AS Practice Paper H (Statistics & Mechanics) mark scheme

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	Quota.	B1	1.2	3rd Understand quot and opportunity sampling.
		(1)		
1b	Advantages – two from: • easy to get sample size	B1 B1	2.4 2.4	5th Select and critiqu a sampling technique in a
	 inexpensive fast 			given context.
	 can be stratified if required. Disadvantages – one from: not random could be biased. 	B1	2.4	
		(3)		
1c	Allocate each of the males a number from 1 to 300	B1	3.1b	3rd Understand and
	Use calculator or number generator to generate 50 different random numbers from 1 to 300 inclusive.	B1	1.1b	carry out simple random sampling
	Select males corresponding to those numbers.	B1	1.1b	
		(3)		
1d	$300 \div 50 = 6$	B1	3.1b	3rd Understand and
	Use a random number generator to select the first name (or one of the first 6 names on the list) as a starting point and then select every 6th name thereafter to get 50 names.	B1	1.1b	carry out simple random sampling
		(2)		
	1	ļ		(9 mark
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	All points correctly plotted.	B2	1.1b	2nd Draw and interpret scatter diagrams for bivariate data.
	10 0 0 1 2 3 4 5 6 7 8 (100km)	(2)		
2b	The points lie reasonably close to a straight line (o.e.).	B1	2.4	2nd Draw and interpret scatter diagrams for bivariate data.
		(1)		
2c	f	B1	1.2	2nd Know and understand the language of correlation and regression.
		(1)		
2d	Line of best fit plotted for at least $2.2 \le x \le 8$ with <i>D</i> and <i>F</i> above and <i>B</i> and <i>C</i> below.	M1	1.1a	4th Make predictions
	26 to 31 inclusive (must be correctly read from $x = 7$ from the line of best fit).	A1	1.1b	using the regression line within the range of the data.
		(2)		

2e	It is reliable because it is interpolation (700 km is within the range of values collected).	B1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		
2f	No, it is not sensible since this would be extrapolation (as 180 km is outside the range of distances collected).	B1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		

(8 marks)

Notes

2a

First B1 for at least 4 points correct, second B1 for all points correct.

2b

Do not accept 'The points lie reasonably close to a line'. Linear or straight need to be noted.

2e

Also allow 'It is reliable because the points lie reasonably close to a straight line'.

2f

Allow the answer 'It is sensible since even though it is extrapolation it is not by much' provided that the answer contains both ideas (i.e. it IS extrapolation but by a small amount compared to the given range of data).

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	$\frac{1}{5}$ Late			3rd
	$\frac{\frac{1}{2}}{\frac{1}{6}}$ Bike $\frac{\frac{2}{5}}{\frac{3}{5}}$ Not Late			Draw and use tree diagrams with three branches and/or three levels.
	$\frac{1}{3}$ Foot $\frac{1}{10}$ Not Late $\frac{1}{9}$ Not Late			
	Correct tree structure.	B1	3.1a	
	All labels correct.	B1	1.1b	
	All probabilities correct.	B1	1.1b	
-		(3)		
3bi	1 1 1	M1	3.4	3rd
	$\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent.	A1	1.1b	Draw and use tree diagrams with three branches and/or three levels.
-		(2)		
3bii	Car NL + Bike NL + Foot NL	M1	3.4	3rd
	$= \left(\frac{1}{2} \times \frac{4}{5}\right) + \left(\frac{1}{6} \times \frac{3}{5}\right) + \left(\frac{1}{3} \times \frac{9}{10}\right)$			Draw and use tree diagrams with three branches
	$=\frac{4}{5}$ or equivalent.	A1	1.1b	and/or three levels.
-		(2)		
		1 1		(7 marks)
	Notes			
3bii				

ft from their tree diagram. Allow one error for M1.

	Гwo from:			and Progress descriptor
	 Each bolt is either faulty or not faulty. The probability of a bolt being faulty (or not) may be assumed constant. Whether one bolt is faulty (or not) may be assumed to be independent (or does not affect the probability of) whether another bolt is faulty (or not). There is a fixed number (50) of bolts. A random sample. 	B2	1.2	5th Understand the binomial distribution (and its notation) and its use as a model
		(2)		
2 H H H	Let X represent the number of faulty bolts. $X \sim B(50, 0.25)$ $P(X \le 6) = 0.0194$ $P(X \le 7) = 0.0453$ $P(X \ge 19) = 0.0287$ $P(X \ge 20) = 0.0139$	M1 M1dep	3.4 1.1b	5th Find critical values and critical regions for a binomial distribution.
(Critical Region is $X \leq 6 \cup X \geq 20$	A2	1.1b 1.1b	
		(4)		

Each comment must be in context for its mark.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Makes an attempt to find the absolute value. For example,	M1	3.1b	4th
	$\sqrt{(14)^2 + (22)^2}$ is seen.			Find the magnitude and
	Simplifies to $\sqrt{680}$	M1	1.1b	direction of a vector quantity.
	Finds speed = 26.07 (ms ⁻¹) Accept awrt 26.1 (ms ⁻¹)	A1	1.1b	
		(3)		
5b	$\tan \theta = \frac{22}{14}$	M1	1.1b	4th Find the
-	Finds the value of θ , $\theta = 57.52$	A1	1.1b	magnitude and
-	Demonstrates that the angle with the unit j vector is $90 - 57.52$	M1	1.1b	direction of a vector quantity.
-	Finds 32.47 (°) Accept awrt 32.5(°)	A1	1.1b	
		(4)		
5c	Ignore the value of friction between the hockey puck and the	B1	3.4	3rd
	ice.			Understand assumptions common in mathematical modelling.
		(1)		
5d	$\frac{1.4 \text{ g}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{100 \text{ cm}}{1 \text{ m}} \times \frac{100 \text{ cm}}{1 \text{ m}} \times \frac{100 \text{ cm}}{1 \text{ m}}$ Award 1 method mark for division by 1000 and 1 method mark for multiplication by 100 only once and the final method mark for multiplication by 100 three times.	M3	1.1b	4th Know derived quantities and SI units.
-	1400 kg m^{-3}	A1	1.1b	-
-		(4)		
		II		(12 marks
5b	Notes			

Award all 4 marks for a correct final answer. Award 2 marks for a student stating making a mistake with the inverse or subtracting that answer from 90.

AS Practice Paper H (Statistics & Mechanics) mark scheme

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6	Makes an attempt to integrate $a = \frac{1}{500} (20t^2 - t^3)$ Raising power by one would constitute an attempt.	M1	3.1b	6th Uses differentiation to solve problems in kinematics.
	Correctly finds $v = \frac{1}{500} \left(\frac{20}{3} t^3 - \frac{1}{4} t^4 \right)$. Note that $C = 0$.	A1	1.1b	-
	$v = \frac{1}{500} \left(\frac{20}{3} t^3 - \frac{1}{4} t^4 \right)$. Raising power by one would constitute an attempt.	M1	3.1b	
	Correctly finds $s = \frac{1}{500} \left(\frac{20}{12} t^4 - \frac{1}{20} t^5 \right)$. Note that $C = 0$.	A1	1.1b	
	Substitutes $t = 10$ into (m). Accept awrt 23.3 (m). $s = \frac{1}{500} \left(\frac{20}{12} t^4 - \frac{1}{20} t^5 \right)$ to obtain $s = \frac{70}{3}$	A1 ft	1.1b	
		(5)		
				(5 marks)
	Notes			
6 Award th	e final accuracy mark for a correct substitution using their equation for o	displacemen	t.	

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Makes an attempt to substitute $t = 25$ into $s = 30t - 0.4t^2$.	M1	1.1b	5th
	For example $s = 30(25) - 0.4(25)^2$ is seen.			Use equations of motion to solve problems in
	Correctly states that $AB = 500$ (m). Accept $s = 500$ (m).	A1	1.1b	unfamiliar contexts.
		(2)		
7b	Differentiates $s = 30t - 0.4t^2$ to obtain $v = 30 - 0.8t$	M1	3.1b	6th Solve problems
-	Differentiates $v = 30 - 0.8t$ to obtain $a = -0.8$	M1	3.1b	using calculus and the equations of
-	States that $a = -0.8$ (m s ⁻²) is a constant as it does not depend on <i>t</i> .	A1	3.5a	motion.
-		(3)		
7c	States distance of the car from point <i>A</i> is $s_1 = 30t - 0.4t^2$	M1	3.3	6th Solve problems
-	$u = 2$ and $a = 0.1$ and an attempt to use $s = ut + \frac{1}{2}at^2$ is seen.	M1	3.3	 using calculus and the equations of motion.
	States distance of the runner from point <i>B</i> is $s_2 = 2t + 0.05t^2$	M1	1.1b	
	States that the runner and the car will pass each other when their distances total 500 (m), or writes $s_1 + s_2 = 500$ (m)or writes $30t - 0.4t^2 + 2t + 0.05t^2 = 500$	M1	3.3	
-	States that $0.35t^2 - 32t + 500 = 0$ or equivalent.	A1	1.1b	
	Solves to find $t = 20$ (s). Answer does not need to state that $t = \frac{500}{7}$ or 71.4 (s) is not in the given range.	A1	1.1b	
	Makes an attempt to substitute $t = 20$ into $s_1 = 30t - 0.4t^2$ or $s_2 = 2t + 0.05t^2$.	M1	1.1b	
-	Correctly states they will pass each other 440 (m) from A or 60 (m) from B .	A1 ft	3.5a	
		(8)		
I				(13 marks)