44.24 6842 -16.19 0.04 

P4 89.76 4202 90.40 4206 0.70 0.08 

P5 28.37 11424 29.61 11446 4.19 0.19 

b 

P1 28.49 8750 28.57 8750 0.28 0.00 

P2 24.04 9672 24.28 9672 1.00 0.00 

P3 51.41 6840 50.40 6839 -2.00 -0.01 

P4 89.76 4202 89.41 4202 -0.40 0.00 

P5 28.37 11424 28.59 11424 0.78 0.00 

c 

P1 28.49 8750 -119.69 8613 123.81 -1.59 

P2 24.04 9672 164.46 9847 85.38 1.78 

P3 51.41 6840 136.74 6238 62.41 -9.64 

P4 89.76 4202 96.98 3785 7.44 -11.02 

P5 28.37 11424 57.49 11834 50.65 3.46 

 

Table 3. Accuracy comparison of 240 points with random inputs 

  Actual Experimental % Error 

Method Splan W/Splan Splan W/Splan Splan W/Splan 

a 

P1 53.31 3550 52.53 3553 -1.49 0.09 

P2 31.86 8223 30.15 8238 -5.68 0.19 

P3 24.04 9672 24.13 9659 0.36 -0.14 

P4 59.38 1812 61.09 1805 2.80 -0.43 

P5 34.64 5418 34.92 5420 0.80 0.03 

b 

P1 53.31 3550 53.92 3558 1.13 0.24 

P2 31.86 8223 30.80 8203 -3.44 -0.25 

P3 24.04 9672 24.59 9623 2.24 -0.51 

P4 59.38 1812 58.39 1805 -1.69 -0.40 

P5 34.64 5418 35.90 5461 3.52 0.78 

c 

P1 53.31 3550 67.51 3778 21.03 6.04 

P2 31.86 8223 -18.21 9321 274.96 11.78 

P3 24.04 9672 -2.40 9630 1100.14 -0.44 

P4 59.38 1812 67.04 1909 11.42 5.06 

P5 34.64 5418 112.29 4844 69.15 -11.84 
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Table 4. Accuracy comparison of 60 points with random inputs 

  Actual Experimental % Error 

Method Splan W/Splan Splan W/Splan Splan W/Splan 

a 

P1 53.31 3550 50.88 2960 -4.79 -19.93 

P2 31.86 8223 20.58 4193 -54.79 -96.11 

P3 24.04 9672 21.18 6859 -13.50 -41.02 

P4 59.38 1812 59.66 1810 0.46 -0.13 

P5 34.64 5418 29 3816 -20.18 -41.99 

b 

P1 53.31 3550 51.08 2959 -4.37 -19.97 

P2 31.86 8223 22.24 4210 -43.25 -95.34 

P3 24.04 9672 19.59 6805 -22.74 -42.14 

P4 59.38 1812 60.77 1804 2.28 -0.44 

P5 34.64 5418 27 3799 -30.33 -42.62 

c 

P1 53.31 3550 -213.36 2979 124.99 -19.15 

P2 31.86 8223 367.52 3576 91.33 -129.91 

P3 24.04 9672 46.97 7150 48.82 -35.28 

P4 59.38 1812 39.96 1798 -48.59 -0.81 

P5 34.64 5418 -20.44 4154 269.47 -30.44 

 

VI. Conclusion 

This document communicates the research and development of an intelligent research assistant for the engineer 

and decision maker endeavor at the AVD Laboratory at the University of Texas. The objective is to derive, construct, 

and test a prototype AI research design assistant for technology forecasting applied to hypervelocity systems. The 

proposed system will incorporate (1) best standard approaches for synthesis (2) data and physics driven high-

dimensional systems modeling and (3) knowledge derivation and retention. Fundamentally, the system proposed is an 

AI-human collaborative development, discovery, and exploratory conceptual-design synthesis system approach and 

execution. The objective is to push the bounds of the current state-of-the-art to illustrate a total system technique in 

which conceptual design synthesis of a product is done consistently, correctly, and with the assistance of an AI 

computer assistant. This assistant will be able to retain, derive, and present solution concepts, data, and new knowledge 

at the benefit of the current and future human operator. The result would be a better-informed workforce allowing for 

better decisions and reduction in errors and therefore costs.  

The hypersonic or hypervelocity vehicle was selected for the topic for the development of the AI assistant. Today, 

a key contributor aiding the development of hypersonic flight test vehicles is effective preservation and constructive 

application of the available past-to-present hypersonic knowledge-base. The AI system is needed to accelerate and 

leapfrog the industry to identify disruptive vehicle configurations not identified with techniques used previously. The 

hypersonic vehicle drive for fruition has been slow and arduous, hampered by cyclic interest and funding. The result 

has been a slow configuration evolution over the past half-century. 

This document additionally communicated the results of an exploratory study into sizing augmentation by neural 

networks. The objective is to investigate the applicability of a neural network trained to predict sizing architectures 

converging variable output with the goal to accelerate the convergence process through improved first guess values. 

The results showed a satisfactory accurate capability. The next step in this exploratory study is to expand the study to 

include incomplete data sets, randomness, and convergence time improvement.  
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