AS Mathematics Unit 1: Pure Mathematics A

Solutions and Mark Scheme

Question Number	Solution	Mark	AO	Notes
1. (a) (b)	$A(1,-3)$ A correct method for finding the radius, e.g., trying to rewrite the equation of the circle in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$ Radius $=5$ Gradient $A P=\frac{\text { increase in } y}{\text { increase in } x}$ Gradient $A P=\frac{(-7)-(-3)}{4-1}=-\frac{4}{3}$ Use of $m_{\mathrm{tan}} \times m_{\mathrm{rad}}=-1$ Equation of tangent is: $y-(-7)=\frac{3}{4}(x-4)$	B1 M1 A1 M1 A1 M1 A1 [7]	AO1 AO1 AO1 AO1 AO1 AO1 AO1	(f.t. candidate's coordinates for A) (f.t. candidate's gradient for $A P$)
2.	$7 \sin ^{2} \theta+1=3\left(1-\sin ^{2} \theta\right)-\sin ^{2} \theta$ An attempt to collect terms, form and solve a quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta+b)(c \sin \theta+d), \text { with } a \times \mathrm{c}=$ candidate's coefficient of $\sin ^{2} \theta$ and $b \times d=$ candidate's constant $\begin{aligned} & 10 \sin ^{2} \theta+\sin \theta-2=0 \\ & \Rightarrow(2 \sin \theta+1)(5 \sin \theta-2)=0 \\ & \Rightarrow \sin \theta=-\frac{1}{2}, \sin \theta=\frac{2}{5} \\ & \theta=210^{\circ}, 330^{\circ} \\ & \theta=23.57(8178 \ldots)^{\circ}, 156 \cdot 42(182 \ldots)^{\circ} \end{aligned}$ Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range. $\sin \theta=+,-$, f.t. for 3 marks, $\quad \sin \theta=-$, -, f.t. for 2 marks $\sin \theta=+,+$, f.t. for 1 mark	M1 m1 A1 B1 B1 B1 [6]	AO1 AO1 AO1 AO1 AO1 AO1	(correct use of $\cos ^{2} \theta=$ $1-\sin ^{2} \theta$) (c.a.o.)

Question Number	Solution	Mark	AO	Notes
3.	$\begin{aligned} & y+k=(x+h)^{3} \\ & y+k=x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \end{aligned}$ Subtracting y from above to find k $k=3 x^{2} h+3 x h^{2}+h^{3}$ Dividing by h and letting $h \rightarrow 0$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{h \rightarrow 0}^{\lim } \frac{k}{h}=3 x^{2}$	M1 A1 M1 A1 M1 A1 [6]	AO2 AO2 AO2 AO2 AO2 AO2	(c.a.o.)
4.	Correct use of the Factor Theorem to find at least one factor of $f(x)$ At least two factors of $f(x)$ $f(x)=(x+3)(x-4)(2 x-5)$ Use of the fact that $f(x)$ intersects the y-axis when $x=0$ $f(x)$ intersects the y-axis at $(0,60)$	M1 A1 A1 M1 A1 [5]	AO3 AO3 AO3 AO3 AO3	(accept $(x-2 \cdot 5)$ as a factor) (c.a.o.) (f.t. candidate's expression for $f(x)$)
5. (a) (b) (c)	A correct method for finding the coordinates of the mid-point of $A B$ D has coordinates (-1,5) $\begin{aligned} & \text { Gradient of } A B=\frac{\text { increase in } y}{\text { increase in } x} \\ & \text { Gradient of } A B=-\frac{6}{2} \\ & \text { Gradient of } C D=\frac{\text { increase in } y}{\text { increase in } x} \end{aligned}$ Gradient of $C D=\frac{7}{21}$ $-\frac{6}{2} \times \frac{7}{21}=-1 \Rightarrow A B \text { is perpendicular to } C D$ A correct method for finding the length of $A D$ or $C D$ $A D=\sqrt{10}$ $C D=\sqrt{490}$ $\tan C \hat{A} B=\frac{C D}{A D}$ $\tan C \hat{A} B=7$ Isosceles	M1 A1 M1 A1 (M1) A1 B1 M1 A1 A1 M1 A1 B1 [12]	AO1 AO1 AO1 AO1 (AO1) AO1 AO2 AO1 AO1 AO1 AO1 AO1 AO2	(or equivalent) (to be awarded only if the previous M1 is not awarded) (or equivalent)

Question Number	Solution	Mark	AO	Notes
6. (a) (b)	For statement A Choice of $c \neq-\frac{1}{2}$ and $d=-c-1$ Correct verification that given equation is satisfied For statement B Use of the fact that any real number has an unique real cube root $\begin{aligned} & (2 c+1)^{3}=(2 d+1)^{3} \Rightarrow 2 c+1=2 d+1 \\ & 2 c+1=2 d+1 \Rightarrow c=d \end{aligned}$	M1 A1 M1 A1 A1 [5]	AO2 AO2 AO2 AO2 AO2	
7. (a) (b)	 Concave up curve and y-coordinate of minimum $=-4$ x-coordinate of minimum $=-6$ Both points of intersection with x-axis $y=-\frac{1}{2} f(x)$ If B2 not awarded $y=r f(x)$ with r negative	B1 B1 B1 B2 (B1) [5]	AO1 AO1 AO1 AO2 AO2 (AO2)	

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& Solution \& Mark \& AO \& Notes \\
\hline \begin{tabular}{l}
8. (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
A kite \\
A correct method for finding \(\operatorname{TR}(T S)\)
\[
T R(T S)=\sqrt{ } 96
\] \\
Area \(\operatorname{OTR}(O T S)=\frac{1}{2} \times \sqrt{96} \times 5\) \\
Area OTRS \(=2 \times\) Area \(\operatorname{OTR}(\) OTS \()\) \\
Area OTRS \(=20 \sqrt{ } 6\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
m1 \\
A1 \\
[6]
\end{tabular} \& AO2
AO3
AO3
AO3
AO3
AO3 \& \begin{tabular}{l}
(f.t. candidate's derived value for \(\operatorname{TR}(T S)\)) \\
(c.a.o.)
\end{tabular} \\
\hline 9. \& \begin{tabular}{l}
An expression for \(b^{2}-4 a c\) for the quadratic equation \(4 x^{2}-12 x+m=0\), \\
with at least two of \(a, b\) or \(c\) correct
\[
\begin{aligned}
\& b^{2}-4 a c=12^{2}-4 \times 4 \times m \\
\& b^{2}-4 a c>0 \\
\& (0<) m<9
\end{aligned}
\] \\
An expression for \(b^{2}-4 a c\) for the quadratic equation \(3 x^{2}+m x+7=0\), with at least two of \(a, b\) or \(c\) correct
\[
\begin{aligned}
\& b^{2}-4 a c=m^{2}-84 \\
\& m^{2}<81 \Rightarrow b^{2}-4 a c<-3 \\
\& b^{2}-4 a c<0 \Rightarrow \text { no real roots }
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A1 \\
(M1) \\
A1 \\
A1 \\
A1 \\
[7]
\end{tabular} \& AO1
AO1
AO1
AO1

AO2
AO2
AO2 \& (to be awarded only if the corresponding M1 is not awarded above)

\hline 10. (a) \& | $\begin{aligned} & (\sqrt{ } 3-\sqrt{ } 2)^{5}=(\sqrt{ } 3)^{5}+5(\sqrt{ } 3)^{4}(-\sqrt{ } 2) \\ & +10(\sqrt{ } 3)^{3}(-\sqrt{ } 2)^{2}+10(\sqrt{ } 3)^{2}(-\sqrt{ } 2)^{3} \\ & +5(\sqrt{ } 3)(-\sqrt{ } 2)^{4}+(-\sqrt{ } 2)^{5} \end{aligned}$ |
| :--- |
| (If B2 not awarded, award B1 for three or four correct terms) $(\sqrt{ } 3-\sqrt{ } 2)^{5}=9 \sqrt{ } 3-45 \sqrt{ } 2+60 \sqrt{ } 3-60 \sqrt{ } 2+$ $20 \sqrt{ } 3-4 \sqrt{ } 2$ |
| (If B2 not awarded, award B1 for three, four or five correct terms) $(\sqrt{3}-\sqrt{2})^{5}=89 \sqrt{ } 3-109 \sqrt{ } 2$ |
| Since $(\sqrt{ } 3-\sqrt{ } 2)^{5} \approx 0$, we may assume that $89 \sqrt{ } 3 \approx 109 \sqrt{ } 2$ |
| Either: $\quad 89 \sqrt{ } 3 \times \sqrt{ } 3 \approx 109 \sqrt{ } 2 \times \sqrt{ } 3$ $\sqrt{6} \approx \frac{267}{109}$ |
| Or $89 \sqrt{ } 3 \times \sqrt{ } 2 \approx 109 \sqrt{ } 2 \times \sqrt{ } 2$ $\sqrt{6} \approx \frac{218}{89}$ | \& | B2 |
| :--- |
| B2 |
| B1 |
| M1 |
| m1 |
| A1 |
| (m1) |
| (A1) |
| [8] | \& AO1

AO1
AO1
AO3
AO3
AO3
$(A O 3)$

$(A O 3)$ \& | (five or six terms correct) |
| :--- |
| (six terms correct) |
| (f.t. one error) |
| (f.t candidate's answer to part (a) provided one coefficient is negative) |
| (f.t candidate's answer to part (a) provided one coefficient is negative) (c.a.o.) |
| (f.t candidate's answer to part (a) provided one coefficient is negative) (c.a.o.) |

\hline
\end{tabular}

Question Number	Solution	Mark	AO	Notes
11.	$\begin{aligned} & a>0 \\ & b>a+2 \\ & b<6+4 a-a^{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { [3] } \end{aligned}$	$\begin{aligned} & \text { AO1 } \\ & \text { AO1 } \\ & \text { AO1 } \end{aligned}$	
12.	Let $p=\log _{a} 19, q=\log _{7} a$ Then $19=a^{p}, a=7^{q}$ $\begin{aligned} & 19=a^{p}=\left(7^{q}\right)^{p}=7^{q p} \\ & q p=\log _{7} 19 \end{aligned}$ $\log _{7} \mathrm{a} \times \log _{\mathrm{a}} 19=\log _{7} 19$	B1 B1 B1 [3]	AO2 AO2 AO2	(the relationship between log and power) (the laws of indices) (the relationship between log and power) (convincing)
13. $\begin{aligned} & \text { (a) } \\ & \\ & \\ & \text { (b) }\end{aligned}$	Choice of variable (x) for $A B \Rightarrow A C=x+2$ $\begin{aligned} & (x+2)^{2}=x^{2}+12^{2}-2 \times x \times 12 \times \frac{2}{3} \\ & x^{2}+4 x+4=x^{2}+144-16 x \\ & 20 x=140 \Rightarrow x=7 \\ & A B=7, A C=9 \end{aligned}$ $\begin{aligned} & \sin A \hat{B} C=\frac{\sqrt{5}}{3} \\ & \frac{\sin B \hat{A} C}{12}=\frac{\sin A \hat{B} C}{9} \\ & \sin B \hat{A} C=\frac{4 \sqrt{5}}{9} \end{aligned}$	B1 M1 A1 A1 B1 M1 A1 [7]	AO3 AO3 AO3 AO3 AO1 AO1 AO1	(Amend proof for candidates who choose $A C=x$) f.t. candidate's derived values for $A C$ and $\sin A \hat{B} C)$ (c.a.o.)
14. (a) (b)	$\begin{aligned} & \text { Height of box }=\frac{9000}{2 x^{2}} \\ & S=2 \times\left(2 x \times x+\frac{9000}{2 x^{2}} \times x+\frac{9000}{2 x^{2}} \times 2 x\right. \\ & S=4 x^{2}+\frac{27000}{x} \\ & \frac{\mathrm{~d} S}{\mathrm{~d} x}=8 x-\frac{27000}{x^{2}} \\ & \text { Putting derived } \frac{\mathrm{d} S}{\mathrm{~d} x}=0 \\ & x=15 \end{aligned}$ Stationary value of S at $x=15$ is 2700 A correct method for finding nature of the stationary point yielding a minimum value	B1 M1 A1 B1 M1 A1 A1 B1 [8]	AO3 AO3 AO3 AO1 AO1 AO1 AO1 AO1	(o.e.) (f.t. candidate's derived expression for height of box in terms of x) (convincing) (f.t. candidate's $\frac{\mathrm{d} S}{\mathrm{~d} x}$) (c.a.o)

Question Number	Solution	Mark	AO	Notes
15. (a) (b) (c)	A represents the initial population of the island. $\begin{aligned} & 100=A \mathrm{e}^{2 k} \\ & 160=A \mathrm{e}^{12 k} \end{aligned}$ Dividing to eliminate A $\begin{aligned} & 1 \cdot 6=\mathrm{e}^{\mathrm{i} 0 k} \\ & k=\frac{1}{10} \ln 1.6=0.047 \\ & A=91(\cdot 0283) \end{aligned}$ When $t=20, N=91(.0283) \times \mathrm{e}^{0.94}$ $N=233$	B1 B1 M1 A1 A1 B1 M1 A1 [8]	AO3 AO1 AO1 AO1 AO1 AO1 AO1 AO3	(both values) (convincing) (o.e.) (f.t. candidate's derived value for A) (c.a.o.)
16.	$f^{\prime}(x)=3 x^{2}-10 x-8$ Critical values $x=-\frac{2}{3}, x=4$ For an increasing function, $f^{\prime}(x)>0$ For an increasing function $x<-\frac{2}{3}$ or $x>4$ Deduct 1 mark for each of the following errors the use of non-strict inequalities the use of the word 'and' instead of the word 'or'	M1 A1 m1 A2 [5]	AO1 AO1 AO1 AO2 AO2	(At least one non-zero term correct) (c.a.o) (f.t. candidate's derived two critical values for x)

