
F O U R T E E N

587

14

ASP.NET and Web Forms

An important part of .NET is its use in creating Web applications through a
technology known as ASP.NET. Far more than an incremental enhancement to
Active Server Pages (ASP), the new technology is a unified Web development
platform that greatly simplifies the implementation of sophisticated Web
applications. In this chapter we introduce the fundamentals of ASP.NET and
cover Web Forms, which make it easy to develop interactive Web sites. In
Chapter 15 we cover Web services, which enable the development of collabo-
rative Web applications that span heterogeneous systems.

What Is ASP.NET?
We begin our exploration of ASP.NET by looking at a very simple Web appli-
cation. Along the way we will establish a testbed for ASP.NET programming,
and we will review some of the fundamentals of Web processing. Our little
example will reveal some of the challenges in developing Web applications,
and we can then appreciate the features and benefits of ASP.NET, which we
will elaborate in the rest of the chapter.

Web Application Fundamentals

A Web application consists of document and code pages in various formats.
The simplest kind of document is a static HTML page, which contains infor-
mation that will be formatted and displayed by a Web browser. An HTML
page may also contain hyperlinks to other HTML pages. A hyperlink (or just
link) contains an address, or a Uniform Resource Locator (URL), specifying
where the target document is located. The resulting combination of content
and links is sometimes called hypertext and provides easy navigation to a vast
amount of information on the World Wide Web.

ch14.fm Page 587 Wednesday, May 22, 2002 1:38 PM

Prentice Hall PTR
This is a sample chapter of Application Development Using Visual Basic and .NETISBN: 0-13-093382-1For the full text, visit http://www.phptr.com©2002 Pearson Education. All Rights Reserved.

588 C h a p t e r 1 4 � ASP.NET and Web Forms

SETTING UP THE WEB EXAMPLES

As usual, all the example programs for this chapter are in the chapter folder.
To run the examples, you will need to have Internet Information Services (IIS)
installed on your system. IIS is installed by default with Windows 2000 Server.
You will have to explicitly install it with Windows 2000 Workstation. Once
installed, you can access the documentation on IIS through Internet Explorer
via the URL http://localhost, which will redirect you to the starting IIS docu-
mentation page, as illustrated in Figure 14–1.

The management tool for IIS is a Microsoft Management Console (MMC)
snap-in, the Internet Services Manager, which you can find under Administra-
tive Tools in the Control Panel. Figure 14–2 shows the main window of the
Internet Services Manager. You can start and stop the Web server and perform
other tasks by right-clicking on Default Web Site. Choosing Properties from
the context menu will let you perform a number of configurations on the Web
server.

The default home directory for publishing Web files is \Inet-
pub\wwwroot on the drive where Windows is installed. You can change this
home directory using Internet Services Manager. You can access Web pages

FIGURE 14–1 Internet Information Services documentation.

ch14.fm Page 588 Wednesday, May 22, 2002 1:38 PM

W h a t I s A S P . N E T ? 589

stored at any location on your hard drive by creating a virtual directory. The
easiest way to create one is from Windows Explorer. Right-click over the
desired directory, choose Sharing..., select the Web Sharing tab, click on the
Add button, and enter the desired alias, which will be the name of the virtual
directory. Figure 14–3 illustrates creating an alias Chap14, or virtual directory,
for the folder \OI\NetVb\Chap14. You should perform this operation now
on your own system in order that you may follow along as the chapter’s
examples are discussed.

FIGURE 14–2 Internet Services Manager.

FIGURE 14–3 Creating a virtual directory.

ch14.fm Page 589 Wednesday, May 22, 2002 1:38 PM

590 C h a p t e r 1 4 � ASP.NET and Web Forms

Once a virtual directory has been created, you can access files in it by
including the virtual directory in the path of the URL. In particular, you can
access the file default.htm using the URL http://localhost/Chap14/. The
file default.htm contains a home page for all the ASP.NET example programs
for this chapter. See Figure 14–4.

An Echo Program

The first example program for this chapter is Hello.aspx, shown as a link on
the home page. The example is complete in one file and contains embedded
server code. Here is the source code, which consists of HTML along with
some VB.NET script code. There are also some special tags for “server con-
trols,” recognized by ASP.NET.

<!-- Hello.aspx -->
<%@ Page Language="VB" %>
<HTML>

FIGURE 14–4 Home page for ASP.NET example programs.

ch14.fm Page 590 Wednesday, May 22, 2002 1:38 PM

W h a t I s A S P . N E T ? 591

<HEAD>
 <SCRIPT RUNAT="SERVER">
 Sub cmdEcho_Click(Source As Object, e As EventArgs)
 lblGreeting.Text="Hello, " & txtName.Text
 End Sub
 </SCRIPT>
</HEAD>
<BODY>
<FORM RUNAT="SERVER">Your name:
<asp:textbox id=txtName Runat="server"></asp:textbox>
<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo"
runat="server" tooltip="Click to echo your name">
</asp:button></p>
<asp:label id=lblGreeting runat="server"></asp:label>
<P></P>
</FORM>
</BODY>
</HTML>

You can run the program using the URL http://localhost/Chap14/
Hello.aspx or by clicking on the link Hello.aspx in the home page of the
examples programs. The page shows a text box where you can type in your
name, and there is an “Echo” button. Clicking the button will echo your name
back, with a “Hello” greeting. The simple form is again displayed, so you
could try out other names. If you slide the browser’s mouse cursor over the
button, you will see the tool tip “Click to echo your name” displayed in a yel-
low box. Figure 14–5 illustrates a run of this example.

This little program would not be completely trivial to implement with
other Web application tools, including ASP. The key user-interface feature of
such an application is its thoroughly forms-based nature. The user is pre-
sented with a form and interacts with the form. The server does some pro-
cessing, and the user continues to see the same form. This UI model is second
nature in desktop applications but is not so common in Web applications.
Typically the Web server will send back a different page.

This kind of application could certainly be implemented using a tech-
nology like ASP, but the code would be a little ugly. The server would need to
synthesize a new page that looked like the old page, creating the HTML tags
for the original page, plus extra information sent back (such as the greeting
shown at the bottom in our echo example). A mechanism is needed to
remember the current data that is displayed in the controls in the form.

Another feature of this Web application is that it does some client-side
processing too—the “tooltip” displayed in the yellow box is performed by the
browser. Such rich client-side processing can be performed by some brows-
ers, such as Internet Explorer, but not others.

ch14.fm Page 591 Wednesday, May 22, 2002 1:38 PM

592 C h a p t e r 1 4 � ASP.NET and Web Forms

As can be seen by the example code, with ASP.NET it is very easy to
implement this kind of Web application. We will study the code in detail later.
For now, just observe how easy it is!

ASP.NET Features

ASP.NET provides a programming model and infrastructure that facilitates
developing new classes of Web applications. Part of this infrastructure is the
.NET runtime and framework. Server-side code is written in .NET compiled
languages. Two main programming models are supported by ASP.NET.

� Web Forms helps you build form-based Web pages. A WYSIWYG
development environment enables you to drag controls onto Web
pages. Special “server-side” controls present the programmer with an
event model similar to what is provided by controls in ordinary Win-
dows programming. This chapter discusses Web Forms in detail.

� Web services make it possible for a Web site to expose functionality
via an API that can be called remotely by other applications. Data is
exchanged using standard Web protocols and formats such as HTTP
and XML, which will cross firewalls. We will discuss Web services in
the next chapter.

Both Web Forms and Web services can take advantage of the facilities
provided by .NET, such as the compiled code and .NET runtime. In addition,

FIGURE 14–5 Running the Hello.aspx echo program.

ch14.fm Page 592 Wednesday, May 22, 2002 1:38 PM

W h a t I s A S P . N E T ? 593

ASP.NET itself provides a number of infrastructure services, including state
management, security, configuration, caching, and tracing.

COMPILED CODE

Web Forms (and Web services) can be written in any .NET language that runs
on top of the CLR, including C#, VB.NET, and C++ with Managed Extensions.
This code is compiled, and thus offers better performance than ASP pages
with code written in an interpreted scripting language such as VBScript. All of
the benefits, such as a managed execution environment, are available to this
code, and of course the entire .NET Framework class library is available. Leg-
acy unmanaged code can be called through the .NET interoperability services,
which are discussed in Chapter 17.

SERVER CONTROLS

ASP.NET provides a significant innovation known as server controls. These
controls have special tags such as <asp:textbox>. Server-side code interacts
with these controls, and the ASP.NET runtime generates straight HTML that is
sent to the Web browser. The result is a programming model that is easy to
use and yet produces standard HTML that can run in any browser.

BROWSER INDEPENDENCE

Although the World Wide Web is built on standards, the unfortunate fact of
life is that browsers are not compatible and have special features. A Web page
designer then has the unattractive options of either writing to a lowest com-
mon denominator of browser, or else writing special code for different brows-
ers. Server controls help remove some of this pain. ASP.NET takes care of
browser compatibility issues when it generates code for a server control. If the
requesting browser is upscale, the generated HTML can take advantage of
these features, otherwise the generated code will be vanilla HTML. ASP.NET
takes care of detecting the type of browser.

SEPARATION OF CODE AND CONTENT

Typical ASP pages have a mixture of scripting code interspersed with HTML
elements. In ASP.NET there is a clean separation between code and presenta-
tion content. The server code can be isolated within a single <SCRIPT
RUNAT=“SERVER”> ... /SCRIPT> block or, even better, placed within a “code-
behind” page. We will discuss code-behind pages later in this chapter. If you
would like to see an example right away, you can examine the second exam-
ple program HelloCodebehind.aspx, with code in the file HelloCodebe-
hind.aspx.vb. (These files are in the top-level chapter directory.)

ch14.fm Page 593 Wednesday, May 22, 2002 1:38 PM

594 C h a p t e r 1 4 � ASP.NET and Web Forms

STATE MANAGEMENT

HTTP is a stateless protocol. Thus, if a user enters information in various con-
trols on a form and sends this filled-out form to the server, the information
will be lost if the form is displayed again, unless the Web application provides
special code to preserve this state. ASP.NET makes this kind of state preserva-
tion totally transparent. There are also convenient facilities for managing other
types of session and application state.

Web Forms Architecture

A Web Form consists of two parts:

� The visual content or presentation, typically specified by HTML
elements.

� Code that contains the logic for interacting with the visual elements.

A Web Form is physically expressed by a file with the extension .aspx.
Any HTML page could be renamed to have this extension and could be
accessed using the new extension with identical results to the original. Thus
Web Forms are upwardly compatible with HTML pages.

The way code can be separated from the form is what makes a Web
Form special. This code can be either in a separate file (having an extension
corresponding to a .NET language, such as .vb for VB.NET) or in the .aspx
file, within a <SCRIPT RUNAT=“SERVER”> ... /SCRIPT> block. When your
page is run in the Web server, the user interface code runs and dynamically
generates the output for the page.

We can understand the architecture of a Web Form most clearly by look-
ing at the code-behind version of our “Echo” example. The visual content is
specified by the .aspx file HelloCodebehind.aspx.

<!-- HelloCodebehind.aspx -->
<%@ Page Language="VB#" Src="HelloCodebehind.aspx.vb"
Inherits= MyWebPage %>
<HTML>
 <HEAD>
 </HEAD>
<BODY>
<FORM RUNAT="SERVER">YOUR NAME:
<asp:textbox id=txtName Runat="server"></asp:textbox>
<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo"
runat="server" tooltip="Click to echo your name">
</asp:button></p>
 <asp:label id=lblGreeting runat="server"></asp:label>
<P></P>
</FORM>
</BODY>
</HTML>

ch14.fm Page 594 Wednesday, May 22, 2002 1:38 PM

W e b F o r m s A r c h i t e c t u r e 595

The user interface code is in the file HelloCodebehind.aspx.vb,

' HelloCodebehind.aspx.vb

Imports System
Imports System.Web
Imports System.Web.UI
Imports System.Web.UI.WebControls

Public Class MyWebPage
 Inherits System.Web.UI.Page

 Protected txtName As TextBox
 Protected cmdEcho As Button
 Protected lblGreeting As Label

 Protected Sub cmdEcho_Click(Source As Object, _
 e As EventArgs)
 lblGreeting.Text="Hello, " & txtName.Text
 End Sub
End Class

Page Class

The key namespace for Web Forms and Web services is System.Web. Sup-
port for Web Forms is in the namespace System.Web.UI. Support for server
controls such as textboxes and buttons is in the namespace Sys-
tem.Web.UI.WebControls. The class that dynamically generates the output
for an .aspx page is the Page class, in the System.Web.UI namespace, and
classes derived from Page, as illustrated in the code-behind page in this last
example.

INHERITING FROM PAGE CLASS

The elements in the .aspx file, the code in the code-behind file (or script
block), and the base Page class work together to generate the page output.
This cooperation is achieved by ASP.NET’s dynamically creating a class for the
.aspx file, which is derived from the code-behind class, which in turn is
derived from Page. This relationship is created by the Inherits attribute in the
.aspx file. Figure 14–6 illustrates the inheritance hierarchy. Here MyWebPage
is a class we implement, derived from Page.

The most derived page class, shown as My .aspx Page in Figure 14–6, is
dynamically created by the ASP.NET runtime. This class extends the page
class, shown as MyWebPage in the figure, to incorporate the controls and
HTML text on the Web Form. This class is compiled into an executable, which
is run when the page is requested from a browser. The executable code cre-
ates the HTML that is sent to the browser.

ch14.fm Page 595 Wednesday, May 22, 2002 1:38 PM

596 C h a p t e r 1 4 � ASP.NET and Web Forms

Web Forms Page Life Cycle

We can get a good high-level understanding of the Web Forms architecture by
following the life cycle of our simple Echo application. We will use the code-
behind version (the second example), HelloCodebehind.aspx.

1. User requests the HelloCodebehind.aspx Web page in the browser.
2. Web server compiles the page class from the .aspx file and its associated

code-behind page. The Web server executes the code, creating HTML,
which is sent to the browser. (In Internet Explorer you can see the HTML
code from the menu View | Source.) Note that the server controls are
replaced by straight HTML. The following code is what arrives at the
browser, not the original code on the server.

<!-- HelloCodebehind.aspx -->

<HTML>
 <HEAD>
 </HEAD>
<BODY>
<form name="ctrl0" method="post"
action="HelloCodebehind.aspx" id="ctrl0">

FIGURE 14–6 Hierarchy of page classes.

Page

My .aspx Page

MyWebPage

ch14.fm Page 596 Wednesday, May 22, 2002 1:38 PM

W e b F o r m s A r c h i t e c t u r e 597

<input type="hidden" name="__VIEWSTATE"
value="dDwxMzc4MDMwNTk1Ozs+" />
YOUR NAME: <input name="txtName" type="text"
id="txtName" />
<p><input type="submit" name="cmdEcho" value="Echo"
id="cmdEcho" title="Click to echo your name" /></p>

<P></P>
</form>
</BODY>
</HTML>

3. The browser renders the HTML, displaying the simple form shown in
Figure 14–7. To distinguish this example from the first one, we show
“YOUR NAME” in all capitals. Since this is the first time the form is dis-
played, the text box is empty, and no greeting message is displayed.

4. The user types in a name (e.g., Mary Smith) and clicks the Echo button.
The browser recognizes that a Submit button has been clicked. The
method for the form is POST1 and the action is HelloCodebehind.aspx.
We thus have what is called a postback to the original .aspx file.

5. The server now performs processing for this page. An event was raised
when the user clicked the Echo button, and an event handler in the
MyWebPage class is invoked.

1. The HTTP POST method sends form results separately as part of the data body
rather than by concatenating it onto the URL, as is done in the GET method.

FIGURE 14–7 The form for the Echo application is displayed for the first time.

ch14.fm Page 597 Wednesday, May 22, 2002 1:38 PM

598 C h a p t e r 1 4 � ASP.NET and Web Forms

 Protected Sub cmdEcho_Click(Source As Object, _
 e As EventArgs)
 lblGreeting.Text="Hello, " & txtName.Text
 End Sub

6. The Text property of the TextBox server control txtName is used to
read the name submitted by the user. A greeting string is composed and
assigned to the Label control lblGreeting, again using property nota-
tion.

7. The server again generates straight HTML for the server controls and
sends the whole response to the browser. Here is the HTML.

...
<form name="ctrl0" method="post"
action="HelloCodebehind.aspx" id="ctrl0">
<input type="hidden" name="__VIEWSTATE"
value="dDwxMzc4MDMwNTk1O3Q8O2w8aTwyPjs+O2w8dDw7bDxpPDU+Oz47
bDx0PHA8cDxsPFRleHQ7PjtsPEhlbGxvLCBNYXJ5IFNtaXRoOz4+Oz47Oz4
7Pj47Pj47Pg==" />
YOUR NAME: <input name="txtName" type="text"
value="Mary Smith" id="txtName" />
<p><input type="submit" name="cmdEcho" value="Echo"
id="cmdEcho" title="Click to echo your name" /></p>
 Hello, Mary Smith
...

8. The browser renders the page, as shown in Figure 14–8. Now a greeting
message is displayed.

FIGURE 14–8 After a round trip, a greeting message is displayed.

ch14.fm Page 598 Wednesday, May 22, 2002 1:38 PM

W e b F o r m s A r c h i t e c t u r e 599

View State

An important characteristic of Web Forms is that all information on forms is
“remembered” by the Web server. Since HTTP is a stateless protocol, this pres-
ervation of state does not happen automatically but must be programmed. A
nice feature of ASP.NET is that this state information, referred to as “view
state,” is preserved automatically by the framework, using a “hidden” control.

...
<input type="hidden" name="__VIEWSTATE"
value="dDwxMzc4MDMwNTk1O3Q8O2w8aTwyPjs+O2w8dDw7bDxpPDU+Oz47
bDx0PHA8cDxsPFRleHQ7PjtsPEhlbGxvLCBNYXJ5IFNtaXRoOz4+Oz47Oz4
7Pj47Pj47Pg==" />
...

Later in the chapter we will examine other facilities provided by
ASP.NET for managing session state and application state.

Web Forms Event Model

From the standpoint of the programmer, the event model for Web Forms is
very similar to the event model for Windows Forms. Indeed, this similarity is
what makes programming with Web Forms so easy. What is actually happen-
ing in the case of Web Forms, though, is rather different. The big difference is
that events get raised on the client and processed on the server.2

Our simple form with one textbox and one button is not rich enough to
illustrate event processing very thoroughly. Let’s imagine a more elaborate
form with several textboxes, listboxes, checkboxes, buttons, and the like.
Because round trips to the server are expensive, events do not automatically
cause a postback to the server. Server controls have what is known as an
intrinsic event set of events that automatically cause a postback to the server.
The most common such intrinsic event is a button click. Other events, such as
selecting an item in a list box, do not cause an immediate postback to the
server. Instead, these events are cached, until a button click causes a post to
the server. Then, on the server the various change events are processed, in no
particular order, and the button-click event that caused the post is processed.

Page Processing

Processing a page is a cooperative endeavor between the Web server, the
ASP.NET runtime, and your own code. The Page class provides a number of

2. Some controls, such as the Calendar control, raise some events on the server.
Also, the Page itself raises events on the server.

ch14.fm Page 599 Wednesday, May 22, 2002 1:38 PM

600 C h a p t e r 1 4 � ASP.NET and Web Forms

events, which you can handle to hook into page processing. The Page class
also has properties and methods that you can use. We cover some of the
major ones here. For a complete description, consult the .NET Framework
documentation. The example programs in this chapter will illustrate features
of the Page class.

PAGE EVENTS

A number of events are raised on the server as part of the normal processing
of a page. These events are actually defined in the Control base class and so
are available to server controls also. The most important ones are listed
below.

� Init is the first step in the page’s life cycle and occurs when the page
is initialized. There is no view-state information for any of the con-
trols at this point.

� Load occurs when the controls are loaded into the page. View-state
information for the controls is now available.

� PreRender occurs just before the controls are rendered to the output
stream. Normally this event is not handled by a page but is important
for implementing your own server controls.

� Unload occurs when the controls are unloaded from the page. At this
point it is too late to write your own data to the output stream.

PAGE PROPERTIES

The Page class has a number of important properties. Some of the most use-
ful are listed below.

� EnableViewState indicates whether the page maintains view state for
itself and its controls. You can get or set this property. The default is
true, view state is maintained.

� ErrorPage specifies the error page to which the browser should be
redirected in case an unhandled exception occurs.

� IsPostBack indicates whether the page is being loaded in response
to a postback from the client or is being loaded for the first time.

� IsValid indicates whether page validation succeeded.3

� Request gets the HTTP Request object, which allows you to access
data from incoming HTTP requests.

� Response gets the HTTP Response object, which allows you to send
response data to a browser.

� Session gets the current Session object, which is provided by
ASP.NET for storing session state.

3. We discuss validation later in this chapter in the section “Server Controls.”

ch14.fm Page 600 Wednesday, May 22, 2002 1:38 PM

W e b F o r m s A r c h i t e c t u r e 601

� Trace gets a TraceContext object for the page, which you can use
to write out trace information.

SAMPLE PROGRAM

We can illustrate some of these features of page processing with a simple
extension to our Echo program. The page HelloPage.aspx (located in the
top-level chapter directory) provides handlers for a number of page events,
and we write simple text to the output stream, using the Response property.
For each event we show the current text in the txtName and lblGreeting
server controls. In the handler for Load we also show the current value of
IsPostBack, which should be false the first time the page is accessed, and
subsequently true.

<!-- HelloPage.aspx -->
<%@ Page Language="VB" Debug="true" %>
<HTML>
<HEAD>
 <SCRIPT RUNAT="SERVER">
Sub cmdEcho_Click(Source As Object, e As EventArgs)
 lblGreeting.Text="Hello, " & txtName.Text
End Sub

Sub Page_Init(sender As Object, E As EventArgs)
 Response.Write("Page_Init
")
 Response.Write("txtName = " & txtName.Text & "
")
 Response.Write("lblGreeting = " & lblGreeting.Text _
 & "
")
End Sub

Sub Page_Load(sender As Object, E As EventArgs)
 Response.Write("Page_Load
")
 Response.Write("IsPostBack = " & IsPostBack & "
")
 Response.Write("txtName = " & txtName.Text & "
")
 Response.Write("lblGreeting = " & lblGreeting.Text _
 & "
")
End Sub

Sub Page_PreRender(sender As Object, E As EventArgs)
 Response.Write("Page_PreRender
")
 Response.Write("txtName = " & txtName.Text & "
")
 Response.Write("lblGreeting = " & lblGreeting.Text _
 & "
")
End Sub

</SCRIPT>
</HEAD>
<BODY>
<FORM RUNAT="SERVER">Your name:
<asp:textbox id=txtName Runat="server"></asp:textbox>

ch14.fm Page 601 Wednesday, May 22, 2002 1:38 PM

602 C h a p t e r 1 4 � ASP.NET and Web Forms

<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo"
runat="server" tooltip="Click to echo your name">
</asp:button></p>
<asp:label id=lblGreeting runat="server"></asp:label>
<P></P>
</FORM>
</BODY>
</HTML>

When we display the page the first time the output reflects the fact that
both the text box and the label are empty, since we have entered no informa-
tion. IsPostBack is false.

Now enter a name and click the Echo button. We obtain the following
output from our handlers for the page events:

Page_Init
txtName =
lblGreeting =
Page_Load
IsPostBack = True
txtName = Robert
lblGreeting =
Page_PreRender
txtName = Robert
lblGreeting = Hello, Robert

In Page_Init there is no information for either control, since view state
is not available at page initialization. In Page_Load the text box has data, but
the label does not, since the click-event handler has not yet been invoked.
IsPostBack is now true. In Page_PreRender both controls now have data.

Click Echo a second time. Again, the controls have no data in
Page_Init. This time, however, in Page_Load the view state provides data for
both controls. Figure 14–9 shows the browser output after Echo has been
clicked a second time.

Page Directive
An .aspx file may contain a page directive defining various attributes that can
control how ASP.NET processes the page. A page directive contains one or
more attribute/value pairs of the form

attribute=”value”

within the page directive syntax

<@ Page ... @>

Our example program HelloCodebehind.aspx illustrates an .aspx
page that does not have any code within it. The code-behind file HelloCode-
behind.aspx.vb that has the code is specified using the Src attribute.

ch14.fm Page 602 Wednesday, May 22, 2002 1:38 PM

W e b F o r m s A r c h i t e c t u r e 603

<!-- HelloCodebehind.aspx -->
<%@ Page Language="VB" Src="HelloCodebehind.aspx.vb"
Inherits=MyWebPage %>
...

Src

The Src attribute identifies the code-behind file.

Language

The Language attribute specifies the language used for the page. The code in
this language may be in either a code-behind file or a SCRIPT block within
the same file. Values can be any .NET-supported language, including C# and
VB.NET.

FIGURE 14–9 Browser output after Echo has been clicked a second time.

ch14.fm Page 603 Wednesday, May 22, 2002 1:38 PM

604 C h a p t e r 1 4 � ASP.NET and Web Forms

Inherits

The Inherits directive specifies the page class from which the .aspx page
class will inherit.

Debug

The Debug attribute indicates whether the page should be compiled with
debug information. If true, debug information is enabled, and the browser
can provide detailed information about compile errors. The default is false.

ErrorPage

The ErrorPage attribute specifies a target URL to which the browser will be
redirected in the event that an unhandled exception occurs on the page.

Trace

The Trace attribute indicates whether tracing is enabled. A value of true turns
tracing on. The default is false.

Tracing

ASP.NET provides extensive tracing capabilities. Merely setting the Trace
attribute for a page to true will cause trace output generated by ASP.NET to
be sent to the browser. In addition, you can output your own trace informa-
tion using the Write method of the TraceContext object, which is obtained
from the Trace property of the Page.

The page HelloTrace.aspx illustrates using tracing in place of writing
to the Response object.

<!-- HelloTrace.aspx -->
<%@ Page Language="C#" Debug="true" Trace = "true" %>
<HTML>
<HEAD>
 <SCRIPT RUNAT="SERVER">
Sub cmdEcho_Click(Source As Object, e As EventArgs)
 lblGreeting.Text="Hello, " & txtName.Text
End Sub

Sub Page_Init(sender As Object, E As EventArgs)
 Trace.Write("Page_Init
")
 Trace.Write("txtName = " & txtName.Text & "
")
 Trace.Write("lblGreeting = " & lblGreeting.Text _
 & "
")
End Sub
...

ch14.fm Page 604 Wednesday, May 22, 2002 1:38 PM

R e q u e s t / R e s p o n s e P r o g r a m m i n g 605

Figure 14–10 shows the browser output after the initial request for the
page. Notice that the trace output is shown after the form, along with trace
information that is generated by ASP.NET itself.

Request/Response Programming

The server control architecture is built on top of a more fundamental process-
ing architecture, which may be called request/response. Understanding
request/response is important to solidify our overall grasp of ASP.NET. Also,
in certain programming situations request/response is the natural approach.

HttpRequest Class

The System.Web namespace contains a useful class HttpRequest that can be
used to read the various HTTP values sent by a client during a Web request.
These HTTP values would be used by a classical CGI program in acting upon
a Web request, and they are the foundation upon which higher level process-
ing is built. Table 14–1 shows some of the public instance properties of

FIGURE 14–10 Browser output showing trace information.

ch14.fm Page 605 Wednesday, May 22, 2002 1:38 PM

606 C h a p t e r 1 4 � ASP.NET and Web Forms

HttpRequest. If you are familiar with HTTP, the meaning of these various
properties should be largely self-explanatory. Refer to the .NET Framework
documentation of the HttpRequest class for full details about these and other
properties.

The Request property of the Page class returns a HttpRequest object.
You may then extract whatever information you need, using the properties of
HttpRequest. For example, the following code determines the length in bytes
of content sent by the client and writes that information to the Response
object.

Dim length As Integer = Request.ContentLength
Response.Write("ContentLength = " & length & "
")

COLLECTIONS

A number of useful collections are exposed as properties of HttpRequest.
The collections are of type NamedValueCollection (in System.Collec-
tions.Specialized namespace). You can access a value from a string key. For
example, the following code extracts values for the QUERY_STRING and
HTTP_USER_AGENT server variables using the ServerVariables collection.

Dim strQuery As String = _

 Request.ServerVariables("QUERY_STRING")
Dim strAgent as String = _
 Request.ServerVariables("HTTP_USER_AGENT")

TABLE 14–1 Public Instance Properties of HttpRequest

Property Meaning

AcceptTypes String array of client-supported MIME accept types

Browser Information about client’s browser capabilities

ContentLength Length in bytes of content sent by the client

Cookies Collection of cookies sent by the client

Form Collection of form variables

Headers Collection of HTTP headers

HttpMethod HTTP transfer method used by client (e.g., GET or POST)

Params Combined collection of QueryString, Form, ServerVariables, and
Cookies items

Path Virtual request of the current path

QueryString Collection of HTTP query string variables

ServerVariables Collection of Web server variables

ch14.fm Page 606 Wednesday, May 22, 2002 1:38 PM

R e q u e s t / R e s p o n s e P r o g r a m m i n g 607

Server variables such as these are at the heart of classical Common Gate-
way Interface (CGI) Web server programming. The Web server passes infor-
mation to a CGI script or program by using environment variables. ASP.NET
makes this low-level information available to you, in case you need it.

A common task is to extract information from controls on forms. In
HTML, controls are identified by a name attribute, which can be used by the
server to determine the corresponding value. The way in which form data is
passed to the server depends on whether the form uses the HTTP GET
method or the POST method.

With GET, the form data is encoded as part of the query string. The
QueryString collection can then be used to retrieve the values. With POST,
the form data is passed as content after the HTTP header. The Forms collec-
tion can then be used to extract the control values. You could use the value of
the REQUEST_METHOD server variable (GET or POST) to determine which
collection to use (the QueryString collection in the case of GET and the
Forms collection in case of POST).

With ASP.NET you don’t have to worry about which HTTP method was
used in the request. ASP.NET provides a Params collection, which is a combi-
nation (union in the mathematical sense) of the ServerVariables, Que-
ryString, Forms, and Cookies collections.

EXAMPLE PROGRAM

We illustrate all these ideas with a simple page Squares.aspx that displays a
column of squares.

<!-- Squares.aspx -->
<%@ Page Language="VB" Trace="true"%>
<script runat="server">
Sub Page_Init(sender As Object, e As EventArgs)
 Dim strQuery As String = _
 Request.ServerVariables("QUERY_STRING")
 Response.Write("QUERY_STRING = " & strQuery & "
")
 Dim strAgent as String = _
 Request.ServerVariables("HTTP_USER_AGENT")
 Response.Write("HTTP_USER_AGENT = " & strAgent & "
")
 Dim length As Integer = Request.ContentLength
 Response.Write("ContentLength = " & length & "
")
 Dim strCount As String = Request.Params("txtCount")
 Dim count As Integer = Convert.ToInt32(strCount)
 Dim i As Integer
 For i = 1 To count
 Response.Write(i*i)
 Response.Write("
")
 Next
End Sub
</script>

ch14.fm Page 607 Wednesday, May 22, 2002 1:38 PM

608 C h a p t e r 1 4 � ASP.NET and Web Forms

How many squares to display is determined by a number submitted on
a form. The page GetSquares.aspx submits the request using GET, and
PostSquares.aspx submits the request using POST. These two pages have
the same user interface, illustrated in Figure 14–11.

Here is the HTML for GetSquares.aspx. Notice that we are using
straight HTML. Except for the Page directive, which turns tracing on, no fea-
tures of ASP.NET are used.

<!-- GetSquares.aspx -->
<%@ Page Trace = "true" %>
<html>
<head>
</head>
<body>
<P>This program will print a column of squares</P>
<form method="get" action = Squares.aspx>
How many:
<INPUT type=text size=2 value=5 name=txtCount>
<P></P>
<INPUT type=submit value=Squares name=cmdSquares>
</form>
</body>
</html>

FIGURE 14–11 Form for requesting a column of squares.

ch14.fm Page 608 Wednesday, May 22, 2002 1:38 PM

R e q u e s t / R e s p o n s e P r o g r a m m i n g 609

The form tag has attributes specifying the method (GET or POST) and
the action (target page). The controls have a name attribute, which will be
used by server code to retrieve the value.

Run GetSquares.aspx and click Squares. You will see some HTTP
information displayed, followed by the column of squares. Tracing is turned
on, so details about the request are displayed by ASP.NET. Figure 14–12 illus-
trates the output from this GET request.

You can see that form data is encoded in the query string, and the con-
tent length is 0. If you scroll down on the trace output, you will see much
information. For example, the QueryString collection is shown.

Now run PostSquares.aspx and click Squares. Again you will then see
some HTTP information displayed, followed by the column of squares. Trac-
ing is turned on, so details about the request are displayed by ASP.NET. Fig-
ure 14–13 illustrates the output from this POST request.

You can see that now the query string is empty, and the content length
is 29. The form data is passed as part of the content, following the HTTP
header information. If you scroll down on the trace output, you will see that
now there is a Form collection, which is used by ASP.NET to provide access
to the form data in the case of a POST method.

FIGURE 14–12 Output from a GET request.

ch14.fm Page 609 Wednesday, May 22, 2002 1:38 PM

610 C h a p t e r 1 4 � ASP.NET and Web Forms

By comparing the output of these two examples, you can clearly see the
difference between GET and POST, and you can also see the data structures
used by ASP.NET to make it easy for you to extract data from HTTP requests.

HttpResponse Class

The HttpResponse class encapsulates HTTP response information that is
built as part of an ASP.NET operation. The Framework uses this class when it
is creating a response that includes writing server controls back to the client.
Your own server code may also use the Write method of the Response
object to write data to the output stream that will be sent to the client. We
have already seen many illustrations of Response.Write.

REDIRECT

The HttpResponse class has a useful method, Redirect, that enables server
code to redirect an HTTP request to a different URL. A simple redirection
without passing any data is trivial—you need only call the Redirect method
and pass the URL. An example of such usage would be a reorganization of a

FIGURE 14–13 Output from a POST request.

ch14.fm Page 610 Wednesday, May 22, 2002 1:38 PM

R e q u e s t / R e s p o n s e P r o g r a m m i n g 611

Web site, where a certain page is no longer valid and the content has been
moved to a new location. You can keep the old page live by simply redirect-
ing traffic to the new location.

It should be noted that redirection always involves an HTTP GET
request, like following a simple link to a URL. (POST arises as an option when
submitting form data, where the action can be specified as GET or POST.)

A more interesting case involves passing data to the new page. One way
to pass data is to encode it in the query string. You must preserve standard
HTTP conventions for the encoding of the query string. The class HttpUtility
provides a method UrlEncode, which will properly encode an individual item
of a query string. You must yourself provide code to separate the URL from the
query string with a “?” and to separate items of the query string with “&”.

The folder Hotel provides an example of a simple Web application that
illustrates this method of passing data in redirection. The file default.aspx pro-
vides a form for collecting information to be used in making a hotel reservation.
The reservation itself is made on the page Reservation1.aspx. You may access
the starting default.aspx page through the URL

http://localhost/Chap14/Hotel/

As usual, we provide a link to this page in our home page of example
programs. Figure 14–14 illustrates the starting page of our simple hotel reser-
vation example.

FIGURE 14–14 Starting page for making a hotel reservation.

ch14.fm Page 611 Wednesday, May 22, 2002 1:38 PM

612 C h a p t e r 1 4 � ASP.NET and Web Forms

Here is the script code that is executed when the Make Reservation but-
ton is clicked.

Sub cmdMakeReservation_Click(sender As Object, _
 e As EventArgs)
 Dim query As String = "City=" & _
 HttpUtility.UrlEncode(txtCity.Text)
 query += "&Hotel=" & _
 HttpUtility.UrlEncode(txtHotel.Text)
 query += "&Date=" & _
 HttpUtility.UrlEncode(txtDate.Text)
 query += "&NumberDays=" & _
 HttpUtility.UrlEncode(txtNumberDays.Text)
 Response.Redirect("Reservation1.aspx?" + query)
End Sub

We build a query string, which gets appended to the
Reservation1.aspx URL, separated by a “?”. Note the ampersand that is used
as a separator of items in the query string. We use the HttpUtility.UrlEncode
method to encode the individual items. Special encoding is required for the
slashes in the date and for the space in the name San Jose. Clicking the button
brings up the reservation page. You can see the query string in the address
window of the browser. Figure 14–15 illustrates the output shown by the
browser.

Our program does not actually make the reservation; it simply prints out
the parameters passed to it.

<%@ Page language="VB" Debug="true" Trace="false" %>
<script runat="server">
 Sub Page_Load(sender As Object, e As EventArgs)
 Response.Write("Making reservation for ...")

FIGURE 14–15 Browser output from making a hotel reservation.

ch14.fm Page 612 Wednesday, May 22, 2002 1:38 PM

W e b A p p l i c a t i o n s U s i n g V i s u a l S t u d i o . N E T 613

 Response.Write("
")
 Dim city As String = Request.Params("City")
 Response.Write("City = " & city)
 Response.Write("
")
 Dim hotel As String = Request.Params("Hotel")
 Response.Write("Hotel = " & hotel)
 Response.Write("
")
 Dim strDate As String = Request.Params("Date")
 Response.Write("Date = " & strDate)
 Response.Write("
")
 Dim strDays As String = Request.Params("NumberDays")
 Response.Write("NumberDays = " & strDays)
 Response.Write("
")
 End Sub
</script>
<HTML>
<body>
</body>
</HTML>

You can turn on tracing (in the file Reservation1.aspx), and the trace
output should serve to reinforce the ideas we have been discussing about
request/response Web programming. In particular, you should examine the
QueryString collection, as illustrated in Figure 14–16.

Web Applications Using Visual Studio .NET

We have examined the fundamentals of ASP.NET and have created some sim-
ple Web pages. To carry the story further it will be very helpful to start using
Visual Studio .NET. Everything we do could also be accomplished using only
the .NET Framework SDK, but our work will be much easier using the facili-
ties of Visual Studio. A special kind of project, an “ASP.NET Web Application,”
creates the boilerplate code. The Forms Designer makes it very easy to create
Web forms by dragging controls from a palette. We can add event handlers for

FIGURE 14–16 The query string is used for passing parameters in redirection.

ch14.fm Page 613 Wednesday, May 22, 2002 1:38 PM

614 C h a p t e r 1 4 � ASP.NET and Web Forms

controls in a manner very similar to the way event handlers are added in Win-
dows Forms. In fact, the whole Web application development process takes
on many of the rapid application development (RAD) characteristics typical of
Visual Basic.

In this section we will introduce the Web application development fea-
tures of Visual Studio by creating the first step of our Acme Travel Web site.
We will elaborate on specific features of ASP.NET in later sections.

Hotel Information Web Page (Step 0)
We begin by creating a simple Web page that will display information about
hotels. Dropdown listboxes are provided to show cities and hotels. Selecting a
city from the first dropdown will cause the hotels in that city to be shown in
the second dropdown. We obtain the hotel information from the Hotel.dll
component, and we use data binding to populate the listboxes. As a source
for the Hotel.dll and Customer.dll components used later, we provide a ver-
sion of the GUI application from Chapter 7, AcmeGui. The Hotel.dll compo-
nent we need in the following demonstration is in the folder AcmeGui.

If you would like to follow along hands-on with Visual Studio, do your
work in the Demos folder for this chapter. The completed project is in
AcmeWeb\Step0.

CONFIGURING WEB SERVER CONNECTION

Before getting started you may wish to check, and possibly change, your
Visual Studio Web Server Connection setting. The two options are File share
and FrontPage. If you are doing all your development on a local computer,
you might find File share to be faster and more convenient. To access this set-
ting, select the Visual Studio menu Tools | Options.… Choose Web Settings
underneath Projects. You can then set the Preferred Access Method by using a
radio button, as illustrated in Figure 14–17.

Form Designers for Windows and Web Applications
The basic look and feel of the Form Designers for Windows and Web applications is the
same. You drag controls from a toolbox. You set properties in a Property window. You navi-
gate between a code view and a designer view with toolbar buttons. In the following discus-
sion we assume you have a basic familiarity with this visual paradigm. You may find it
helpful to refer back to Chapter 7.

ch14.fm Page 614 Wednesday, May 22, 2002 1:38 PM

W e b A p p l i c a t i o n s U s i n g V i s u a l S t u d i o . N E T 615

CREATING AN ASP.NET WEB APPLICATION

1. In Visual Studio select the menu File | New | Project.…

2. In the New Project dialog box choose Visual Basic Projects as the Project
Type and ASP.NET Web Application as the Template.

3. Enter http://localhost/Chap14/Demos/AcmeWeb as the location of
your project, as illustrated in Figure 14–18. This setting assumes you have
made \OI\NetVb\Chap14 into a virtual directory with alias Chap14.

4. Click OK. The project files will then be created in
\OI\NetVb\Chap14\Demos\AcmeWeb. The VS.NET solution
AcmeWeb.sln will then be created under MyDocuments\Visual Stu-
dio Projects\AcmeWeb.

USING THE FORM DESIGNER

1. Bring up the Toolbox from the View menu, if not already showing. Make
sure the Web Forms tab is selected.

2. Drag two Label controls and two DropDownList controls onto the form.
3. Change the Text property of the Labels to City and Hotel. Resize the

DropDownList controls to look as shown in Figure 14–19.

4. Change the (ID) of the DropDownList controls to listCities and listHotels.

FIGURE 14–17 Configuring Web server connection preferred access method.

ch14.fm Page 615 Wednesday, May 22, 2002 1:38 PM

616 C h a p t e r 1 4 � ASP.NET and Web Forms

FIGURE 14–18 Creating a Visual Studio ASP.NET Web Application project.

FIGURE 14–19 Using the Form Designer to add controls to the form.

ch14.fm Page 616 Wednesday, May 22, 2002 1:38 PM

W e b A p p l i c a t i o n s U s i n g V i s u a l S t u d i o . N E T 617

INITIALIZING THE HOTELBROKER

1. Copy Hotel.dll from AcmeGui to Demos\AcmeWeb\bin.
2. In your AcmeWeb, project add a reference to Hotel.dll.
3. As shown in the following code fragment, in Global.asax, add the fol-

lowing line near the top of the file. (Use the View Code button to
show the code.)

Imports OI.NetVb.Acme

4. Add a public shared variable broker of type HotelBroker.
5. Add code to Application_Start to instantiate HotelBroker.

' Global.asax

Imports System.Web
Imports System.Web.SessionState
Imports OI.NetVb.Acme

Public Class Global
 Inherits System.Web.HttpApplication

#Region " Component Designer Generated Code "
 ...

 Public Shared broker As HotelBroker
 Sub Application_Start(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires when the application is started
 broker = New HotelBroker()
 End Sub
 ...

6. In WebForm1.aspx.vb add an Imports OI.NetVb.Acme statement, and
declare a shared variable broker of type HotelBroker.

' WebForm1.aspx.vb

Imports OI.NetVb.Acme

Public Class WebForm1
 Inherits System.Web.UI.Page
 ...

 Private Shared broker As HotelBroker
 ...

DATA BINDING

Next we will populate the first DropDownList with the city data, which can be
obtained by the GetCities method of HotelBroker. We make use of the data

ch14.fm Page 617 Wednesday, May 22, 2002 1:38 PM

618 C h a p t e r 1 4 � ASP.NET and Web Forms

binding capability of the DropDownList control. You might think data binding
is only used with a database. However, in .NET data binding is much more
general, and can be applied to other data sources besides databases. Binding
a control to a database is very useful for two-tier, client/server applications.
However, we are implementing a three-tier application, in which the presen-
tation logic, whether implemented using Windows Forms or Web Forms, talks
to a business logic component and not directly to the database. So we will
bind the control to an ArrayList.

The .NET Framework provides a number of data binding options, which
can facilitate binding to data obtained through a middle-tier component. A
very simple option is binding to an ArrayList. This option works perfectly in
our example, because we need to populate the DropDownList of cities with
strings, and the GetCities method returns an array list of strings.

The bottom line is that all we need to do to populate the listCities
DropDownList is to add the following code to the Page_Load method of the
WebForm1 class.

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 If Not IsPostBack Then
 broker = Global.broker
 Dim cities As ArrayList = broker.GetCities()
 listCities.DataSource = cities
 DataBind()
 End If
 End Sub

The call to DataBind() binds all the server controls on the form to their
data source, which results in the controls being populated with data from the
data source. The DataBind method can also be invoked on the server con-
trols individually. DataBind is a method of the Control class, and is inherited
by the Page class and by specific server control classes.

You can now build and run the project. Running a Web application
under Visual Studio will bring up Internet Explorer to access the application
over HTTP. Figure 14–20 shows the running application. When you drop
down the list of cities, you will indeed see the cities returned by the Hotel-
Broker component.

INITIALIZING THE HOTELS

We can populate the second DropDownList with hotel data using a similar
procedure. It is a little bit more involved, because GetHotels returns an array
list of HotelListItem structures rather than strings. We want to populate the
listHotels DropDownList with the names of the hotels. The helper method
BindHotels loops through the array list of hotels and creates an array list of

ch14.fm Page 618 Wednesday, May 22, 2002 1:38 PM

W e b A p p l i c a t i o n s U s i n g V i s u a l S t u d i o . N E T 619

hotel names, which is bound to listHotels. Here is the complete code, which
adds the logic for initializing the hotels for the first city (which has index 0).

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 If Not IsPostBack Then
 broker = Global.broker
 Dim cities As ArrayList = broker.GetCities()
 listCities.DataSource = cities
 Dim hotels As ArrayList = _
 broker.GetHotels(CStr(cities(0)))
 BindHotels(hotels)
 DataBind()
 End If
End Sub

Private Sub BindHotels(ByVal hotels As ArrayList)
 Dim hotelNames As ArrayList = _
 New ArrayList(hotels.Count)
 Dim hotel As HotelListItem
 For Each hotel In hotels
 hotelNames.Add(hotel.HotelName.Trim())
 Next
 listHotels.DataSource = hotelNames
End Sub

FIGURE 14–20 Running the Web page to show information about cities.

ch14.fm Page 619 Wednesday, May 22, 2002 1:38 PM

620 C h a p t e r 1 4 � ASP.NET and Web Forms

SELECTING A CITY

Finally, we implement the feature that selecting a city causes the hotels for the
selected city to be displayed. We can add an event handler for selecting a city
by double-clicking on the listCities DropDownList control. This is a shortcut
for adding a handler for the primary event for the control. Another method for
adding an event handler for this control is to select listCities from the first
dropdown in the WebForm1.aspx.vb code window. You can then choose an
event from the second dropdown, as illustrated in Figure 14–21. The second
method allows you to add a handler for any event of the control. Here is the
code for the SelectedIndexChanged event:

Private Sub listCities_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles listCities.SelectedIndexChanged
 Dim city As String = listCities.SelectedItem.Text
 Dim hotels As ArrayList = broker.GetHotels(city)
 BindHotels(hotels)
 DataBind()
End Sub

Build and run the project. Unfortunately, the event does not seem to be
recognized by the server. What do you suppose the problem is?

FIGURE 14–21 Adding an event handler for a control.

ch14.fm Page 620 Wednesday, May 22, 2002 1:38 PM

W e b A p p l i c a t i o n s U s i n g V i s u a l S t u d i o . N E T 621

AUTOPOSTBACK

For an event to be recognized by the server, you must have a postback to the
server. Such a postback happens automatically for a button click, but not for
other events. Once this problem is recognized, the remedy is simple. In the
Properties window for the cities DropDownList control, change the AutoPost-
Back property to true. Figure 14–22 illustrates setting the AutoPostBack
property. The program should now work properly. The project is saved in the
folder AcmeWeb\Step0.

DEBUGGING

One advantage of using Visual Studio for developing your ASP.NET applica-
tions is the ease of debugging. You can set breakpoints, single-step, examine
the values of variables, and so forth, in your code-behind files just as you
would with any other Visual Studio program. All you have to do is build your
project in Debug mode (the default) and start the program from within Visual
Studio using Debug | Start (or F5 at the keyboard or the toolbar button).

As an example, set a breakpoint on the first line of the SelectedIndex-
Changed event handler for listCities. Assuming you have set the AutoPost-
Back property to True, as we have discussed, you should hit the breakpoint.

FIGURE 14–22 Setting the AutoPostBack property of a DropDownList control.

ch14.fm Page 621 Wednesday, May 22, 2002 1:38 PM

622 C h a p t e r 1 4 � ASP.NET and Web Forms

Deploying a Web Application Created Using Visual Studio

Developing a Web application using Visual Studio is quite straightforward. You
can do all your work within Visual Studio, including testing your application.
When you start a Web application within Visual Studio, Internet Explorer will
be brought up automatically. And it is easy to debug, as we have just seen.

Deploying a Web application created using Visual Studio is also easy,
but you need to be aware of a few things.

1. The Project | Copy Project... menu can be used to deploy a Web project
from Visual Studio.

2. Visual Studio precompiles Web pages, storing the executable in the bin
folder.

3. The Src attribute in the Page directive is not used. Instead, the Inherits
attribute is used to specify the Page class.

4. The directory containing the Web pages must be marked as a Web appli-
cation. This marking is performed automatically by Visual Studio when
you deploy the application. If you copy the files to another directory,
possibly on another system, you must perform the marking as an appli-
cation yourself, which you can do using Internet Services Manager. (We
will discuss this procedure later in the chapter.)

USING PROJECT | COPY PROJECT...

To illustrate using Visual Studio to deploy a Web project, let’s deploy the
Acme Hotel Information page we have created. We will deploy it to a new
directory AcmeWeb in the Deploy directory for Chapter 14.

1. Bring up the Copy Project dialog from the menu Project | Copy
Project.…

2. Enter the following information (see Figure 14–23).

� http://localhost/Chap14/Deploy/AcmeWeb for Destination
project folder

� File share for Web access method
� \OI\NetVb\Chap14\Deploy\AcmeWeb for Path
� “Only files needed to run this application” for Copy

3. You can test the deployment by using Internet Explorer. Enter the following
URL: http://localhost/Chap14/Deploy/AcmeWeb/WebForm1.aspx.
You should then see the hotel information Web page displayed, and you
should be able to select a city from the City dropdown and see the corre-
sponding hotels displayed in the Hotel dropdown.

ch14.fm Page 622 Wednesday, May 22, 2002 1:38 PM

W e b A p p l i c a t i o n s U s i n g V i s u a l S t u d i o . N E T 623

PRECOMPILED WEB PAGE

Examining the files in the folder Deploy\AcmeWeb, you will see no code-
behind file WebForm1.aspx.vb. Instead, in the bin folder you will see the
DLL AcmeWeb.dll.

INHERITS ATTRIBUTE IN PAGE DIRECTIVE

Examining the file WebForm1.aspx, we see there is no Src attribute. Instead,
the Inherits attribute specifies the Page class WebForm1, which is imple-
mented in the assembly AcmeWeb.dll.

<%@ Page Language="vb" AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb"
Inherits="AcmeWeb.WebForm1"%>

CONFIGURING A VIRTUAL DIRECTORY AS AN APPLICATION

The identical files you copied to Deploy\AcmeWeb are also provided in the
directory AcmeRun. Try the URL http://localhost/Chap14/AcmeRun/
WebForm1.aspx in Internet Explorer. You will obtain a configuration error,
as illustrated in Figure 14–24.

FIGURE 14–23 Copying Web project files using Visual Studio.

ch14.fm Page 623 Wednesday, May 22, 2002 1:38 PM

624 C h a p t e r 1 4 � ASP.NET and Web Forms

The key sentence in the error message is “This error can be caused by a
virtual directory not being configured as an application in IIS.” The remedy is
simple. Use Internet Services Manager to perform the following steps.

1. Find the folder AcmeRun in the virtual directory Chap14.
2. Right-click and choose properties. See Figure 14–25. Click Create.
3. Accept all the suggested settings and click OK.
4. Now again try http://localhost/Chap14/AcmeRun/WebForm1.aspx in

Internet Explorer. You should be successful in bringing up the application.

FIGURE 14–24 Error message when virtual directory is not configured as an
application.

ch14.fm Page 624 Wednesday, May 22, 2002 1:38 PM

W e b A p p l i c a t i o n s U s i n g V i s u a l S t u d i o . N E T 625

MOVING A VISUAL STUDIO ASP.NET WEB APPLICATION PROJECT

Sometimes you will need to move an entire ASP.NET Web Application project
so that you can continue development under Visual Studio. The simplest way
to do this is to use the Visual Studio menu command Project | Copy Project.
In the Copy Project dialog, select “All project files” for the Copy option. You
will then enter the Destination project folder and the Path, as you did in
deploying a Web application project. You will also need to edit the
.vbproj.webinfo file to specify a correct URL path.

As an example, let’s copy the AcmeWeb project we have been working
on in the Demos directory, saving our current work in a new folder,
AcmeWeb0 in the Demos directory.

1. Perform Copy | Copy Project, as described above. For Destination
project folder enter http://localhost/Chap14/Demos/AcmeWeb0. Use

FIGURE 14–25 Configuring a virtual directory as an application in IIS.

ch14.fm Page 625 Wednesday, May 22, 2002 1:38 PM

626 C h a p t e r 1 4 � ASP.NET and Web Forms

File share as the Web access method. Enter C:\OI\NetVb\Chap14\
Demos\AcmeWeb0 for the Path.

2. Edit the file AcmeWeb.vbproj.webinfo to rename Web URLPath to:

"http://localhost/Chap14/Demos/AcmeWeb0/AcmeWeb.vbproj"

3. Double-click on the file AcmeWeb.vbproj. This should bring up Visual
Studio and create a new solution with a project AcmeWeb.

4. Build the solution. When presented with a Save As dialog, save the solu-
tion by the suggested name AcmeWeb.sln. You should get a clean
build.

5. Try to run the project. You will be asked to set a start page. Set the start
page as WebForm1.aspx.

6. Build and run. If you get a configuration error, use Internet Services Man-
ager to configure the virtual directory as an application in IIS, as previ-
ously discussed. You should now be able to run the application at its
new location.

You can view what we have done as establishing a snapshot of Step0.
You can go back to new development in the main directory
Demos\AcmeWeb, and if you want to compare with the original version,
you have Demos\AcmeWeb0 available.

Acme Travel Agency Case Study

Throughout this book we have been using the Acme Travel Agency as a case
study to illustrate many concepts of .NET. In this section we look at a Web site
for the Acme Travel Agency. The code for the Web site is in the AcmeWeb
directory in three progressive versions: Step0, Step1, and Step2. Step0 corre-
sponds to our Visual Studio .NET demonstration from the preceding section.
(A final step, discussed later in the chapter, is a database version of the case
study. We deliberately avoid the database during most of the chapter, so as
not to distract focus from the core Web programming topics.)

In this section we will give an overview of the case study, and in the
next we will discuss some more details about Web applications, using the
case study as an illustration.

Configuring the Case Study

Links are provided to the three steps of the case study on the ASP.NET exam-
ple programs “home page” for this chapter, which you can access through
the URL http://localhost/Chap14/. To be able to run the Web applications,
you must use IIS to configure the directories AcmeWeb/Step0, AcmeWeb/

ch14.fm Page 626 Wednesday, May 22, 2002 1:38 PM

A c m e T r a v e l A g e n c y C a s e S t u d y 627

Step1, AcmeWeb/Step2 as Web applications. Follow the instructions pro-
vided in the previous section. If you want to experiment with any of the ver-
sions in Visual Studio, you can double click on the .vbproj file to create a
Visual Studio solution.

Acme Web Site Step 1
In Step 1 we provide a simple two-page Web site. In the first page you can
make reservations, and in the second you can manage your reservations. We
have hard-coded the customer as “Rocket Squirrel,” who has a CustomerId of 1.

HotelReservations.aspx

The start page for the application is HotelReservations.aspx. Figure 14–26
shows this page in Internet Explorer, after a reservation has been booked at
the hotel Dixie in Atlanta.

FIGURE 14–26 Hotel reservations page of Acme Web site.

ch14.fm Page 627 Wednesday, May 22, 2002 1:38 PM

628 C h a p t e r 1 4 � ASP.NET and Web Forms

The code for initializing the DropDownList controls is the same as for
Step 0, as is the code for handling the SelectedIndexChanged event for the
City dropdown. The key new code is making a reservation. This code should
have no surprises for you. It makes use of the HotelBroker class, which we
already have instantiated for displaying the hotels.

The design of the Web page enables a user to quickly make a number of
reservations without leaving the page. We are relying on the postback mecha-
nism of ASP.NET. When done making reservations, the user can follow the
link “Manage My Reservations.”

ManageReservations.aspx

The second page for the application is ManageReservations.aspx. Figure
14–27 shows this page in Internet Explorer, after reservations have been
booked for Atlanta, Boston, and Chicago.

FIGURE 14–27 Manage reservations page of Acme Web site.

ch14.fm Page 628 Wednesday, May 22, 2002 1:38 PM

A c m e T r a v e l A g e n c y C a s e S t u d y 629

The user can cancel a reservation by selecting a reservation in the list-
box and clicking the Cancel Selected Reservation button. A link is provided to
the hotel reservations page. The code for this page is quite straightforward,
making use of the capability to provide event handlers in a server-side con-
trol. Here is the code for a helper method to show the reservations in the list-
box. This code is very similar to the Windows Forms code that we looked at
in Chapter 7.

Private Sub ShowReservations()
 Dim id As Integer = _
 Convert.ToInt32(lblHotelCustomerId.Text)
 Dim array As ArrayList = _
 broker.FindReservationsForCustomer(id)
 If array Is Nothing Then
 Return
 End If
 ClearReservations()
 Dim item As ReservationListItem
 For Each item In array
 Dim rid As String = item.ReservationId.ToString()
 Dim hotel As String = item.HotelName
 Dim city As String = item.City
 Dim arrive As String = item.ArrivalDate.ToString("d")
 Dim depart As String = _
 item.DepartureDate.ToString("d")
 Dim number As String = item.NumberDays.ToString()
 Dim str As String = id & "," & rid & "," & hotel & _
 "," & city & " ," & arrive & "," & depart & "," _
 & number
 listReservations.Items.Add(str)
 Next
End Sub

Acme Web Site Step 2
Step 2 is the full-blown implementation of our Web site case study. Acme cus-
tomers do not interact with the Hotel Broker directly. Instead, they go through
Acme’s Web site. In order to use the Web site, a customer must register, pro-
viding a user ID, name, and email address. Subsequently, the user can log in
by just providing the user ID.

ACMELIB COMPONENT

Internally, Acme maintains a database of user IDs and corresponding Hotel
Customer IDs.4 The interface IAcmeUser encapsulates this database main-

4. The Web site is Acme’s, and Acme maintains user IDs for its own customers.
Acme connects to various brokers (such as hotel and airline), and each broker
will have its own customer ID.

ch14.fm Page 629 Wednesday, May 22, 2002 1:38 PM

630 C h a p t e r 1 4 � ASP.NET and Web Forms

tained by Acme. The class library project AcmeLib contains a collection-
based implementation of such a database. The file AcmeTravelDefs.cs con-
tains the definitions of interfaces and of a structure.

' AcmeTravelDefs.vb

Imports OI.NetVb.Acme

Public Interface IAcmeUser
 Function Login(ByVal uid As String) As Boolean
 Function Register(ByVal uid As String, _
 ByVal firstName As String, _
 ByVal lastName As String, _
 ByVal emailAddress As String) As Boolean
 Function Unregister(ByVal uid As String) As Boolean
 Function ChangeEmailAddress(ByVal uid As String, _
 ByVal emailAddress As String) As Boolean
 Function GetUserInfo(ByVal uid As String, _
 ByRef info As UserInfo) As Boolean
End Interface

Public Interface IAcmeAdmin
 Function GetUsers() As ArrayList
End Interface

Public Structure UserInfo
 Public HotelCustomerId As Integer
 Public FirstName As String
 Public LastName As String
 Public EmailAddress As String
End Structure

Login will return True if uid is found. Register will register a new user
with the Hotel Broker. Methods are also provided to unregister and change
email address. These methods will call the corresponding methods of the
ICustomer interface. GetUserInfo will return a UserInfo struct as a ByRef
parameter. This structure defines an Acme user. The method GetUsers of the
IAcmeAdmin interface returns an array list of UserInfo structures.

The class Acme wraps access to the Customers class, whose methods
get invoked indirectly through methods of IAcmeUser. The class Acme also
contains a public member broker of type HotelBroker. Thus to gain com-
plete access to the Hotel Broker system, a client program or Web page simply
has to instantiate an instance of Acme. Here is the start of the definition of
Acme.

Public Class Acme
 Implements IAcmeUser, IAcmeAdmin

 Public broker As HotelBroker
 Private custs As Customers

ch14.fm Page 630 Wednesday, May 22, 2002 1:38 PM

A c m e T r a v e l A g e n c y C a s e S t u d y 631

 Private users As ArrayList
 Private currUser As User

 Public Sub New()
 users = New ArrayList()
 broker = New HotelBroker()
 custs = New Customers()
 InitializeUsers()
 End Sub

 ' Initialize users with data from Customers list
 Private Sub InitializeUsers()
 Dim arr As ArrayList = custs.GetCustomer(-1)
 Dim cust As CustomerListItem
 For Each cust In arr
 Dim uid As String = cust.FirstName
 Dim custid As Integer = cust.CustomerId
 Dim us As User = New User(uid, custid)
 users.Add(us)
 Next
 End Sub
 ...

The class Acme also implements the interface IAcmeAdmin.

Public Interface IAcmeAdmin
 Function GetUsers() As ArrayList
End Interface

The method GetUsers returns an array list of UserInfo.

Login.aspx

To get a good feel for how this Web application works, it would be a good
idea for you to register and make a few reservations. You could then try log-
ging in as another user.5 You can start up the application through the
ASP.NET Example programs home page, link to Acme (Step 2), or else directly
enter the URL:

http://localhost/Chap14/AcmeWeb/Step2/Main.aspx

The start page for the application is Main.aspx. If there is no currently
logged-in user, the new user will be redirected to Login.aspx. We will exam-
ine the logic in Main.aspx shortly. For now, let’s do the experiment of regis-
tering and logging in. Figure 14–28 shows the login page. In our
implementation we offer “Rocket” as a possible user ID. Later you can quickly
log in as “Rocket Squirrel” by simply clicking Login. But now click Register.

5. We are ignoring security considerations in this chapter. Security in ASP.NET will
be discussed in Chapter 16.

ch14.fm Page 631 Wednesday, May 22, 2002 1:38 PM

632 C h a p t e r 1 4 � ASP.NET and Web Forms

RegisterNewUser.aspx

The “Register New User” page allows the user to pick a User ID and enter
some identifying information (first name, last name, and email address). Fig-
ure 14–29 shows this page after “John Smith” has entered information for him-
self. When done entering information, the user should click Register, which
will directly bring up the Acme Travel Agency home page, bypassing a need
for a separate login.

Main.aspx

The home page of the Acme Web Site is Main.aspx. Figure 14–30 shows this
home page for the user John Smith, who has just registered. A link is provided
to “Login” as a different user, if desired. There are links for “Make a Hotel Res-
ervation” and “Manage Your Reservations.” These pages are the same as
shown previously for Step 1.

FIGURE 14–28 Login page of Acme Web site.

ch14.fm Page 632 Wednesday, May 22, 2002 1:38 PM

A c m e T r a v e l A g e n c y C a s e S t u d y 633

FIGURE 14–29 Register new user page of Acme Web site.

FIGURE 14–30 Home page of the Acme Web site.

ch14.fm Page 633 Wednesday, May 22, 2002 1:38 PM

634 C h a p t e r 1 4 � ASP.NET and Web Forms

ASP.NET Applications

An ASP.NET application consists of all the Web pages and code files that can
be invoked from a virtual directory and its subdirectories on a Web server.
Besides .aspx files and code-behind files such as those we have already
examined, an application can also have a global.asax file and a configuration
file config.web. In this section we examine the features of ASP.NET applica-
tions. We then investigate the mechanisms for working with application state
and session state and for configuring Web applications. Our illustration will be
our Acme Case Study (Step 2).

Sessions
To appreciate the Web application support provided by ASP.NET, we need
to understand the concept of a Web session. HTTP is a stateless protocol.
This means that there is no direct way for a Web browser to know whether
a sequence of requests is from the same client or from different clients. A
Web server such as IIS can provide a mechanism to classify requests coming
from a single client into a logical session. ASP.NET makes it very easy to
work with sessions.

Global.asax
An ASP.NET application can optionally contain a file Global.asax, which con-
tains code for responding to application-level events raised by ASP.NET. This
file resides in the root directory of the application. Visual Studio will automat-
ically create a Global.asax file for you when you create an ASP.NET Web
Application project. If you do not have a Global.asax file in your application,
ASP.NET will assume you have not defined any handlers for application-level
events.

Global.asax is compiled into a dynamically generated .NET Framework
class derived from HttpApplication.

Here is the Global.asax file for our AcmeWeb case study, Step 2.

' Global.asax

Imports System.Web
Imports System.Web.SessionState
Imports OI.NetVb.Acme

Public Class Global
 Inherits System.Web.HttpApplication

#Region " Component Designer Generated Code "
...

ch14.fm Page 634 Wednesday, May 22, 2002 1:38 PM

A S P . N E T A p p l i c a t i o n s 635

 Public Shared acmedat As Acme

 Sub Application_Start(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires when the application is started
 acmedat = New Acme()
 End Sub

 Sub Session_Start(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires when the session is started
 Session("UserId") = ""
 End Sub

 Sub Application_BeginRequest(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires at the beginning of each request
 End Sub

 Sub Application_AuthenticateRequest(_
 ByVal sender As Object, ByVal e As EventArgs)
 ' Fires upon attempting to authenticate the use
 End Sub

 Sub Application_Error(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires when an error occurs
 End Sub

 Sub Session_End(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires when the session ends
 End Sub

 Sub Application_End(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires when the application ends
 End Sub

End Class

The most common application-level events are shown in this code. The
typical life cycle of a Web application would consist of these events:

� Application_Start is raised only once during an application’s life-
time, on the first instance of HttpApplication. An application starts
the first time it is run by IIS for the first user. In your event handler
you can initialize a state that is shared by the entire application.

� Session_Start is raised at the start of each session. Here you can ini-
tialize session variables.

ch14.fm Page 635 Wednesday, May 22, 2002 1:38 PM

636 C h a p t e r 1 4 � ASP.NET and Web Forms

� Application_BeginRequest is raised at the start of an individual
request. Normally you can do your request processing in the Page
class.

� Application_EndRequest is raised at the end of a request.
� Session_End is raised at the end of each session. Normally you do

not need to do cleanup of data initialized in Session_Start, because
garbage collection will take care of normal cleanup for you. How-
ever, if you have opened an expensive resource, such as a database
connection, you may wish to call the Dispose method here.

� Application_End is raised at the very end of an application’s life-
time, when the last instance of HttpApplication is torn down.

In addition to these events, there are other events concerned with secu-
rity, such as AuthenticateRequest and AuthorizeRequest. We will discuss
ASP.NET security in Chapter 16.

In the case study, we instantiate a single global Acme object instance
acmedat in Application_OnStart. This single instance is stored as a shared
data member of Global.

In the Session_Start event handler we initialize the session variable
UserId to be a blank string. We discuss session variables later in this section.

State in ASP.NET Applications

Preserving state across HTTP requests is a major problem in Web program-
ming, and ASP.NET provides several facilities that are convenient to use.
There are two main types of state to be preserved.

� Application state is global information that is shared across all users
of a Web application.

� Session state is used to store data for a particular user across multi-
ple requests to a Web application.

Shared Data Members

Shared data members of a class are shared across all instances of a class.
Hence shared data members can be used to hold application state.

In our case study the class Global has a single shared member acmedat
of the class Acme.

Thus the broker and custs objects within Acme will hold shared data
that is the same for all users of the application. Each user will see the same list
of hotels. You can view the source code for the Acme class in the AcmeLib
project.

ch14.fm Page 636 Wednesday, May 22, 2002 1:38 PM

S t a t e i n A S P . N E T A p p l i c a t i o n s 637

Public Class Acme
 Implements IAcmeUser, IAcmeAdmin

 Public broker As HotelBroker
 Private custs As Customers
 Private users As ArrayList
 Private currUser As User

If you like, you may perform a small experiment at this stage. The direc-
tory HotelAdmin contains a special version of the Acme Web site that makes
available the hotel administration interface IHotelAdmin to the special user
with user ID of “admin”. When this privileged user logins, a special home
page will be displayed that provides a link to “Administer Hotels,” as illus-
trated in Figure 14–31.

Run this Web application, either from the “Hotel Admin” link on the
example programs home page or else via the URL http://localhost/
Chap14/HotelAdmin/Main.aspx. Log in as “admin” and follow the link to
“Administer Hotels.” You will be brought to a page showing a list of all the
hotels. Select the first hotel (Dixie) on the list and click the Delete Selected
Hotel button and then the Refresh button. You will now see an updated list of
hotels, as shown in Figure 14–32.

FIGURE 14–31 Home page of the Acme Web site tailored for administrators.

ch14.fm Page 637 Wednesday, May 22, 2002 1:38 PM

638 C h a p t e r 1 4 � ASP.NET and Web Forms

If your Web server is on a network, you can now try running the same
Web application from a different client. Use the URL

http://<server-name>/Chap14/HotelAdmin/Main.aspx

where <server-name> is the name of your server machine.6 Again log in as
“admin” and go to the “Hotel Admin” page. You should see the same list of
hotels seen by the other client, with hotel Dixie not on the list.7 You can also
experiment with different browser sessions on the same machine, adding and
deleting hotels, and using the Refresh button.

FIGURE 14–32 Hotel administration page after deleting the hotel Dixie.

6. On a local machine you can use either the machine name or “localhost.”
7. Remember that at this point we are not using a database. Thus our example illus-

trates application state preserved in memory.

ch14.fm Page 638 Wednesday, May 22, 2002 1:38 PM

S t a t e i n A S P . N E T A p p l i c a t i o n s 639

Application Object

You can store global application information in the built-in Application
object, an instance of the class HttpApplicationState. You can conveniently
access this object through the Application property of the Page class. The
HttpApplicationState class provides a key-value dictionary that you can use
for storing both objects and scalar values.

For example, as an alternative to using the class Global with the shared
member acmedat that we previously used, we could instead use the Appli-
cation object. We make up a string name for the key—for example, “Hotel-
State.” In Global.asax we can then instantiate an Acme object and store it in
the Application object using the following code.

Sub Application_Start(ByVal sender As Object, _
 ByVal e As EventArgs)
 Application("HotelState") = New Acme()
End Sub

You can then retrieve the Acme object associated with “HotelState” by
using the index expression on the right-hand side and casting to Acme, as
illustrated in the code,

Dim acmedat As Acme = _
 CType(Application("HotelState"), Acme)
Dim name As String = acmedat.CurrentUserInfo.FirstName

As a little exercise in employing this technique, you may wish to modify
Step 2 of AcmeWeb to use the Application object in place of a shared data
member. The solution to this exercise can be found in the directory Applica-
tionObject.8

Session Object

You can store session information for individual users in the built-in Session
object, an instance of the class HttpSessionState. You can conveniently
access this object through the Session property of the Page class. The
HttpSessionState class provides a key-value dictionary that you can use for
storing both objects and scalar values, in exactly the same manner employed
by HttpApplicationState.

8. In our current example of a Web application that is precompiled by Visual Stu-
dio, it is quite feasible to use a static variable that can be shared across pages.
But if your application is not precompiled, each page will be compiled individu-
ally at runtime, and sharing a static variable is no longer feasible. Hence you will
have to use the ApplicationApplicationApplicationApplication object to share data.

ch14.fm Page 639 Wednesday, May 22, 2002 1:38 PM

640 C h a p t e r 1 4 � ASP.NET and Web Forms

Our AcmeWeb case study provides an example of the use of a session
variable UserId for storing a string representing the user ID. The session vari-
able is created and initialized in Global.asax.

Sub Session_Start(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' Fires when the session is started
 Session("UserId") = ""
End Sub

We use this session variable in the Page_Load event of our home page
Main.aspx to detect whether we have a returning user or a new user. A new
user is redirected to the login page. (Note that “returning” means coming back
to the home page during the same session.)

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 Dim userid As String = CStr(Session("UserId"))
 If userid = "" Then
 Response.Redirect("Login.aspx")
 End If
 If Not IsPostBack Then
 Dim name As String = _
 Global.acmedat.CurrentUserInfo.FirstName
 lblUserName.Text = "Welcome, " & name
 lblLogin.Text = "(If you are not " & name & _
 ", please login)"
 End If
End Sub

There are some interesting issues in the implementation of session vari-
ables.

� Typically, cookies are used to identify which requests belong to a
particular session. What if the browser does not support cookies, or
the user has disabled cookies?

� There is overhead in maintaining session state for many users. Will
session state “expire” after a certain time period?

� A common scenario in high-performance Web sites is to use a server
farm. How can your application access its data if a second request for
a page is serviced on a different machine from that on which the first
request was serviced?

SESSION STATE AND COOKIES

Although by default ASP.NET uses cookies to identify which requests belong to
a particular session, it is easy to configure ASP.NET to run cookieless. In this
mode the Session ID, normally stored within a cookie, is instead embedded
within the URL. We will discuss cookieless configuration in the next section.

ch14.fm Page 640 Wednesday, May 22, 2002 1:38 PM

A S P . N E T C o n f i g u r a t i o n 641

SESSION STATE TIMEOUT

By default session state times out after 20 minutes. This means that if a given
user is idle for that period of time, the session is torn down; a request from
the client will now be treated as a request from a new user, and a new session
will be created. Again, it is easy to configure the timeout period, as we will
discuss in the section on Configuration.

SESSION STATE STORE

ASP.NET cleanly solves the Web farm problem, and many other issues,
through a session state model that separates storage from the application’s use
of the stored information. Thus different storage scenarios can be imple-
mented without affecting application code. The .NET state server does not
maintain “live” objects across requests. Instead, at the end of each Web
request, all objects in the Session collection are serialized to the session state
store. When the same client returns to the page, the session objects are dese-
rialized.

By default, the session state store is an in-memory cache. It can be con-
figured to be memory on a specific machine, or to be stored in an SQL Server
database. In these cases the data is not tied to a specific server, and so session
data can be safely used with Web farms.

ASP.NET Configuration

In our discussion of session state we have seen a number of cases where it is
desirable to be able to configure ASP.NET. There are two types of configura-
tions:

� Server configuration specifies default settings that apply to all
ASP.NET applications.

� Application configuration specifies settings specific to a particular
ASP.NET application.

Configuration Files

Configuration is specified in files with an XML format, which are easy to read
and to modify.

SERVER CONFIGURATION FILE

The configuration file is machine.config. This file is located within a ver-
sion-specific folder under \WINNT\Microsoft..NET\Framework. Because
there are separate files for each version of .NET, it is perfectly possible to run

ch14.fm Page 641 Wednesday, May 22, 2002 1:38 PM

642 C h a p t e r 1 4 � ASP.NET and Web Forms

different versions of ASP.NET side-by-side. Thus if you have working Web
applications running under one version of .NET, you can continue to run
them, while you develop new applications using a later version.

APPLICATION CONFIGURATION FILES

Optionally, you may provide a file web.config at the root of the virtual direc-
tory for a Web application. If the file is absent, the default configuration set-
tings in machine.config will be used. If the file is present, any settings in
web.config will override the default settings.

CONFIGURATION FILE FORMAT

Both machine.config and web.config files have the same XML-based for-
mat. There are sections that group related configuration items together, and
individual items within the sections. As an easy way to get a feel both for the
format of web.config and also for some of the important settings you may
wish to adjust, just look at the web.config file that is created by Visual Studio
when you create a new ASP.NET Web Application project.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <system.web>

 <!-- DYNAMIC DEBUG COMPILATION
 Set compilation debug="true" to insert debugging
 symbols (.pdb information) into the compiled
 page. Because this creates a larger file that
 executes more slowly, you should set this value
 to true only when debugging and to false at all
 other times. For more information, refer to the
 documentation about debugging ASP.NET files.
 ...
 -->
 <compilation
 defaultLanguage="vb"
 debug="true"
 />

 <!-- CUSTOM ERROR MESSAGES
 Set customErrors mode="On" or "RemoteOnly" to
 enable custom error messages, "Off" to disable.
 Add <error> tags for each of the errors you want
 to handle.
 -->
 <customErrors
 mode="Off"
 />

ch14.fm Page 642 Wednesday, May 22, 2002 1:38 PM

A S P . N E T C o n f i g u r a t i o n 643

 <!-- AUTHENTICATION
 This section sets the authentication policies of
 the application. Possible modes are "Windows",
 "Forms", "Passport" and "None"
 -->
 <authentication mode= "Windows" />

 ...

</system.web>
</configuration>

Application Tracing
Earlier in the chapter we examined page-level tracing, which can be enabled
with the Trace=“true” attribute in the Page directive. Page-level tracing is
useful during development but is rather intrusive, because the page trace is
sent back to the browser along with the regular response. Application tracing,
which is specified in web.config, writes the trace information to a log file,
which can be viewed via a special URL.

As a demonstration of the use of web.config, let’s add application trac-
ing to our original Hello.aspx application. The folder HelloConfig contains
Hello.aspx and web.config. We have added a trace statement in
Hello.aspx.

<!-- Hello.aspx -->
<%@ Page Language="VB" %>
<HTML>
<HEAD>
 <SCRIPT RUNAT="SERVER">
 Sub cmdEcho_Click(Source As Object, e As EventArgs)
 lblGreeting.Text="Hello, " & txtName.Text
 Trace.Write("cmdEcho_Click called")
 End Sub
 </SCRIPT>
</HEAD>
<BODY>
<FORM RUNAT="SERVER">Your name:
<asp:textbox id=txtName Runat="server"></asp:textbox>
<p><asp:button id=cmdEcho onclick=cmdEcho_Click Text="Echo"
runat="server" tooltip="Click to echo your name">
</asp:button></p>
<asp:label id=lblGreeting runat="server"></asp:label>
<P></P>
</FORM>
</BODY>
</HTML>

We have provided a trace section in web.config to enable tracing.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

ch14.fm Page 643 Wednesday, May 22, 2002 1:38 PM

644 C h a p t e r 1 4 � ASP.NET and Web Forms

 <system.web>
 <trace
 enabled="true"
 />
 </system.web>
</configuration>

You can run this application from Internet Explorer by simply providing
the URL http://localhost/Chap14/HelloConfig/Hello.aspx.9 Enter a name
and click the Echo button. The application should run normally, without any
trace information included in the normal page returned to the browser.

Now enter the following URL: http://localhost/Chap14/HelloConfig/
trace.axd (specifying trace.axd in place of hello.aspx), and you will see
top-level trace information, with a line for each trip to the server, as shown in
Figure 14–33. If you click on the “View Details” link, you will see a detailed
page trace, as we saw earlier in the chapter. The detailed trace corresponding
to the POST will contain the trace output “cmdEcho_Click called” provided by
our own code.

9. If you get a configuration error, try configuring the directory in IIS as an applica-
tion. See “Configuring a Virtual Directory as an Application” in the section
“Deploying a Web Application Created Using Visual Studio.”

FIGURE 14–33 Viewing the application trace log through the browser.

ch14.fm Page 644 Wednesday, May 22, 2002 1:38 PM

S e r v e r C o n t r o l s 645

Session Configuration
As another example of configuration, modify the web.config file for Step 2 of
the case study to change the timeout value to be 1 minute.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
...
 <!-- SESSION STATE SETTINGS
 By default ASP.NET uses cookies to identify which
 requests belong to a particular session. If
 cookies are not available, a session can be
 tracked by adding a session identifier to the
 URL. To disable cookies, set sessionState
 cookieless="true".
 -->
 <sessionState
 mode="InProc"
 stateConnectionString="tcpip=127.0.0.1:42424"
 sqlConnectionString=
 "data source=127.0.0.1;user id=sa;password="
 cookieless="false"
 timeout="1"
 />
...
 </system.web>
</configuration>

Now run the application, log in, do some work, and return to the home
page. You should be welcomed by your name without having to log in again.
Now do some more work, wait more than a minute, and return to the home
page. Now the session will have timed out, and you will be redirected to log
in again.

Server Controls

An important innovation in ASP.NET is server controls. They provide an event
model that is startlingly similar to Windows GUI programming, and they
encapsulate browser dependencies. They integrate seamlessly into the Visual
Studio development environment. The end result is an extremely powerful
tool for Web development.

We have been using server controls from the very beginning of the
chapter, where we presented our “Hello” program. In this section we will
look at server controls more systematically, and we will see a number of
examples of interesting controls.

ch14.fm Page 645 Wednesday, May 22, 2002 1:38 PM

646 C h a p t e r 1 4 � ASP.NET and Web Forms

Web Controls

The most important kind of control in ASP.NET is the Web Forms server control
or just Web control. These are new controls provided by the .NET Framework,
with special tags such as <asp:textbox>. These controls run at the server, and
they generate HTML code that is sent back to the browser. They are easy to
work with, because they behave consistently. For example, you can determine
the value returned by a control by using simple property notation.

Dim name As String = txtName.Text

All of our previous examples of server controls in this chapter have
been Web controls. In this section, we will look at several additional kinds of
Web controls, including validation controls, list controls, and rich controls
such as the Calendar control. But first we will look at HTML server controls.

HTML Server Controls

HTML server controls provide equivalent functionality to standard HTML con-
trols, except that they run on the server, not on the client. In fact, the only
way to distinguish an HTML server control from an ordinary HTML control on
a Web page is the presence of the runat=“server” attribute.

Here are two controls. Both are INPUT controls. The first is a server con-
trol. The second is of type password and is a regular HTML control.

<INPUT id=txtUserId
style="WIDTH: 135px; HEIGHT: 22px" type=text size=17
runat="server"></P>
<INPUT id=""
style="WIDTH: 138px; HEIGHT: 22px" type=password size=17
name=txtPassword>

Working with HTML server controls is much like working with the Web
Forms server controls we’ve used already. In server-side code you access the
control through a control variable that has the same name as the id attribute.
However, we are dealing with HTML controls, so there are some differences.
You access the string value of the control not through the Text property but
through the Value property. Here is some code that uses the value entered by
the user for the txtUserId control.

lblMessage.Text = "Welcome, " & txtUserId.Value

The advantage of HTML server controls for the experienced Web pro-
grammer is that they match ordinary HTML controls exactly, so that your
knowledge of the details of HTML control properties and behavior carries
over to the ASP.NET world. However, this similarity means they carry over all
the quirks and inconsistencies of HTML. For example, rather than having two
different controls for the somewhat different behaviors of a textbox and a

ch14.fm Page 646 Wednesday, May 22, 2002 1:38 PM

S e r v e r C o n t r o l s 647

password control, HTML uses in both cases the INPUT control, distinguishing
between the two by the type=password attribute. Web Forms controls, in
contrast, are a fresh design and have an internal consistency. Also, as we shall
soon see, there is a much greater variety to Web Forms controls.

HTML CONTROLS EXAMPLE

Let’s look at an example of HTML controls. All of our server control examples
in this section can be accessed from the page ServerCon-
trols\WebForms1.aspx. (As usual, you should use IIS to configure the
folder ServerControls as an application.) The top-level page gives you a
choice of three examples,

� HTML Controls

� Validation

� Calendar

Follow the link to HTML Controls, and you will come to a login page, as
illustrated in Figure 14–34.

FIGURE 14–34 A login page illustrating HTML server controls.

ch14.fm Page 647 Wednesday, May 22, 2002 1:38 PM

648 C h a p t e r 1 4 � ASP.NET and Web Forms

There is a textbox for entering a user ID and a password control for
entering a password. Both of these controls are HTML INPUT controls, as
shown previously. The textbox runs at the server, and the password is an
ordinary HTML control. Clicking the Login button (implemented as a Win-
dows Forms Button control) results in very simple action. There is one legal
password, hardcoded at “77.” The button event handler checks for this pass-
word. If legal, it displays a welcome message; otherwise, an error message.

Private Sub btnLogin_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles btnLogin.Click
 If Request.Params("txtPassword") = "77" Then
 lblMessage.Text = "Welcome, " & txtUserId.Value
 Else
 lblMessage.Text = "Illegal password"
 End If
End Sub

Since the password control is not a server control, no server control vari-
able is available for accessing the value. Instead, we must rely on a more fun-
damental technique, such as using the Params collection.10

HTML CONTROLS IN VISUAL STUDIO

It is easy to work with HTML controls in Visual Studio.11 The Toolbox has a
palette of HTML controls, which you can access through the HTML tab. Figure
14–35 shows some of the HTML controls in the Visual Studio Toolbox.

You can drag HTML controls onto a form, just as we have done with
Web Forms controls. You have the option of using FlowLayout or GridLayout.
The default is GridLayout, which enables absolute positioning of controls on a
form. FlowLayout is the simplest layout, resulting in elements positioned in a
linear fashion. You can set the layout mode through the pageLayout property
of the form. In our example we used FlowLayout for the two INPUT controls
and their associated labels.

The default choice for HTML controls is not to run at the server. To
make an HTML control into a server control, right-click on it in the Form
Designer. Clicking on Run As Server Control toggles back and forth between
running on the server and not running on the server. You can inspect the
runat property in the Properties panel, but you cannot change it there.

10. We described the various collections earlier in the chapter in the section
“Request/Response Programming.” The collections are included in Table 14–1.

11. But it is also confusing, because there is only one palette for HTML controls,
and you distinguish between classical HTML controls and server HTML controls
by runat=“server”runat=“server”runat=“server”runat=“server”. The Forms Designer UI for setting this attribute is
described below.

ch14.fm Page 648 Wednesday, May 22, 2002 1:38 PM

S e r v e r C o n t r o l s 649

Validation Controls

The rest of our discussion of server controls will focus on Web controls. A very
convenient category of control is the group of validation controls. The basic
idea of a validation control is very simple. You associate a validation control
with a server control whose input you want to validate. Various kinds of valida-
tions can be performed by different kinds of validation controls. The validation
control can display an error message if the validation is not passed. Alterna-
tively, you can check the IsValid property of the validation control. If one of
the standard validation controls does not do the job for you, you can implement
a custom validation control. The following validation controls are available:

� RequiredFieldValidator
� RangeValidator
� CompareValidator
� RegularExpressionValidator
� CustomValidator

There is also a ValidationSummaryControl that can give a summary
of all the validation results in one place.

FIGURE 14–35 HTML controls in the Visual Studio Toolbox.

ch14.fm Page 649 Wednesday, May 22, 2002 1:38 PM

650 C h a p t e r 1 4 � ASP.NET and Web Forms

An interesting feature of validation controls is that they can run on either
the client or the server, depending on the capabilities of the browser. With an
upscale browser such as Internet Explorer, ASP.NET will emit HTML code
containing JavaScript to do validation on the client.12 If the browser does not
support client-side validation, the validation will be done only on the server.

REQUIRED FIELD VALIDATION

A very simple and useful kind of validation is to check that the user has
entered information in required fields. Our second server control demonstra-
tion page provides an illustration. Back on the top-level ServerCon-
trols\WebForms1.aspx page, follow the link to “Validation” (or click the
Register button from the Login page). You will be brought to the page Regis-
terNewUser.aspx, as illustrated in Figure 14–36. The screenshot shows the
result of clicking the Register button after entering a UserId, a Password, and
a First Name, but leaving Last Name blank. You will see an error message dis-
played next to the Last Name textbox, because that is where the validator
control is on the form.

12. Validation will also be done on the server, to prevent “spoofing.”

FIGURE 14–36 Register New User page illustrates ASP.NET validation controls.

ch14.fm Page 650 Wednesday, May 22, 2002 1:38 PM

S e r v e r C o n t r o l s 651

The textboxes for First Name and Last Name both have an associated
RequiredFieldValidator control. In Visual Studio you can simply drag the
control to a position next to the associated control. You have to set two prop-
erties of the validator control:

� ControlToValidate must be set to the ID of the control that is to be
validated.

� ErrorMessage must be specified.

Then, when you try to submit the form, the validator control will check
whether information has been entered in its associated control. If there is no
data in the control, the designated error message will be displayed.

Internet Explorer supports client-side validation using JavaScript. You
can verify that ASP.NET generates suitable JavaScript by looking at the gener-
ated source code in the browser (View | Source).

This form also requires that the UserId field not be blank. Since the pri-
mary validation of this field is done by a regular expression validator, as dis-
cussed shortly, we will use another technique for the required field validation.
Figure 14–37 shows the location of the various validator controls in the Visual
Studio Form Designer.

FIGURE 14–37 Layout of validation controls for Register New User page.

ch14.fm Page 651 Wednesday, May 22, 2002 1:38 PM

652 C h a p t e r 1 4 � ASP.NET and Web Forms

We assign the ID vldUserId to the required field validator control asso-
ciated with the UserId control, and we clear the error message. We also set
the EnableClientScript property to False, to force a postback to the server
for the validation. The event handler for the Register button then checks the
IsValid property of vldUserId.

private void cmdRegister_Click(object sender,
 System.EventArgs e)
{
 if (vldUserId.IsValid)
 lblMessage.Text = "Welcome, " + txtFirstName.Text;
 else
 lblMessage.Text = "UserId must not be blank";

}

If the control is valid, we display the welcome message; otherwise, an
error message. Note that we won’t even reach this handler if other validation
is false.

REGULAR EXPRESSION VALIDATION

The RegularExpressionValidator control provides a very flexible mecha-
nism for validating string input. It checks whether the string is a legal match
against a designated regular expression. Our example illustrates performing a
regular expression validation of UserId. The requirement is that the ID consist
only of letters and digits, which can be specified by the regular expression

[A-Za-z0-9]+
The following properties should normally be assigned for a RegularEx-

pressionValidator control:

� ValidationExpression (the regular expression, not surrounded by
quotes)

� ControlToValidate
� ErrorMessage

You can try this validation out on our Register New User page by enter-
ing a string for UserId that contains a non-alphanumeric character.

Rich Controls
Another category of Web Forms controls consists of “rich controls,” which can
have quite elaborate functionality. The Calendar control provides an easy-to-
use mechanism for entering dates on a Web page. Our third sample server
control page provides an illustration, as shown in Figure 14–38.

The user can select a date on the Calendar control. The SelectedDate
property then contains the selected date as an instance of the DateTime
structure. You can work with this date by handling the SelectionChanged

ch14.fm Page 652 Wednesday, May 22, 2002 1:38 PM

D a t a b a s e A c c e s s i n A S P . N E T 653

event. In our example page, the event handler displays the date as a string in
a textbox.

Private Sub Calendar1_SelectionChanged(_
 ByVal sender As Object, ByVal e As EventArgs) _
 Handles Calendar1.SelectionChanged
 txtDate.Text = _
 Calendar1.SelectedDate.ToShortDateString()
End Sub

Database Access in ASP.NET

A great deal of practical Web application development involves accessing data
in various kinds of databases. A great thing about the .NET Framework is that
it is very easy to encapsulate a database, allowing the rest of the program to
work with data in a very generic way, without worrying about where it came
from. In this section we discuss data binding in Web Forms controls, and we
then present a database version of our Acme Travel Agency Web site.

FIGURE 14–38 Using the Calendar control to select a date.

ch14.fm Page 653 Wednesday, May 22, 2002 1:38 PM

654 C h a p t e r 1 4 � ASP.NET and Web Forms

Data Binding in ASP.NET

ASP.NET makes it easy to display data from various data sources by permitting
a Web Forms control to be bound to data source. The data source can be
specified in a variety of ways—for example, by directly giving a connection
string to a database. This form of data binding is quite convenient in a two-
tier type of application, where the presentation layer talks directly to the data-
base. In three-tier applications it is more convenient to bind to some data
structure that is returned by a middle-tier component, which does the actual
connection to the database. Our Acme case study illustrates this approach.
The Hotel.dll and Customer.dll components encapsulate access to a SQL
Server database through the HotelBroker and Customers classes. Methods
such as GetCities return an ArrayList, and the array list can be bound to a
Web Forms control.13

We will look at two examples of data binding. The first, mentioned ear-
lier in the chapter, illustrates binding to an ArrayList. The second illustrates
binding to a DataTable through a DataView.

BINDING TO AN ARRAYLIST

It is extremely simple to bind to an array list. The AcmeWeb example, begin-
ning with Step 0, provides an illustration. You may wish to bring up Step 0
and examine the code in AcmeWeb\Step0\WebForm1.aspx.vb. When the
page is loaded, the DropDownList control listCities is initialized to display
all the cities in the database of the hotel broker. The GetCities method
returns the cities as strings in an array list. The following code will then cause
the cities to be displayed in the dropdown.

broker = Global.broker
Dim cities As ArrayList = broker.GetCities()
listCities.DataSource = cities
...
DataBind()

The DataBind method of the Page class causes all the Web Forms con-
trols on the page to be bound to their data sources, which will cause the con-
trols to be populated with data from the data sources. You could also call the
DataBind method of a particular control.

13. The component could be hidden behind a Web service, which will be illus-
trated in Chapter 15. We can still use data binding in such a scenario by binding
to an array list.

ch14.fm Page 654 Wednesday, May 22, 2002 1:38 PM

D a t a b a s e A c c e s s i n A S P . N E T 655

BINDING TO A DATATABLE

As we saw in Chapter 13, ADO.NET defines a very useful class, the DataTable,
which can be used to hold data from a variety of data sources. Once created, a
data table can be passed around and used in a variety of contexts. One very
useful thing you can do with a data table is to bind it to a Web Forms control.
Since a data table is self-describing, the control can automatically display addi-
tional information, such as the names of the columns. We illustrate with the
DataGrid control.

To run this example, you need to have SQL Server or MSDE installed on
your system, and you should also have set up the Acme database, as
described in Chapter 13. The example Web page is DataGridControl/
ShowHotels.aspx. As usual, you should use IIS to configure the folder Data-
GridControl as an application. This page will display all the hotels in the
Acme database in a data grid, with appropriate headings, as illustrated in Fig-
ure 14–39. When you work with Web Forms controls you can easily change
styles, such as fonts and colors, by setting properties appropriately.

FIGURE 14–39 Displaying hotels in the Acme database using a DataGrid control.

ch14.fm Page 655 Wednesday, May 22, 2002 1:38 PM

656 C h a p t e r 1 4 � ASP.NET and Web Forms

The relevant VB.NET code is in the files Global.asax.vb and ShowHo-
tels.aspx.vb. The first thing we need to do is to create an instance of the
HotelBroker class. We create a single instance, once, when the application
starts up. We save this instance as a public shared variable.

' Global.asax.vb

Imports System.Web
Imports System.Web.SessionState
Imports OI.NetVb.Acme

Public Class Global
 Inherits System.Web.HttpApplication

#Region " Component Designer Generated Code "
...

 Public Shared broker As HotelBroker

 Sub Application_Start(ByVal sender As Object, _
 ByVal e As EventArgs)
 broker = New HotelBroker()
 End Sub
 ...

In the Page_Load method (in file ShowHotels.aspx.vb) we get the
hotels from the Hotel Broker, call a helper method to obtain the data source,
assign the data source, and bind. We are using the DataTable to hold data
obtained from the middle-tier component.

Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 If Not IsPostBack Then
 broker = Global.broker
 Dim arr As ArrayList = broker.GetHotels()
 dgHotels.DataSource = CreateDataSource(arr)
 dgHotels.DataBind()
 End If
End Sub

It is in the helper method CreateDataSource that the interesting work
is done. A data table is created and populated with hotel data obtained from
the Hotel Broker.

Private Function CreateDataSource(_
 ByVal list As ArrayList) As ICollection
 If list Is Nothing Then
 Return Nothing
 End If

ch14.fm Page 656 Wednesday, May 22, 2002 1:38 PM

D a t a b a s e A c c e s s i n A S P . N E T 657

 Dim dt As New DataTable()
 Dim dr As DataRow

 dt.Columns.Add(New DataColumn("City", GetType(String)))
 dt.Columns.Add(New DataColumn("Hotel", GetType(String)))
 dt.Columns.Add(New DataColumn("Rooms", _
 GetType(Integer)))
 dt.Columns.Add(New DataColumn("Rate", GetType(Decimal)))

 Dim hi As HotelListItem
 For Each hi In list
 dr = dt.NewRow()

 dr(0) = hi.City.Trim()
 dr(1) = hi.HotelName.Trim()
 dr(2) = hi.NumberRooms
 dr(3) = hi.Rate

 dt.Rows.Add(dr)
 Next

 Dim dv As New DataView(dt)
 Return dv
End Function

Acme Travel Agency Case Study (Database Version)
We have illustrated many concepts of ASP.NET with our Acme Travel Agency
case study. For simplicity we used a version of the case study that stored all data
as collections in memory. This way you did not have to worry about having a
database set up properly on your system, so you could focus on just ASP.NET.
Also, the results are always deterministic, since sample data is hardcoded.

Now, however, we would like to look at the “real” case study, based
upon our HotelBroker database, and the database version of the Hotel.dll
and Customer.dll components created in Chapter 13.

ACMECUSTOMER DATABASE

The Acme Travel Agency maintains its own database of customers. Customers
register with Acme through the Web site. The following information is stored
in Acme’s database:

� LoginName
� Password
� HotelBrokerCustomerId
� AirlineBrokerCustomerId

Currently we use LoginName (corresponding to what we called “UserId”
earlier in the chapter) and HotelBrokerCustomerId. The AirlineBrokerCusto-

ch14.fm Page 657 Wednesday, May 22, 2002 1:38 PM

658 C h a p t e r 1 4 � ASP.NET and Web Forms

merId field will facilitate Acme adding an airplane reservation system later. A
Password field is also provided for possible future use.

The AcmeCustomer database should have been set up as part of the
database setup from Chapter 13. To set up the AcmeCustomer database (or
restore it to its original state), all you need to do is to run the script
acmedb.sql, which is located in the Databases directory from Chapter 13.
This script assumes you have SQL Server installed on partition c:. If your
installation is in a different partition, edit the script accordingly.

ACME WEB SITE (CASE STUDY)

The Case Study version of the Acme Web site is in the CaseStudy folder for
this chapter. As usual, you will need to use IIS to configure this directory as
an application. You can start from the home page for this chapter, or directly
from the URL

http://localhost/netcs/CaseStudy/Main.aspx

You should find the code very easy to understand, because it relies on
the same interfaces as the implementation we used earlier based on collec-
tions. The database code for accessing the AcmeCustomer database is in the
file Acme.vb.

Summary

ASP.NET is a unified Web development platform that greatly simplifies the
implementation of sophisticated Web applications. In this chapter we intro-
duced the fundamentals of ASP.NET and Web Forms, which make it easy to
develop interactive Web sites. Server controls present the programmer with an
event model similar to what is provided by controls in ordinary Windows pro-
gramming. This high-level programming model rests on a lower-level request/
response programming model that is common to earlier approaches to Web
programming and is still accessible to the ASP.NET programmer.

The Visual Studio .NET development environment includes a Form
Designer, which makes it very easy to visually lay out Web forms, and with a
click you can add event handlers. ASP.NET makes it very easy to handle state
management. Configuration is based on XML files and is very flexible. There
are a great variety of server controls, including wrappers around HTML con-
trols, validation controls, and rich controls such as a Calendar. Data binding
makes it easy to display data from a variety of data sources.

In the next chapter we cover Web Services, which enable the develop-
ment of collaborative Web applications that span heterogeneous systems.

ch14.fm Page 658 Wednesday, May 22, 2002 1:38 PM

