

Aspects of Coating Technology for Granular Fertilizers

FIRT 04, Annapolis

Victor Granquist, Nufarm Specialty Products, Inc. Lobeco, South Carolina, USA

• The role of coatings in fertilizer performance

Reele

- Types of coatings
- Performance examples
- Application techniques
- Cost and selection criteria
- Fertilizer trends affecting coatings
- Conclusions

Role of Coatings on Granular Fertilizers

- A coating is a surface treatment applied to solid fertilizers
- Coatings can be liquid, solid, thermoplastic, reactive
- The function of a coating may be to:
 - Control dust emission
 - Minimize caking (bag set, pile set)
 - Enhance flowability
 - Minimize moisture pickup
 - To stabilize the surface
 - Improve compatibility in end uses
 - To enhance appearance
 - Modify nutrient release characteristics

Role of Coatings on Granular Fertilizers

- A coating is used to preserve the quality of manufactured fertilizer through shipping, storage and handling
- Typically coatings cannot correct inherent problems in granule integrity or stability
 - Poor shape and surface
 - Excessive porosity
 - Softening over time
 - High moisture content
 - Poor process control or excessive rates
- In some cases, process additives can help to mitigate the above problems, as well as process modifications

Types of Coating Materials

Type of Coating	Pros and Cons
 Particulates (sometimes called parting agents), clay, talc, etc 	Good for flowability and caking, but Increases dust, high amount needed
 Coating oils (fuel oil, asphaltic oils,	Good for dust, not so
refined oils, natural oils, fats)	good for caking
 Thermoplastic mixtures (wax, waxy surfactants, sulfur, resins, polymers) 	Good for dust and caking, somewhat higher cost
 Water-soluble liquids (glycerin,	For special
molasses, surfactant solutions,	applications where
polymer solutions)	solubility is needed
 Polymer systems (polymerized film	Costly, difficult
via reaction with surface or	process, but high
crosslinking on top of surface)	performance

fletters

Dust Control, Granular Sulfur				
Sample Na	ame	mg dust/k	kg sample	
Untreated		740		
Light oil		150		
Viscous oi		83		
EP 533		84		
EXP BSO		31		
IFDC-type gravimetric test				

Optical Dust Test

Rotating drum gives dust emission
Measures absorbance of light source, output to computer or recorder
Can differentiate
"heavy" and "light" dust
Can measure abrasion

Dust from Dicalcium Phosphate 21P

Wax vs. Anti-caking Product, Effect on Caking tendency

Helle

Uncoated AS	15.2
wax only, 1000 ppm	7.4
Galoryl ATH 610, 500 ppm	0.15
Galoryl ATH 610, 1000 ppm	0.1
Galoryl ATH 632, 500 ppm	< 0.1

"Coating Oil" vs. an Anti-caking/Dust Control Product

Caking test results : August 1, 2003

Results after 14 days under 2 kg/cm ² pressure			
Temperature of fertilizer : 40°C			
	Dosage	Temperature	Crushing
	(Kg/mT)	of coatings	strength
Viscous oil	2	Ambient	13,2
Viscous oil	2	90°C	18
Galoryl® ATH F 100	2	Ambient	FF
Galoryl® ATH 714	2	90°C	FF
Uncoated			14,3

Note: **FF** = free-flowing (no caking)

Dust test results: Galoryl Optical Dust Test Method

Temperature of fertilizer : 40°C.			
Temperature of coatings : ambient.			
	Dosage	Dust index	
	Kg/mT	Т0	T15 days
Viscous oil	2	3,75	8,5
Galoryl® ATH F100	2	7,5	8
Galoryl® ATH 714	2	4	5,5
Uncoated		679	787

Note: Samples aged 15 days @ 40C for final test

Moisture Protection on Ammonium Nitrate

1200

Uncoated 700 ppm Galoryl 1200 ppm Galoryl

Moisture Absorption Test on Compacted Ammonium Sulfate

Coating 1Coating 2Uncoated

Application Techniques

- Coating drums: spray inside drum
- Blenders: Spray or inject coating during blending (paddle, ribbon, etc.)
- Screw conveyors: Cut-flight and live-bottom conveyors sometimes used
- Spraying at drop point in conveyor system using some type of enclosure
- Specialized processes such as Wurster, TVA system for sulfur-coated urea, etc.

- Maximize surface area exposure, while minimizing void space
- Matching rate of coating application to rate of surface area exposure
- Selection of coating
 - Viscosity/temperature curve
 - Spreadability during application
- Nozzle type, number, concentration, temperature

Spray Chamber Operation for Truck Loading

- Low end of range, dust control only, byproduct materials: \$0.50 - 1.00/ton
- Middle of range, dust and anti-caking, other performance criteria: \$1 - 3 /ton
- High end of range: Special compositions, completely soluble in salt solutions, controlled release, food-grade, etc.: \$3 -10+/ton

Coating selection criteria

- Reasonable cost per ton of product
- Reliable supply/reliable supplier
- Safety, toxicity, environmental fate
- Service/knowledge of supplier
- Performance criteria: Does it work in the field?
- Customer acceptance

Trends affecting fertilizer coatings

- Increase in imports, blends & liquid fertilizers puts pressure on price, AND spurs the need to differentiate products via quality
- Quality of imports likely to improve
- Blended fertilizer demands quality improvements for size, compatibility, flowability, dust and abrasion control
- High-performance specialty products will increase due to producer's need to survive in today's market
- Government regulation trends:
 - Reduction/ Elimination of petroleum oils for dust control: Europe
 - Control of nutrient run-off and percolation into groundwater
 - Control of toxic compounds

- Drive toward quality has increased the use of coatings
- Slim margins limit price, thus limiting technological advancement
- High performance at low cost demanded (cheaper and better)
- Factors such as import pressure, regulations, agronomic need and need to differentiate fertilizer products resulting in:
 - Higher tech fertilizer products \implies higher tech coatings
 - Higher prices for specialty fertilizers more innovation
 - Increase in controlled-release development and use
 - S, H & E improvements may be needed ➡ "Green products"
- Few coating suppliers exist that can respond effectively to changes in technology

Conclusions

- Low end coatings offer good dust control performance at a low price for row crop fertilizers
- Cannot deliver advanced technology at these prices

lette

- High technology coatings (controlled-release, etc.) available but used only for horticulture, orchards, etc.
- Will the market evolve to allow value-added coating technology use in annual row crop fertilizers?
- Can coating technology adapt such that higher technology will be more economical?

Can we meet in the middle?

Thank you!

Rece

