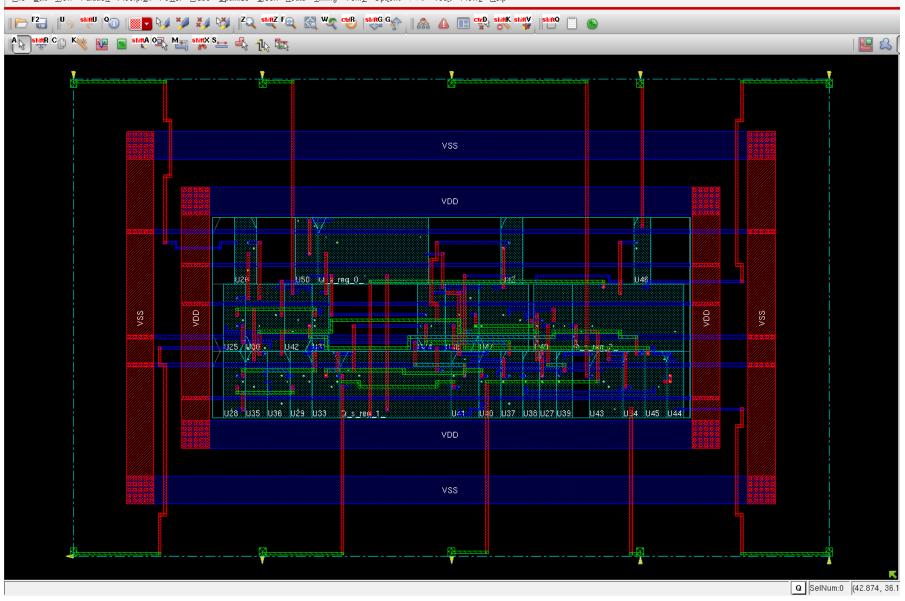
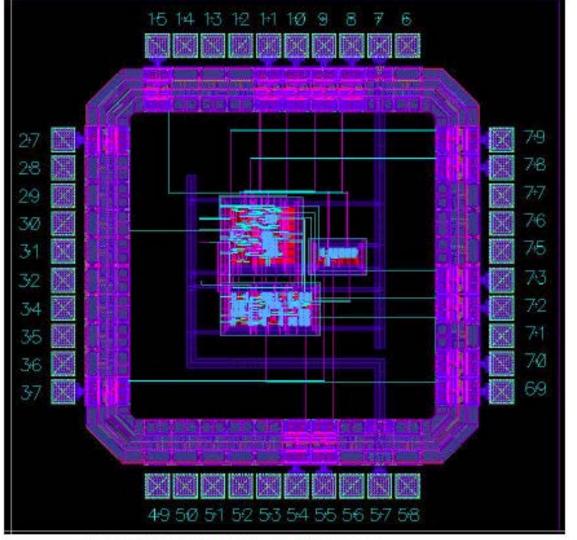

ASIC Computer-Aided Design Flow

ELEC 5250/6250

ASIC Design Flow




ASIC "back end" (physical) design Assume digital blocks/standard cells (can also do full custom layout, IP blocks, mixed-signal blocks, etc.) **ASIC Hierarchical Netlist** Std. Cell Cadence Floorplan Layouts "SOC Encounter" **Chip/Blocks** Libraries "Innovus" "Virtuoso" Plan Rows, Process data, Place & Route **Design rules** Std. Cells Extract Parasitics, Layout vs. Generate **Design Rule Backannotate Schematic** Check (DRC) Mask Data **Schematic** (LVS) Check Calibre Calibre Calibre IC Mask Data **ADIT Simulation Model**

Cadence SOC Encounter – Mod7 Counter Layout

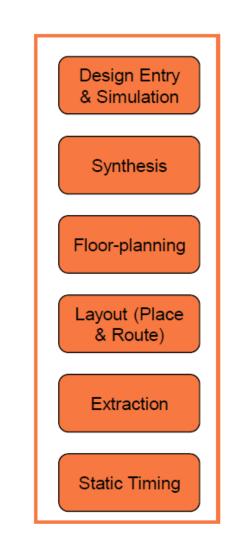
Eile Edit View Partition Floorplan Power Place Optimize Clock Route Timing Verify Options PVS Tools Flows Help

Cadence Virtuoso - Chip layout

⁽Dayyright (d) 2009, 2010, Cadence Davigs Systems, Inc. All rights marred worldwide. Reprint dwith persistence)

Figure 12.22: Frame and core after routing in Virtuoso

From E. Brunvand Book


ASIC CAD tools available in ECE

Modeling and Simulation

- Modelsim, Questa-ADMS, Eldo, ADiT (Mentor Graphics)
- Verilog-XL, NC_Verilog, Spectre (Cadence)
- Active-HDL (Aldec)
- Design Synthesis (digital)
 - Leonardo Spectrum (Mentor Graphics)
 - Design Compiler (Synopsys), RTL Compiler (Cadence)
- Design for Test and Automatic Test Pattern Generation
 - Tessent DFT Advisor, Fastscan, SoCScan (Mentor Graphics)
- Schematic Capture & Design Integration
 - Pyxis Design Architect-IC (Mentor Graphics)
 - Design Framework II (DFII) Composer (Cadence)
- Physical Layout
 - Pyxis IC Station (Mentor Graphics)
 - SOC Encounter, Virtuoso (Cadence)
- Design Verification
 - Calibre DRC, LVS, PEX (Mentor Graphics)
 - Diva, Assura (Cadence)

IC Process Design Kits (PDKs)

- Foundry-specific data and models for a specific IC technology
 - Used by the design tools
- Design components for both front-end & back-end design
 - Design entry/modeling
 - Technology/process data
 - Layer definitions/parameters (Trans, R,C,...)
 - Design rules
 - Standard Cell Library
 - Synthesis library
 - Simulation models (Verilog, transistor)
 - Physical designs (LEF models)
 - Timing models (fast, typical, slow)
 - Verification (DRC,LVS,PEX)
 - DFT/test generation
 - IP and device generators (RAM, etc.)

Global Foundries BiCMOS8HP 130nm PDK

Standard Cell Library Directory Structure

./cdl	CDL netlist for LVS checking
./doc	SC datasheets, test spec and change log
./gds2	GDS2 for Standard cell library
./layermap	Local copy of the PDK bicmos8hp.layermap
	(prBoundary layer has been added)
./lef	LEF for Standard cell library
./sch_netlist	Schematic netlists for simulation
./symbol_61	CADENCE OA symbol views
./synopsys	Standard Synthesis Timing Models
./verilog	Verilog behavioral models
.README	

Global Foundries BiCMOS8HP 130nm PDK

Standard Cell Library: Basic Standard Cells

Primitive Logic

- NAND, NOR, INVERT, etc.

Unique Logic

- ADDF Full Adder
- CLK Clock Driver
- COMP2 2-Bit Comparator
- MUX21 2:1 Multiplexer
- DECAP Decoupling Cap

Physical Design Cells

- FILLx (row fill cells, x=1,2,4,8,...,128)
- FGTIE (floating-gate tie-down)
- NWSX (substrate and n-well taps)

Complex Logic

- AO21, OA21, etc.

Sequential Logic

- DFF D Flip-Flop
- LATSR Latch Set/Reset
- SDFF Scanable D Flip-Flop

Types of I/O cells available

- Wirebond Standard Basic IO Cells
- C4 Standard Basic IO Cells

I/0

Global Foundries PDK Directory Structure

IBM_PDK/bicmos8hp/ <version>/</version>	
Subdirectory	<u>Contents</u>
doc/	Technology Design Manual Model Reference Guide Layer Mapping File
cdslib/bicmos8hp	Cadence BiCMOS8HP Device Library (IC61)
/esd8hp	Cadence BiCMOS8HP ESD Library
/Skill	Context Files (Skill Utilities)
/examples	Example Setup Files
/doc	Cadence Library Documentation
Assura/DRC	DRC Files
/LVS	LVS Files
/doc	Assura Release Notes
EM/	Electromagnetic Enablement
/doc	E-M File Release Notes and Guide
/EMX	EMX Proc Files
/Momentum	Momentum Layer and Substrate Files
HSPICE/models	HSPICE Device Model Files
/doc	HSPICE Release Notes
Spectre/models	Spectre (Direct) Device Model Files
/doc	Spectre Release Notes
utils/	Kit Utility Programs

NCSU Cadence Design Kit (CDK) https://www.eda.ncsu.edu/wiki/NCSU_CDK

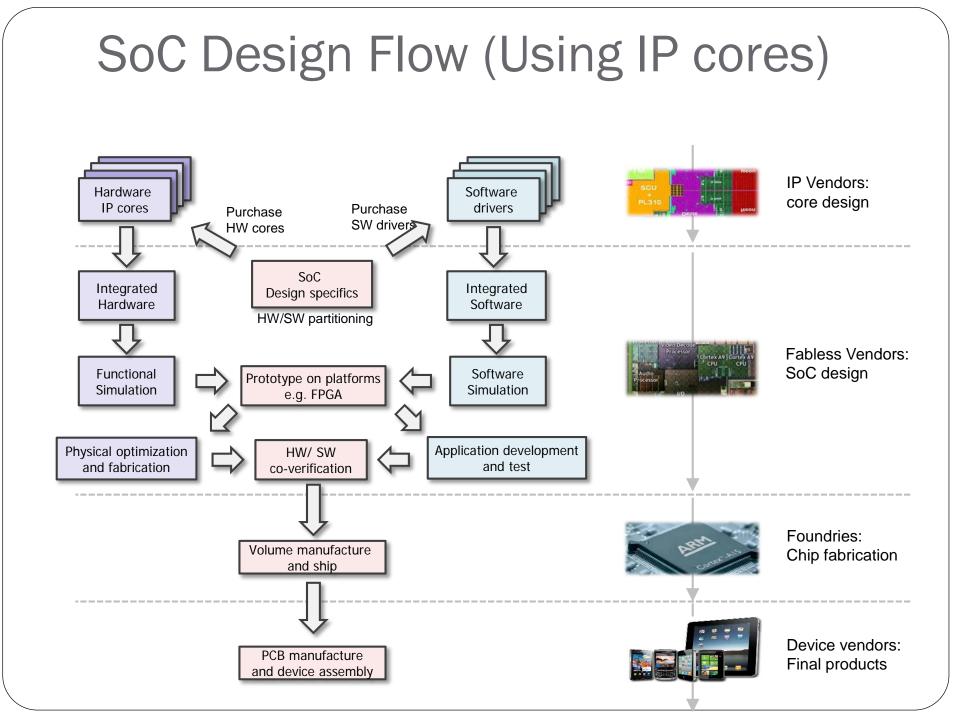
- For analog/digital CMOS IC design via the MOSIS IC fabrication service (www.mosis.org)
 - Version ncsu-cdk-1.6.0.beta for Cadence Virtuoso 6.1 and later
- Supports all MOSIS processes based on SCMOS rules
 - ami_06/16, hp_04/06, tsmc_02/03/04
 - GDSII layer maps
 - Diva DRC, LVS support (no PEX)
 - Composer interfaces to HSPICE/Spectre, Verilog
 - Technology-independent libraries for analog & digital parts
 - Transistor models, layouts, etc.
 - But does <u>not</u> include standard cell layout library
 - MOSIS wirebond pads (AMI 0.6µm, TSMC 0.4 µm, HP 0.6µm)

Installed in /class/ELEC6250/ncsu-cdk-1.6.0.beta

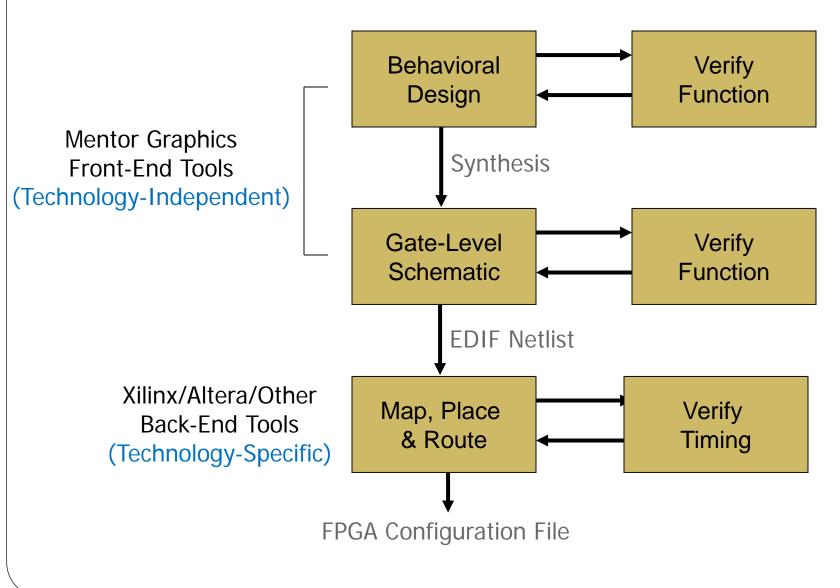
U. of Utah CDK (used in Dr. Brunvand's book)

/class/ELEC6250/UofUtah/

• **UofU_TechLib_ami06** UofU-modified tech library for AMI C5N 0.5 micron CMOS process, in the NCSU CDK framework


(AMI acquired by ON Semiconductor for \$915M in 2008)

- **UofU_Digital_v1_2** Std. Cell library (37 cells, use M1 & M2)
 - UofU_Digital_v1_2.db: compiled library file for Synopsys Design Compiler
 - **UofU_Digital_v1_2.lef**: abstract layout information file for place and route tools
 - UofU_Digital_v1_2.lib: library characterization file
 - **UofU_Digital_v1_2.v**: Verilog interface and simulation behavior file
 - UofU_Digital_v1_2_behv.v: Verilog models with timing "specify" blocks
- **UofU_Pads** Pad cells and frames based on the MOSIS-supplied .5µm pads from Tanner, but UofU-modified to pass DRC and LVS
- **UofU_AnalogParts** UofU-modified transistor models that add delay to the switch-level simulation of those devices


UofU_Digital_v1_2 CMOS cell library

- AND3X1: 3-input AND
- AOI21X1, AOI22X1: AND-OR-Invert gates
- BUFX2, BUFX4, BUFX8: non-inverting buffers
- DCBNX1, DCBX1, DCNX1, DCX1: D-type flip flops with active-low clear. B means that the device includes both Q and QB outputs. N means active-low clock.
- ENINVX1, ENINVX2: enabled (tri-state) inverters
- FILL, FILL2, FILL4, FILL8: filler cells of different widths for filling in std cell rows
- INVX1, INVX16, INVX2, INVX4, INVX8: inverters
- LCNX1, LCX1: level-sensitive (gated) latches with active-low clear. N means active-low gate
- MUX2NX1, MUX2X2: 2-way muxes. N means an inverting mux
- NAND2X1, NAND2X2, NAND3X1: NAND gates with 2 and 3 inputs
- NOR2X1, NOR2X2, NOR3X1: NOR gates with 2 and 3 inputs
- OAI21X1 OAI22X1: OR-AND-Invert gates
- TIEHI, TIELO: Cells used to tie inputs high or low
- XNOR2X1: 2-input XNOR
- XOR2X1: 2-input XOR

Xn = drive strength

FPGA Design Flow

Xilinx/Altera FPGA/CPLD Design Tools

• Simulate designs in *Modelsim* (or other simulation tools)

- Behavioral/RTL models (VHDL, Verilog)
- Synthesized netlists (VHDL, Verilog)
 - Requires "primitives" library for the target technology
- Synthesize netlist from behavioral/RTL model
 - Vendor-provided: Xilinx Vivado (previously ISE), Altera Quartus II
 - *Leonardo* (*Levels 1,2,3*) has FPGA & ASIC libraries (ASIC-only version installed at AU)

Vendor tools for back-end design

- Map, place, route, configure device, timing analysis, generate timing models
- Xilinx Vivado (previously ISE Integrated Software Environment)
- Altera Quartus II
- Higher level tools for system design & management
 - *Xilinx Platform Studio* : SoC design, IP management, HW/SW codesign
 - Mentor Graphics FPGA Advantage