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Abstract—Graph Neural Networks (GNNs) have demonstrated
great power in many network analytical tasks. However, graphs
(i.e., networks) in the real world are usually text-rich, implying
that valuable semantic structure information needs to be carefully
considered. Existing GNNs for text-rich networks typically treat
text as attribute words alone, which inevitably leads to the
loss of important semantic structure information, limiting the
representation capability of GNNs. In this paper, we propose
an end-to-end adaptive semantic architecture of graph convo-
lutional networks, namely AS-GCN, which unifies neural topic
model and graph convolutional networks, for text-rich network
representation. Specifically, we utilize a neural topic model to
extract the global topic semantics, and accordingly augment the
original text-rich network into a tri-typed heterogeneous network,
capturing both the local word sequence semantic structure
and the global topic semantic structure from text. We then
design an effective semantic-aware propagation of information by
introducing a discriminative convolution mechanism. We further
propose two strategies, that is, distribution sharing and joint
training, to adaptively generate a proper network structure based
on the learning objective to improve network representation.
Extensive experiments on text-rich networks illustrate that our
new architecture outperforms the state-of-the-art methods by a
significant improvement. Meanwhile, this architecture can also
be applied to e-commerce search scenes, and experiments on
a real e-commerce problem from JD further demonstrate the
superiority of the proposed architecture over the baselines.

Index Terms—graph neural networks, adaptive semantic archi-
tecture, text-rich networks

I. INTRODUCTION

Networks are ubiquitously used to represent data in a wide
range of fields, including social network analysis, bioinformat-
ics, and computer network security. With their prevalence, it
is particularly important to learn effective representations of
networks and apply them to downstream tasks. Recently, Graph
Neural Networks (GNNs) [1], [2], a class of neural networks
designed to learn network data, have shown remarkable success
in capturing network representation, and have been widely
applied in tackling network analytical tasks, such as node
classification [3], link prediction [4], and recommendation [5].

*Corresponding author.

Fig. 1: An illustrative example of a text-rich network con-
structed from DBLP [13], where each node is associated with
textual description composed of its title and abstract.

The typical GNNs [6], [7] and their variants [8], [9]
usually follow a message-passing design, i.e., obtain network
representation through the propagation and aggregation of
attributes over network topology. However, networks in the
real world are usually text-rich [10], [11] (see an example
in Figure 1), where the text corresponding to each node is
not only the collection of attribute words, but also contains
valuable context information of word sequence (e.g., attribute
words “privacy” and “preservation” are semantically relevant,
rather than independent), and reflects the semantic structure
of the topic (e.g., in two documents without many common
attribute words, their semantics may also be interrelated). As
a result, it is difficult for the existing GNNs [12], which only
treat text as independent attribute words, to fully utilize richer
structural semantics of text to perform propagation, significantly
limiting the representation capability of GNNs. Therefore, it
is imperative to explore a new architecture of GNNs which
can fully embody the most informative semantic structure
information of text, so that can be effectively applied to text-
rich network representation.

Nevertheless, it is technically challenging to effectively
design a new architecture of GNNs for text-rich network
representation. Particularly, two obstacles need to be addressed.
First, semantic structure information of text should be taken
into consideration, including the local word sequence structure
and the global topic structure. Considering these information
fundamentally drives the learned architecture to maintain more
semantics and be more robust to noise in real observations.



Meanwhile, by fully utilizing text semantics, the architecture
itself could alleviate the homophily assumption [14], [15] of
GNNs, and achieve the optimal balance between topology and
attributes (i.e., learn different contributions of these two parts
automatically informed by the ground truth). Unfortunately,
the majority of current GNNs [16] do not account for the
richer structural semantics of text, thus inevitably limiting their
performance. Second, the network architecture itself should be
dynamically adaptive. Learning semantic structure information
from text inevitably leads to bias and uncertainty. Therefore, it
makes sense that the confidence of a network architecture would
be greater if this architecture is dynamically estimated aiming
at the given learning objectives. Therefore, an optimal network
architecture ought to make allowance for the ground truth such
as node classification, which is particularly significant while
ignored by the existing GNNs [17].

To address these aforementioned issues, in this paper, we
propose an end-to-end adaptive semantic architecture of graph
convolutional networks (GCN), i.e., AS-GCN, for text-rich
network representation. As shown in Figure 2, it consists of
two data-driven components, that is, a neural topic model
(NTM) for extracting the global topic semantics from raw text,
and a network learning module for semantic-aware propagation
of information on the augmented tri-typed network. The two
modules, one powered by NTM and the other by GCN, are
designed to have mutually complementary inductive biases.
To be specific, for NTM, we mainly introduce an encoding-
decoding process which models raw text to generate topic
distribution and word distribution. For network learning module,
we first transform the original text-rich network into an
augmented tri-typed heterogeneous network utilizing the words
extracted from raw text and the distributions obtained from
NTM, capturing both the local word sequence semantics and
the global topic semantics. We then introduce a discriminative
hierarchical convolution mechanism, based on the type of
edges, to effectively aggregate information from this augmented
network. Furthermore, we train these two modules, including
NTM and network learning, together by leveraging distribution
sharing and joint training strategies, so as to adaptively estimate
an appropriate network architecture based on the learning
objectives. Last but not the least, this architecture is almost
orthogonal to most GNNs, and thus can be readily incorporated
into various GNNs to further improve their performance.

We summarize our main contributions as follows:
• We find that, the message-passing mechanism adopted

by existing GNNs fails on taking full advantage of
the most informative semantic structure information in
text-rich networks (since text is generally only regarded
as independent attribute words); and meanwhile, they
typically take the network architecture as a ground truth
description of the relationship between nodes, despite that
the data we employed is often imperfect.

• We propose a novel end-to-end adaptive semantic GCN
architecture for text-rich network representation. To the
best of our knowledge, this is the first attempt devoted to
use the valuable semantic structure information of text,

TABLE I: Summary of notations.

Notations Descriptions

G A network.
V,E The sets of nodes and edges of a network.
A,X The adjacency matrix and node attribute matrix.
D The node degree matrix.
R The set of raw text.
eij The edge between nodes vi and vj .
aij The connection between nodes vi and vj .
xi The attribute vector of a given node vi.
k The predefined topic number.
u The vocabulary size.
pw The probability of predicted words in NTM.
θ,Wr The topic distribution and word distribution.
p(z|x), p(x|z) The probabilities of encoding and decoding processes in

NTM.
σ The non-linear activation function.
hli The feature representation of node vi at the l-th layer.
Φ The set of edge-types of an augmented network.
Nφ The set of neighbors connected via edge-type φ.
αφij Weight of edge-type based node pair (vi, vj ).
γφ Weight of edge-type φ.
DKL(·||·) Kullback–Leibler divergence.
PMI(wi, wj) The PMI value between word nodes wi and wj .

including the local word sequence structure and the global
topic structure, for text-rich network modeling. Moreover,
the architecture itself can not only effectively alleviate
the homophily assumption of GNNs, but also achieve the
optimal balance between topology and attributes by fully
utilizing the richer structural semantics.

• Extensive experiments on four public text-rich network
datasets as well as one real e-commerce application
demonstrate the superiority of the proposed new approach
over state-of-the-art methods.

The rest of the paper is organized as follows. Section II
gives the preliminaries. Section III proposes the new GCN
architecture for text-rich network representation. We conduct
experiments in Section IV and introduce the application on
e-commerce search in Section V. Finally, we discuss related
work in Section VI and conclude in Section VII.

II. PRELIMINARIES

We first introduce the notations and define the problem of
semi-supervised node classification, and then discuss GCN
which serves as the base of our new architecture.

A. Notations and Problem Definition

Let G = (R, V,E) be a text-rich network, where R
represents the set of raw text, V = {v1, . . . , vn} is the set
of n nodes, E = {eij} ⊆ V × V is the set of m edges. The
topological structure of G can be represented by an n × n
adjacency matrix A = (aij)n×n, where aij = 1 if there is
an edge between nodes vi and vj , or 0 otherwise. The nodes
are described by the attribute matrix X = (xi)n×u, where
attributes are extracted directly from raw text R and u is the
dimension of node attributes.

Given a text-rich network G, and a labeled node set VL
containing c� |V | nodes, where each node vi ∈ VL contains



Fig. 2: The architecture of AS-GCN. It jointly trains a neural topic module for extracting the global topic semantics, and a
scalable network learning module for semantic-aware propagation of information on the augmented tri-typed network.

a unique class label yi ∈ Y . The goal of semi-supervised
node classification is to infer the labels of nodes in V \VL by
learning a classification function F . The notations we will use
throughout the paper are summarized in Table I.

B. Graph Convolutional Network

Graph Convolutional Networks (GCN) [6] is a variant of
multi-layer convolutional neural networks that operates directly
on networks. It learns representation of each node by iteratively
aggregating feature information from its topological neighbors.
Mathematically, let H(l) be the feature representation of the
l-th layer, H(0) be the node attribute matrix, the forward
propagation can then be defined as:

H(l) = σ(D̃−
1
2 ÃD̃−

1
2H(l−1)W (l)), (1)

where Ã = A + I stands for the adjacency matrix with self-
loops, D̃ is the diagonal degree matrix of Ã, i.e., D̃ii =

∑
j Ãij ,

W (l) is a weight matrix used to embed the given inputs
(typically to a lower dimension), and σ is the non-linear
activation function such as ReLU or Sigmoid. While GCN
works well on several network analytical tasks [18], [19],
networks in the real world are usually text-rich, it will inevitably
overlook important semantic structure information if it only
treats text as attribute words. This leads to the main contribution
in this work, i.e., design a new adaptive semantic GCN
architecture for text-rich network representation by making
the most use of the semantics contained in text.

III. AS-GCN: THE PROPOSED MODEL

We first give a brief overview of the proposed method, then
introduce two key components in detail, and finally discuss
some optional tricks in implementation.

A. Overview

To make the architecture itself fully embody the most
informative semantic structure information of text, we introduce
a neural topic model to extract topic-relevant information from
raw text, and accordingly design a new adaptive semantic
architecture to perform discriminative convolution, so as to
better learn the representations of text-rich networks. The
architecture of our new approach AS-GCN is illustrated in
Figure 2. It includes two main components: neural topic
submodule and network learning submodule.

In neural topic module, we learn the topic distribution and
word distribution through an encoding-decoding process by
using raw text, for the construction of the new network structure.
In network learning module, we first augment the original
text-rich network into a tri-typed network utilizing the words
extracted from raw text and the distributions derived from
neural topic module, capturing both information from the local
word sequence structure and the global topic structure. We
then perform a semantic-aware propagation of information
on the augmented tri-typed network through introducing a
discriminative convolution mechanism, so as to distinguish and
learn the contributions of network part and text part based on
the learning objectives. Different from most existing works



[20], [21], our framework models both raw text and network
structure, and we learn both modules in an end-to-end manner
to let them mutually enhance each other.

B. Neural Topic Module

Neural topic model (NTM), which is inspired by Miao et al.
[22] that induces latent topics in neural network, aims to learn
the topic distribution of documents and word distribution of
topics, so as to effectively generate a new GCN architecture on
text-rich networks. NTM is based on the variational autoencoder
(VAE) framework [23], and learns the latent topics through
an encoding-decoding process. Specifically, let xi ∈ Ru be
the feature representation of a given node vi, where u is the
vocabulary size. Then, in the encoding process, we have:

µ = fµ(fe(xi)); log δ = fδ(fe(xi)), (2)

where µ and δ are the prior parameters for inducing intermedi-
ate topic distribution in the decoder, fe, fµ and fδ are linear
transformations with ReLU activation.

Analogous to LDA-style topic models [24], [25], the decoder
can be regarded as a three-step document generation process.
We first adopt Gaussian softmax [22] to draw the topic
distribution of documents. Mathematically, let z be the latent
topic variable, k be the predefined topic number, the topic
distribution θ ∈ Rk can be defined as:

z ∼ N (µ, δ2); θ = softmax(z). (3)

With the obtained topic distribution θ, the probability of
predicted words pw ∈ RL can then be given by using a mapping
function along with a non-linear transform (i.e., softmax) as:

pw = softmax(Wrθ), (4)

where Wr represents the word distribution, and W (i,j)
r denotes

the relevance between the i-th word and j-th topic.
Finally, we draw each word from pw to reconstruct input

xi. Considering the intermediate parameter Wr has encoded
topical information, the topic representation can then be defined
in the following as:

HT = fr(W
T
r ), (5)

where fr is a linear transformation with ReLU activation.

C. Network Learning Module

We first transform the original text-rich network into an
augmented tri-typed network, and then introduce a discrim-
inative convolution mechanism, which performs a semantic-
aware propagation of information on this augmented network,
realizing the convolutions of topology and attributes altogether
in the same system.
Network construction. To explicitly describe the local word
sequence structure and the global topic structure of text, we
augment the original text-rich network GD = (R, VD, ED) into
a tri-typed heterogeneous network utilizing the words extracted
from raw text and the distributions derived from NTM, as
shown in the low-middle part of Figure 1. It includes three
types of nodes, namely real nodes (e.g., document nodes in

the original network), topic nodes (e.g., topics obtained from
NTM) and entity nodes (e.g., words extracted from raw text);
and four types of edges, that is, edges between real nodes such
as paper citations, edges between real nodes and topic nodes
reflecting the topic distribution of documents, edges between
topic nodes and entity nodes representing the word distribution
of topics, as well as edges between entity nodes reflecting the
local word sequence semantics.

For local word sequence information, we employ a fixed size
sliding window to gather co-occurrence statistics from raw text.
We adopt point-wise mutual information (PMI) [26], a common
measure for word associations, to construct edges between two
word nodes. Mathematically, let VM = {w1, w2, ..., wu} be
the set of word nodes extracted from raw text, the PMI value
between word nodes wi and wj can then be represented as:

PMI(wi, wj) = log
s(wi, wj)

s(wi)s(wj)
, (6)

s(wi, wj) =
#W (wi, wj)

#W
, (7)

s(wi) =
#W (wi)

#W
, (8)

where #W (wi) denotes the number of sliding windows
containing word node wi, #W (wi, wj) represents the number
of sliding windows containing both word nodes wi and wj ,
and #W is the total number of sliding windows in raw text.
Obviously, a positive PMI value indicates that the semantic
correlation of word nodes is high, while a negative PMI value
indicates low or no semantic correlation. Therefore, the set of
word edges EM can be obtained by choosing word pairs with
positive PMI value.

For global topic structure information, we construct edge
sets EDT and ETM based on the distributions obtained from
NTM. Let VT = {t1, t2, ..., tk} be the set of topic nodes, we
choose topic nodes with high probability in topic distribution
for each document node to build edges, and word nodes with
high probability in word distribution for each topic node to
generate edges.

Then, the augmented tri-typed network can be defined as:

G = (VD ∪ VT ∪ VM , ED ∪ EDT ∪ ETM ∪ EM ). (9)

Tri-typed convolution. The novel tri-typed convolution mech-
anism consists of two parts, including the aggregation of
information from the same edge-type (i.e., intra aggregation),
and the aggregation of information from different edge-types
(i.e., inter aggregation). Specifically, in the intra aggregation, we
adopt the same summation as GCN to aggregate the information
from neighbors based on the same edge-type. Formally, let
h
(l−1)
i be the feature representation of node vi at the (l-1)-th

layer, and h
(0)
i be the node’s feature vector. Then, for each

node vi, its embedding of the edge-type φ at the l-th layer
h
(φ,l)
i can be updated as:

h
(φ,l)
i =

∑
j∈Nφi

(d̃id̃j)
1
2h

(l−1)
j ∀φ ∈ Φ, (10)



where d̃i is the degree of node vi of augmented tri-typed
network with self-loops, Nφ

i is the set of neighbors connected
via edge-type φ of node vi, and Φ is the set of edge-types.

In the inter aggregation, considering that different nodes
have different edge-types, then for each node vi, we introduce
another aggregation function, i.e., concatenation ‖, to aggregate
the embeddings of different edge-types, which is defined as:

g
(l)
i = ‖

φ

h
(φ,l)
i . (11)

With the obtained g
(l)
i , the l-th layer embedding of node vi

can then be given by using a mapping function along with a
non-linear transform as:

h
(l)
i = σ(g

(l)
i ·W

(l)), (12)

where W (l) is the mapping matrix and σ is the non-linear
activation function such as ReLU.

D. Model Training

Now we have introduced our NTM and network learning
module, we are ready to put them together through an end-to-
end training framework. We employ two techniques for training
with semi-supervision: distribution sharing and joint training.
Distribution sharing. The performance of our network learn-
ing module depends on the quality of network structure.
In our framework, we construct edges between document
nodes and topic nodes, and edges between topic nodes and
word nodes utilizing the distributions generated by NTM.
Initially, the augmented tri-typed network is created using the
distributions obtained by training NTM for 200 epochs. As the
training progress, the NTM module gets improved, and could
produce higher quality topic distribution and word distribution.
Therefore, we share the most up-to-date distributions from
the NTM with the network learning module. We have found
that such a distribution sharing mechanism is beneficial for
improving the performance of GCN on text-rich network
representation.
Joint training. Since the augmented tri-typed network is
generated partially utilizing the distributions from the NTM
module, we leverage joint training to let them mutually enhance
each other. For the NTM, the objective function is defined as
the negative evidence lower bound, which is written as follows:

LNTM = DKL(q(z)||p(z|x))− Eq(z)[p(x|z)], (13)

where the first term indicates the Kullback–Leibler divergence
loss, and the second term indicates the reconstruction loss.
p(z|x) and p(x|z) are probabilities to describe encoding and
decoding processes, respectively.

For network learning module, we define the loss function
by using cross entropy as:

LNL = −
∑
vi∈YL

U∑
u=1

Yiu lnHiu, (14)

where YL is the set of node indices that have labels, Y is the
label indicator matrix, and U represents the dimension of the
output embedding, which is equal to the number of categories.

The final loss of our AS-GCN is the linear combination of
these two parts of loss with hyper-parameter λ to balance their
weights, that is,

L = LNL + λLNTM . (15)

E. Implementation

Our model is quite flexible and it is quite easy to incorporate
some tricks when implementing our method. The tricks include,
for example, supporting the use of the node level attention
and the edge-type level attention, which are often used in the
existing GNNs [27], [28].

First, considering the edge-type based neighbors of each
node contribute to the embedding of the target node in
different degrees, we adopt node level attention [7] to learn the
importance of edge-type based neighbors for each node. To be
specific, given a node pair (vi, vj) and a specified edge-type
φ (where φ ∈ {D,DT, TM,M}), the importance coefficient
between nodes vi and vj can then be defined as:

bφij = LeakyReLU(ηTφ [Whi||Whj ]), (16)

αφij = softmaxj(b
φ
ij) =

exp(bφij)∑
r∈Nφi

exp(bφir)
, (17)

where ηφ is the parameterized attention vector for edge-type
φ, and W is the mapping matrix applied to each node. Then,
the embedding of node vi for edge-type φ can be aggregated
by the neighbor’s embeddings with its corresponding weight
coefficients as:

hφi = σ(
∑
j∈Nφi

αφijWhj). (18)

Second, to best utilize the information from different types
of edges, and learn the relation and the interaction between
them, we adopt an edge-type level attention to fuse multiple
semantic structure information which can be revealed by edge-
type. Take a document node vi, which mainly fuses information
from edge-types D and DT , as an example, let hφi denote its
embedding under edge-type φ, the attention value βφi can be
represented as:

βφi = qT · tanh(Wφ · (hφi )T + bφ), (19)

where q is the parameterized attention vector, Wφ is the weight
matrix and bφ is the bias vector.

After obtaining the attention value of each edge-type, i.e.,
βDi and βDTi , we normalize them via softmax function:

γφi = softmax(βφi ) =
exp(βφi )∑
φ exp(βφi )

. (20)

With the learned weights as coefficients, the l-th layer embed-
ding of document node vi can then be obtained by:

h
(l)
i = ‖

φ∈{D,DT}
γφi · h

(φ,l)
i . (21)



IV. EXPERIMENTS
We first give the experimental setup, and then compare our

AS-GCN with state-of-the-arts on two network analysis tasks,
i.e., node classification and network visualization. Next, we
introduce the application on e-commerce search from JD. We
finally investigate the hyper-parameter sensitivity.

A. Experimental Settings

Datasets. We adopt four publicly available datasets, as shown
in Table II, to evaluate the performance of different methods.

TABLE II: Datasets descriptions.

Datasets #Nodes #Edges #Categories

Hep-Small 397 812 3
Cora-Enrich 2,708 5,429 7
DBLP-Five 6,936 12,353 5
Hep-Large 11,752 134,956 4

• Cora-Enrich1 is the text-rich version of the well-known ci-
tation network Cora dataset, where nodes are documents and
edges are citation links. The textual description is collected
from the titles, abstracts and all sentences from a document
containing citations. Each paper is manually labeled as one
of seven categories (Case Based, Genetic Algorithms, Neural
Networks, Probabilistic Methods, Reinforcement Learning,
Rule Learning, and Theory) based on their academic topics.

• DBLP-Five [13] includes a collection of documents in com-
puter field, where the title and abstract are extracted as text
for each document and the citation relationships are used to
form links between documents. All the documents are divided
into five categories (High-Performance Computing, Software
engineering, Computer networks, Theoretical computer sci-
ence, and Computer graphics: Multimedia) according to CCF
(China Computer Federation) classification.

• Hep-Small2 and Hep-Large2 are two citation datasets
about scientific documents in physics, where each node
is associated with textual description composed of its
title and abstract. Hep-Small contains 397 documents in
three categories (Nucl.Phys.Proc.Suppl, Phys.Rev.Lett, and
Commun.Math.Phys) connected by 812 links, and Hep-Large
contains 11,752 documents in four categories (Phys.Rev,
Phys.Lett, Nucl.Phys, and JHEP) connected by 134,956 links.

Baselines. We compare our proposed AS-GCN with the
following baselines, including seven state-of-the-art methods
and one variant of AS-GCN:
• GCN [6] is a semi-supervised graph neural network model

which derives node representation by aggregating information
from neighborhoods. Specifically, GCN is the base of our
approach AS-GCN.

• GAT [7] introduces the masked self-attention mechanism to
assign different neighbors with different specified weights.

• DGI [29] is an unsupervised graph neural network model
which learns node embeddings by leveraging local mutual
information maximization.
1http://zhang18f.myweb.cs.uwindsor.ca/datasets/
2https://www.cs.cornell.edu/projects/kddcup/datasets.html

• GraphSage [30] is an inductive network embedding method
which generalizes the aggregation beyond averaging to
generate node emebddings for previously unobserved nodes.

• AM-GCN [31] is a GCN-based method which performs
graph convolution over both topology and feature spaces.

• Geom-GCN [32] is a semi-supervised graph neural network
model utilizing a geometric aggregation mechanism to obtain
node representation.

• BiTe-GCN [17] is a semi-supervised graph neural network
architecture through bidirectional convolution of topology
and attributes.

• AS-GCN-Two-Stage is a variant of our AS-GCN. It removes
the distribution sharing mechanism, and constructs a tri-
typed network utilizing the fixed topic distribution and word
distribution to perform convolution throughout the training.

Parameter settings. For all baselines, we use the source codes
provided by the authors, and carefully turn parameters to get
optimal performance. For our model, we utilize two-layer
GCN as backbone, and employ pre-trained 300-dimensional
GloVe embeddings [33] to initialize word embeddings. In each
iteration of our framework, we select the top two topic nodes
for each document node to set edges, and the top ten word
nodes for each topic node to set edges. We set ReLU as the
activation function and apply a dropout rate of 0.5 to further
prevent overfitting. In addition, we set topic dimension in
NTM to 100, weight decay to 5e-4, and λ to 0.8 to balance
the loss of NTM and network learning module. We perform
early stopping when validation loss does not decrease for 10
consecutive epochs. For all methods, we run 5 times with the
same partition and report the average results. We use accuracy
and macro F1-score to evaluate performance of models.
Training strategy. We consider some empirical training strate-
gies similar as [34] to make our AS-GCN efficiently converge.
Specifically, we pre-train NTM for 200 epochs employing an
Adam optimizer with the learning rate of 1e-3, considering its
convergence speed is much slower than that of GCN. In joint
training, the NTM is trained with the learning rate of 5e-4,
while the learning rate of network learning module is set to
5e-3 because the NTM is relatively stable.

B. Comparison with Baselines

We first make a quantitative comparison on node classifica-
tion, and then a qualitative comparison on visualization. The
results of node classification are shown in Table III.
Comparison with state-of-the-art methods. Based on the
results, we make the following observations:

• Compared with all baselines, the proposed method AS-GCN
consistently performs the best across different datasets. In
particular, for ACC, AS-GCN achieves up to 20.51% on Hep-
Small and 12.99% on Cora-Enrich relative improvements,
respectively. These results illustrate the effectiveness of our
AS-GCN.

• The overwhelming performance superiority of AS-GCN over
backbone GCN implies that AS-GCN is capable of fully
utilizing the most informative semantic structure information



TABLE III: Comparisons on node classification.

Method Hep-Small Cora-Enrich DBLP-Five Hep-Large

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

GCN 0.6154 0.6183 0.8777 0.8596 0.9221 0.9142 0.4860 0.4862
GAT 0.6410 0.6334 0.8519 0.8454 0.9293 0.9234 0.4962 0.4917
DGI 0.5467 0.5468 0.7923 0.7694 0.8351 0.8080 0.4387 0.4197

GraphSage 0.5128 0.5134 0.8556 0.8481 0.9351 0.9068 0.4562 0.4256
AM-GCN 0.5897 0.5780 0.8852 0.8627 0.9163 0.9111 0.4409 0.4352

Geom-GCN 0.6410 0.6374 0.8963 0.8770 0.9307 0.9264 0.4834 0.4723
BiTe-GCN 0.6667 0.6749 0.9000 0.8936 0.9380 0.9368 0.5174 0.5058

AS-GCN-Two-Stage 0.6923 0.6939 0.9000 0.8921 0.9365 0.9290 0.5106 0.5042
AS-GCN 0.7179 0.7128 0.9222 0.9107 0.9495 0.9454 0.5362 0.5341

of text, so that the semantic architecture construction and
the discriminative convolution reinforce each other.

• In comparison with BiTe-GCN designed specifically for text-
rich network representation, our performance improvement
further demonstrates the effectiveness of our new mechanism
for designing an adaptive semantic architecture informed by
the given learning objective.

Comparison with variants of AS-GCN. As shown in Table
III, compared to GCN, AS-GCN-Two-Stage, which performs
information propagation on an augmented tri-typed network,
exhibits consistent improvement on all datasets. This validates
the effectiveness of constructing a new architecture suitable
for text-rich networks by utilizing the semantic structure infor-
mation of text, including the local word sequence semantics
and the global topic semantics. Furthermore, by introducing
the distribution sharing mechanism, the results of AS-GCN
are generally better than AS-GCN-Two-Stage on all datasets.
This further confirms the necessity of designing an adaptive
semantic architecture which learns both NTM and network
learning module in an end-to-end manner to let them mutually
enhance each other.
Visualization. For an intuitive comparison, we visualize the
embeddings of some representative methods (i.e., GCN, GAT,
Geom-GCN and our AS-GCN) on the DBLP dataset as
an example. We utilize the well-known t-SNE tool [35] to
project node embeddings to two dimensions. Different colors
correspond to different categorical labels of documents.

As shown in Figure 3, GCN, GAT and Geom-GCN (which
ignore the local word sequence semantics and the global topic
semantics of texts) are less satisfactory, i.e., the documents
belong to different categories are sometimes mixed with each
other. The visualization of our AS-GCN performs best, where
the learned embedding has a denser cluster structure, the highest
intra-class similarity and the most distinctive boundaries among
different classes.

C. Parameter Sensitivity

We demonstrate parameter sensitivity of AS-GCN using the
DBLP dataset in Figure 4.
Analysis of topic embedding dimension K. We test the effect
of the dimension of topic embedding, and vary it from 50 to
300. The result is shown in Figure 4(a). With the increase of
the dimension of topic embedding, the accuracies increase first

and then start to decrease. This parameter is relatively sensitive
because the value of topic embedding dimension can directly
influence the effectiveness of text information propagation.

(a) GCN (b) GAT

(c) Geom-GCN (d) AS-GCN

Fig. 3: The visualization of the node embeddings learned by (a)
GCN, (b) GAT, (c) Geom-GCN and (d) AS-GCN on the DBLP
dataset. Different colors correspond to different categorical
labels in ground truth.

Analysis of weighted coefficient of NTM loss λ. To achieve
the best performance of the model, we test the effect of the
coefficient λ of NTM loss. The result is shown in Figure 4(b).
With the increase of the coefficient λ, the performance shows a
trend of first rising and then decreasing. It is reasonable since
a too small coefficient of NTM loss would weaken the role of
NTM on the process of network construction, whereas a too
large coefficient would weaken the role of classification loss.
Analysis of the number of top topics. In order to check
the impact of the number of edges between document nodes
and topic nodes, we study the performance of AS-GCN with
various number of edges ranging from 1 to 5 in Figure 4(c).
For DBLP, the accuracies show a trend of first rising and then



(a) Dimension of topic embedding (b) Weighted coefficient of NTM loss

(c) Number of top topic (d) Number of top word

Fig. 4: Impact of hyper-parameters on DBLP.

slowly decreasing. This is also consistent with the fact that
most documents in this dataset contain one or two topics [36].
Analysis of the number of top words. As for the number
of edges between topic nodes and word nodes, we can see
that with the growth of the numbers of edges, the performance
also rises first, but the performance will drop quickly if the
number of edges is larger than 10 for DBLP in Figure 4(d). It
is probably because a small number of edges between topic
nodes and word nodes would result in information loss and
ineffective information propagation, whereas too many edges
would introduce more noise.

V. APPLICATION ON E-COMMERCE SEARCH

Dataset description. To further validate AS-GCN’s effective-
ness, we collect a JD e-commerce dataset and apply AS-GCN
on this dataset to solve a classical e-commerce search problem
from JD.com, i.e., the relevance estimation between the query
and the item. The dataset contain 6.5M queries and 50M items.
We assume that the topic information exists in these queries and
items, and it is usually represented by the tree-structure category
knowledge. For example, an item of ‘red dress’ belongs to
‘clothing (first-level category) - women’s wear (second-level
category) - dress (third-level category)’. There are in total 191
first-level categories, 2,064 second-level categories and 19,570
third-level categories in our collected data. In addition, we
extract 60K product phrases and 12K attribute phrases from
this data, and use these phrases in AS-GCN model to achieve
more accurate relevance estimation.

Baselines and metrics. We compare two kinds of baseline
algorithms including text matching models and GCN mod-
els. Specifically, in text matching models, we compare two
representation-based models (MV-LSTM [37] and ARC-I [38])
and three interaction-based models (K-NRM [39], ARC-II [38]
and MatchPyramid [40]). The former models learn two separate
embeddings of the query and item through a double-tower
neural network structure. The latter models fuse the query’s
and item’s embedding and input them into the unique neural
network. DUET [41], as the mixed model of representation-
based style and interaction-based style, is also used as one of
our baseline algorithms. For GCN models, we compare AS-
GCN with some representative models including GCN, GAT
and BiTe-GCN which have been introduced in Section IV-A.

We choose six kinds of evaluation metrics to measure the
model’s quality. They are AUC (Area Under the receiver
operating characteristic Curve), accuracy, precision, recall, F1-
score and FNR (False Negative Rate). The lower FNR value
implies the better model, while the other metrics are opposite.
Experimental results and analysis. The comparison results
are shown in Table IV. Overall, GCN methods generally
outperform text matching methods. For example, GCN out-
performs MV-LSTM by 1.8% on AUC and 39.5% on FNR
respectively. This improvement is mainly attributed to the
positive aggregation function from the nodes’ neighbor infor-
mation. In GCN methods, BiTe-GCN has better results than
GCN and GAT because of the distinctive mechanism of the
bidirectional convolution of topology and attributes. However,
BiTe-GCN does not consider the effect of different level’s
category information to the relevance estimation. AS-GCN
ingeniously incorporates the category information as the topic
information in order to better guide the relevance estimation,
so that it outperforms all of the GCN methods including BiTe-
GCN. Because the rate of the negative examples are higher
than that of the positive examples in the search data, under
the function of the neighbor information aggregation, it is
easier to generate false negative examples for GCN methods
than text matching methods and this is why GCN methods
under-perform text matching methods in Recall.

VI. RELATED WORK

In line with the focus of our work, we first briefly review
the most related work on graph neural networks (GNNs) for
text-rich network representation and text analysis, and then
introduce methods for solving the homophily assumption of
GNNs.

A. GNNs for Text-Rich Network Representation

Several recent works have studied the text-rich network
representation. For example, Chen et al. [42] augment the
complex e-commercial data into a text-rich heterogeneous e-
commercial network to produce meaningful representations
for applications such as produce classification. Shi et al. [16]
propose an unsupervised framework HyperMine, which exploits
multi-granular contexts and combines signals from both text and
network, to discover hypernymy in text-rich networks. Shang



TABLE IV: Comparisons on e-commerce dataset. The metric of AUC is the most important evaluation metric.

Types Methods AUC(*) Accuracy Precision Recall F1-score FNR

Text matching methods

MV-LSTM 0.8278 0.8023 0.8021 0.9873 0.8851 0.8224
K-NRM 0.8021 0.7918 0.7942 0.9854 0.8796 0.8618
ARC-I 0.7345 0.7771 0.7769 0.9975 0.8735 0.9669
ARC-II 0.7783 0.7920 0.7915 0.9915 0.8803 0.8815

MatchPyramid 0.8007 0.7946 0.7988 0.9806 0.8805 0.8336
DUET 0.8077 0.7799 0.7789 0.9980 0.8749 0.9563

GCN methods

GCN 0.8458 0.8580 0.8816 0.9425 0.9110 0.4272
GAT 0.8523 0.8539 0.8819 0.9361 0.9082 0.4234

BiTe-GCN 0.8564 0.8598 0.8847 0.9409 0.9119 0.4139
AS-GCN 0.8614 0.8600 0.8850 0.9408 0.9120 0.4128

et al. [43] present a hierarchical embedding and clustering
framework which consumes a text-rich network as the input
for automatic topic taxonomy construction. Very recently, Wang
et al. [44] present a community-enhanced retrieval model
for text-rich heterogeneous information networks to improve
retrieval accuracy (content relevance). Jin et al. [17] introduce a
new graph convolutional network architecture via bidirectional
convolution of topology and attributes on text-rich networks.

B. GNNs for Text Analysis

As GNNs become the dominant tools for network represen-
tation learning, several efforts have been made to apply GNNs
for boosting performance of text analysis. For example, Text
GCN [45] constructs a heterogeneous word document network
for a corpus based on word co-occurrence and document
word relations, and turns document classification into a node
classification problem. TensorGCN [26] utilizes the semantic,
syntactic, and sequential contextual information from text
to construct a network, and then builds a network-based
learning framework which performs intra-graph and inter-
graph propagation to realize text classification. HeteGCN [46]
simplifies Text GCN by dissecting into several HeteGCN
models, so as to learn feature embeddings and derive document
embeddings.

C. Homophily Assumption

In recent years, the limitation of homophily assumption of
GNNs has drawn considerable attention [15]. Existing methods
for relieving the homophily assumption can be generally
divided into four families, that is, topology optimization, self-
supervised, skip connection and attention-based methods.

The first family usually adopts the idea of topology opti-
mization to improve GNNs. DropEdge [3] proposes to reduce
the message passing by randomly deleting a certain number
of edges from the input network. Geom-GCN [32] proposes a
novel geometric aggregation scheme to overcome neighborhood
structural information loss and the lack of long-range depen-
dencies. The second family typically augments the original
label set by adding the high-credible labels derived from GNNs.
M3S [47] proposes a multi-stage training algorithm which first
adds confident data with virtual labels to the label set, and then
applies DeepCluster on the embedding process of GNNs. The
third family adaptively selects the appropriate neighborhoods

for each node from the perspective of jumping knowledge.
JKNet [48] introduces jumping knowledge networks, which
flexibly leverages different neighborhood ranges for each node,
to enable better structure-aware representation. In addition,
some attention-based works can also be considered to solve
the topological limitations of GNNs. GAT [7] introduces the
attention mechanisms to allocate different neighbors with
different weights.

Though those methods improve the performance of GNNs
on learning representations of text-rich networks, they still
have several limitations. That is, they fail to fully embody
the most informative semantic structure information of text
in the process of modeling. At the same time, the network
structure we utilized is often imperfect. Therefore, it is of great
significance to explore an adaptive architecture informed by
the ground truth.

VII. CONCLUSION

We propose a new adaptive semantic architecture of graph
neural network, namely AS-GCN, which unifies neural topic
model and GCN, for text-rich network representation. By
integrating neural topic model and GCN in a unified framework,
our model can embed richer structural semantics, including the
local word sequence structure and the global topic structure, in
the learned representation to make the model more powerful.
Meanwhile, by introducing the network learning module
which performs a semantic-aware propagation of information
on the augmented tri-typed network, our method can not
only effectively alleviate the homophily assumption of the
previous GCN methods, but also well realize the optimal
balance between topology and attributes, that is, learning the
contributions of network part and text part automatically aiming
to the given learning objectives such as node classification.

Experimental results on several text-rich networks demon-
strate that our new adaptive semantic architecture has a
significant improvement over the state-of-the-art methods.
Moreover, this architecture is well applied in e-commerce
search scenes from JD. Last but not the least, this architecture
is almost orthogonal to most existing GNNs and thus can be
readily incorporated into various GNNs to further improve
their performance.
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