AS Mathematics Unit 1: Pure Mathematics A

Question	Solution	Mark	AO	Notes
Number 1. (a)	A(1, - 3)	B1	AO1	
	A correct method for finding the radius, e.g., trying to rewrite the equation of the circle in the form $(x - a)^2 + (y - b)^2 = r^2$	M1	AO1	
	Radius = 5	A1	AO1	
(b)	Gradient $AP = \frac{\text{increase in } y}{\text{increase in } x}$	M1	AO1	
	Gradient $AP = \frac{(-7) - (-3)}{4 - 1} = -\frac{4}{3}$	A1	AO1	(f.t. candidate's coordinates for <i>A</i>)
	Use of $m_{tan} \times m_{rad} = -1$	M1	AO1	
	Equation of tangent is: $y - (-7) = \frac{3}{4}(x - 4)$	A1 [7]	AO1	(f.t. candidate's gradient for <i>AP</i>)
2.	$7\sin^2\theta + 1 = 3(1 - \sin^2\theta) - \sin^2\theta$	M1	AO1	(correct use of $\cos^2\theta =$
	An attempt to collect terms, form and solve a quadratic equation in sin θ , either by using the quadratic formula or by getting the expression into the form			$1 - \sin^2 \theta$)
	$(a \sin \theta + b)(c \sin \theta + d)$, with $a \times c =$ candidate's coefficient of $\sin^2 \theta$ and $b \times d =$ candidate's constant	m1	AO1	
	$10 \sin^2 \theta + \sin \theta - 2 = 0$ $\Rightarrow (2 \sin \theta + 1)(5 \sin \theta - 2) = 0$ $\Rightarrow \sin \theta = -\frac{1}{2}, \sin \theta = \frac{2}{5}$	A1	AO1	(c.a.o.)
	<i>θ</i> = 210°, 330°	B1 B1	AO1 AO1	
	<i>θ</i> = 23·57(8178)°, 156·42(182)°	B1	AO1	
	Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.			
	$\sin\theta = +, -, \text{ f.t. for 3 marks}, \sin\theta = -, -, \text{ f.t.}$ for 2 marks $\sin\theta = +, +, \text{ f.t. for 1 mark}$			
		[6]		

Solutions and Mark Scheme

Question	Solution	Mark	AO	Notes
Number 3.	$y + k = (x + h)^3$	M1	AO2	
0.	$y + k = (x + h)^{2}$ $y + k = x^{3} + 3x^{2}h + 3xh^{2} + h^{3}$	A1	AO2	
	Subtracting y from above to find k	M1	AO2	
	$k = 3x^2h + 3xh^2 + h^3$	A1	AO2	
	Dividing by h and letting $h \rightarrow 0$	M1	AO2	
	$\frac{dy}{dx} = \frac{\text{limit}}{h \to 0} \frac{k}{h} = 3x^2$	A1 [6]	AO2	<i>(</i> c.a.o.)
4.	Correct use of the Factor Theorem to find at			
	least one factor $of f(x)$	M1	AO3	
	At least two factors of $f(x)$	A1	AO3	(accept ($x - 2.5$) as a factor)
	f(x) = (x+3)(x-4)(2x-5)	A1	AO3	(c.a.o.)
	Use of the fact that $f(x)$ intersects the y-axis when $x = 0$	M1	AO3	
	f(x) intersects the y-axis at (0, 60)	A1 [5]	AO3	(f.t. candidate's expression for $f(x)$)
5. (a)	A correct method for finding the coordinates			
	of the mid-point of AB	M1	AO1	
	D has coordinates (- 1, 5)	A1	AO1	
	Gradient of $AB = \frac{\text{increase in } y}{\text{increase in } x}$	M1	AO1	
	Gradient of $AB = -\frac{6}{2}$	A1	AO1	(or equivalent)
	Gradient of $CD = \frac{\text{increase in } y}{\text{increase in } x}$	(M1)	(AO1)	(to be awarded only if the previous M1 is not
	Gradient of $CD = \frac{7}{21}$	A1	AO1	awarded) (or equivalent)
	$-\frac{6}{2} \times \frac{7}{21} = -1 \Longrightarrow AB$ is perpendicular to CD	B1	AO2	
(b)	A correct method for finding the length of AD or $CDAD = \sqrt{10}CD = \sqrt{10}$	M1 A1	AO1 AO1	
	$CD = \sqrt{490}$	A1	AO1	
	$\tan CAB = \frac{1}{AD}$	M1	AO1	
	$\tan C\hat{A}B = 7$	A1	AO1	
(c)	Isosceles	B1	AO2	
		[12]		

Question Number	Solution	Mark	AO	Notes
6. (a)	For statement A Choice of $c \neq -\frac{1}{2}$ and $d = -c - 1$ Correct verification that given equation is	M1	AO2	
	satisfied	A1	AO2	
(b)	For statement B Use of the fact that any real number has an unique real cube root $(2c + 1)^3 = (2d + 1)^3 \Rightarrow 2c + 1 = 2d + 1$ $2c + 1 = 2d + 1 \Rightarrow c = d$	M1 A1 A1 [5]	AO2 AO2 AO2	
7. (a)	(-11, 0) (-6, -4)			
	Concave up curve and <i>y</i> -coordinate of minimum = -4 <i>x</i> -coordinate of minimum = -6 Both points of intersection with <i>x</i> -axis	B1 B1 B1	AO1 AO1 AO1	
(b)	$y = -\frac{1}{2}f(x)$	B2	AO2 AO2	
	If B2 not awarded y = rf(x) with <i>r</i> negative	(B1) [5]	AO2 (AO2)	

Question Number	Solution	Mark	AO	Notes
8. (a)	A kite	B1	AO2	
(b)	A correct method for finding <i>TR</i> (<i>TS</i>)	M1	AO3	
	$TR(TS) = \sqrt{96}$	A1	AO3	
	Area OTR(OTS) = $\frac{1}{2} \times \sqrt{96} \times 5$	M1	AO3	(f.t. candidate's derived value for <i>TR</i> (<i>TS</i>))
	Area OTRS = $2 \times \text{Area OTR}(OTS)$	m1	AO3	
	Area $OTRS = 20\sqrt{6}$	A1 [6]	AO3	(c.a.o.)
9.	An expression for $b^2 - 4ac$ for the quadratic			
	equation $4x^2 - 12x + m = 0$,			
	with at least two of a, b or c correct	M1	AO1	
	$b^2 - 4ac = 12^2 - 4 \times 4 \times m$	A1	AO1	
	$b^2 - 4ac > 0$	m1	AO1	
	(0<) <i>m</i> < 9	A1	AO1	
	An expression for $b^2 - 4ac$ for the quadratic equation $3x^2 + mx + 7 = 0$, with at least two of <i>a</i> , <i>b</i> or <i>c</i> correct	(M1)		(to be awarded only if the corresponding M1 is not awarded above)
		A1	A02	,
	$b^2 - 4ac = m^2 - 84$	A1	AO2 AO2	
	$m^2 < 81 \Rightarrow b^2 - 4ac < -3$	A1	AO2 AO2	
	$b^2 - 4ac < 0 \Rightarrow$ no real roots	[7]	AUZ	
10. (a)	$(\sqrt{3} - \sqrt{2})^5 = (\sqrt{3})^5 + 5(\sqrt{3})^4 (-\sqrt{2}) + 10(\sqrt{3})^3 (-\sqrt{2})^2 + 10(\sqrt{3})^2 (-\sqrt{2})^3 + 5(\sqrt{3})(-\sqrt{2})^4 + (-\sqrt{2})^5$	B2	AO1	(five or six terms
			AO1	correct)
	(If B2 not awarded, award B1 for three or			
	four correct terms)			
	$(\sqrt{3} - \sqrt{2})^5 = 9\sqrt{3} - 45\sqrt{2} + 60\sqrt{3} - 60\sqrt{2} + 60\sqrt{3} - 60\sqrt{3} - 60\sqrt{2} + 60\sqrt{3} + 60\sqrt{3} - 60\sqrt{2} + 60\sqrt{3} + 60$	B2	AO1	(six terms correct)
	$20\sqrt{3} - 4\sqrt{2}$	DZ	AO1	(Six terms correct)
	(If B2 not awarded, award B1 for three, four		AUT	
	or five correct terms)	B1	AO1	(f.t. one error)
	$(\sqrt{3} - \sqrt{2})^5 = 89\sqrt{3} - 109\sqrt{2}$			(
(b)	Since $(\sqrt{3} - \sqrt{2})^5 \approx 0$, we may assume that $89\sqrt{3} \approx 109\sqrt{2}$	M1	AO3	(f.t candidate's answer to part (a) provided one coefficient is negative)
	Either: $89\sqrt{3} \times \sqrt{3} \approx 109\sqrt{2} \times \sqrt{3}$	m1	AO3	(f.t candidate's answer to part (<i>a</i>) provided one
	$\sqrt{6} \approx \frac{267}{109}$	A1	AO3	coefficient is negative) (c.a.o.)
	$\begin{array}{ccc} 109 \\ \text{Or} & 89\sqrt{3} \times \sqrt{2} \approx 109\sqrt{2} \times \sqrt{2} \end{array}$			
		(m1)	(AO3)	(f.t candidate's answer to part (<i>a</i>) provided one
	$\sqrt{6} \approx \frac{218}{2}$			coefficient is negative)
	<u>vo~</u> <u>89</u>	(A1) [8]	(AO3)	(c.a.o.)

Question	Solution	Mark	AO	Notes
Number 11.	<i>a</i> > 0	B1	AO1	
11.		B1	AO1	
	b > a + 2 $b < 6 + 4a - a^2$	B1	AO1	
		[3]		
12.	Let $p = \log_a 19$, $q = \log_7 a$	[•]		
	Then $19 = a^p$, $a = 7^q$	B1	AO2	(the relationship between log and power)
	$19 = a^p = (7^q)^p = 7^{qp}$	B1	AO2	(the laws of indices)
	$qp = \log_7 19$			(the relationship between log and power)
	$\log_7 a \times \log_a 19 = \log_7 19$	B1 [3]	AO2	(convincing)
13. (a)	Choice of variable (x) for $AB \Rightarrow AC = x + 2$	B1	AO3	
	$(x+2)^{2} = x^{2} + 12^{2} - 2 \times x \times 12 \times \frac{2}{3}$	M1	AO3	
	$x^{2} + 4x + 4 = x^{2} + 144 - 16x$ $20x = 140 \Rightarrow x = 7$	A1	AO3	(Amend proof for
	AB = 7, AC = 9	A1	AO3	candidates who choose $AC = x$)
(b)	$\sin A\hat{B}C = \frac{\sqrt{5}}{3}$	B1	AO1	
	$\frac{\sin \hat{BAC}}{12} = \frac{\sin \hat{ABC}}{9}$	M1	AO1	f.t. candidate's derived values for AC and
	A [E			$\sin ABC$)
	$\sin B\hat{A}C = \frac{4\sqrt{5}}{9}$	A1 [7]	AO1	(c.a.o.)
14. (a)	Height of box $=\frac{9000}{2x^2}$	B1	AO3	(o.e.)
	$2x^{2}$ $S = 2 \times (2x \times x + \frac{9000}{2x^{2}} \times x + \frac{9000}{2x^{2}} \times 2x$ $S = 4x^{2} + \frac{27000}{x}$ $\frac{dS}{dx} = 8x - \frac{27000}{x^{2}}$	M1	AO3	(f.t. candidate's derived expression for height of box in terms of <i>x</i>)
	$S = 4x^2 + \frac{1}{x}$	A1	AO3	(convincing)
(b)	$\frac{\mathrm{d}S}{\mathrm{d}x} = 8x - \frac{27000}{x^2}$	B1	AO1	
	Putting derived $\frac{dS}{dx} = 0$	M1	AO1	DL
	x = 15	A1	AO1	(f.t. candidate's $\frac{dS}{dx}$)
	Stationary value of S at $x = 15$ is 2700 A correct method for finding nature of the	A1	AO1	(c.a.o)
	stationary point yielding a minimum value	B1 [8]	AO1	

Question Number	Solution	Mark	AO	Notes
15. (a) (b)	A represents the initial population of the island. $100 = Ae^{2k}$	B1	AO3	
	$160 = Ae^{12k}$ Dividing to eliminate A $1 \cdot 6 = e^{10k}$	B1 M1 A1	AO1 AO1 AO1	(both values)
	$k = \frac{1}{10} \ln 1.6 = 0.047$	A1	AO1	(convincing)
(c)	A = 91(.0283) When $t = 20$, $N = 91(.0283) \times e^{0.94}$	B1 M1	AO1 AO1	(o.e.) (f.t. candidate's derived value for <i>A</i>)
	<i>N</i> = 233	A1 [8]	AO3	(c.a.o.)
16.	$f'(x) = 3x^2 - 10x - 8$ Critical values $x = -\frac{2}{3}, x = 4$	M1	AO1	(At least one non-zero term correct)
	Critical values $x = -\frac{2}{3}$, $x = 4$	A1	AO1	(c.a.o)
	For an increasing function, $f'(x) > 0$	m1	AO1	
	For an increasing function $x < -\frac{2}{3}$ or $x > 4$	A2	AO2 AO2	(f.t. candidate's derived two critical values for <i>x</i>)
	Deduct 1 mark for each of the following errors the use of non-strict inequalities the use of the word 'and' instead of the word 'or'	[5]		

Question Number	Solution	Mark	AO	Notes
17. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - 2x$	M1	AO1	(At least one non-zero term correct)
	An attempt to find the value of $\frac{dy}{dx}$ at $x = 2$	m1	AO1	
	At $x = 2$, $\frac{dy}{dx} = -1$ Equation of tangent at <i>B</i> is	A1	AO1	(c.a.o.)
	y - 2 = -1(x - 2)	A1	AO1	(f.t. candidate's value
4.)				for $\frac{dy}{dx}$ at $x = 2$)
(b)	x-coordinate of $A = 3$ x-coordinate of $C = 4$	B1 B1	AO1 AO1	(derived) (derived)
	If <i>D</i> is the foot of the perpendicular from <i>B</i> to the <i>x</i> -axis, area of triangle $BDC = 2$	B1	AO1	(f.t. candidate's derived <i>x</i> -coordinate of <i>C</i>)
	Area under curve = $\int_{2}^{3} (3x - x^2) dx$	M1	AO3	(use of integration) (f.t. candidate's derived
	$\frac{3x^2}{2} - \frac{x^3}{3}$ Area under curve = (27/2 - 9) - (6 - 8/3)	A1 m1	AO3 AO3	x-coordinate of A) (correct integration) (an attempt to substitute limits,
	Shaded area = Area of triangle <i>BDC</i> – Area under curve	m1	AO3	f.t. candidate's derived x-coordinate of A) (f.t. candidate's derived x-coordinates of A and
	Shaded area $= 5/6$	A1 [12]	AO3	C) (c.a.o.)
18. (a) (i)	$4\mathbf{u} - 3\mathbf{v} = 20\mathbf{i} - 27\mathbf{j}$	B1	AO1	
(ii)	A correct method for finding the length of UV	B1 M1	AO1 AO1	
(b) (i)	Length of $UV = 10$ Position vector of	A1	AO1	
	$C = \frac{1}{10}\mathbf{a} + \frac{9}{10}\mathbf{b} \text{ or } C = \frac{9}{10}\mathbf{a} + \frac{1}{10}\mathbf{b}$	M1	AO3	
	Position vector $C = \frac{1}{10}\mathbf{a} + \frac{9}{10}\mathbf{b}$	A1	AO3	
(ii)	The position vector of any point on the road will be of the form $\lambda \mathbf{a} + (1 - \lambda)\mathbf{b}$ for some			
	value of λ	B1 [7]	AO2	