
Tuesday, June 9, 2015

8086 Assembly Language Programming

Assembly Language Programming is a low level programming language which is processor

specific. It means it will run only on the processor architecture for which it was written.

Pros:

Faster- Basically assembly language program are executed in much less time as

compared to the high-level programing language like c,c+.

1.

Low memory usage - As assembly is processor specific it consumes less memory and

are compiled in low memory space.

2.

Real Time Systems - Real time applications use assembly because they have a deadline

for their output. (i.e system should response or generate output within a specific period of

time.)

3.

Cons:

Portability- Assembly language is processor specific so it cannot run on multiple

platforms. It is machine specific language.

1.

Difficult to program- The programmer should have a keen knowledge about the

architecture of the processor as different processors will have different register set and

different combinations to use them.

2.

Debugging- Debugging becomes very difficult for assembly language if program has

some error.

3.

 So why to use Assembly Language Programming?

If you are programming for a specific processor or for real time applications assembly

language programming can be more useful to you in terms of processing speed, performance and

in low memory systems.

Where to write the Code?

 The code can be written in Notepad and saved with an extension of asm. i.e

Filename.asm

This file can be made to run on various assembler packages like TASM, MASM etc.

There are also different Emulators (a software which simulates a hardware) available for various

processors for compiling and running the code.

I will be using TASM to run few of my codes written for 8086 processor.

Things to know before writing an Assembly Language
Program (ALP)

Rahul Setpal

View my complete profile

About Me

2015 (1)

June (1)

8086 Assembly Language Programming

Blog Archive

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

1 of 28 7/6/2018 1:10 PM

Assembler Directives or Pseudo Codes

These are the Statements or Instructions that Direct the assembler to perform a task.

The inform the processor about the start/end of segment, procedure or program and reserve a

appropriate space for data storage etc.

1. Basic Assembler Directives(Pseudo Codes) Used in
Programming

ASSUME

Assume CS: CODE, DS: DATA

It is used to inform the complier that CS (CODE SEGMENT) contains the
CODE and DS (DATA SEGMENT) contains DATA
*****The above Directive can also be written as:

(***Not Recommended as STD. Coding***)

Assume CS: DATA, DS: CODE

Here CODE is written in DATA SEGMENT and DATA in CODE SEGMENT

2) DUP()

Declaring an array with garbage

 Eg. A DB 04H DUP (?)
 A = Variable
 DB = Data Type
 04H = Length of Array
 ? = Element to be DUPLICATED (DUP)

Declaring an array with Same value

 Eg. A DB 04H DUP (33H)

 Defines the array with variable name A of length 04H having
values 33H
 FOUR locations of array are having value 33H

Declaring an array with Different Elements

 Eg. 1) A DB 03H, 04H, 05H

 Eg. 2) A DB ‘R’,’A’,’H’,’U’,’L’

START

It indicates the start of Program.

END

It indicates end of Program.

ENDS

Indicates End of Segment.

PROC

Used to indicate the beginning of Procedure.

ENDP

Used to indicate the end of Procedure.

EQU

EQU (Equates) it is used for declaring variables having constants

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

2 of 28 7/6/2018 1:10 PM

values.

Eg. A EQU 13H

Variable A is a constant having value 13H

SOFTWARE INTERRUPTS

1) INT 03H

 INT 03H (3) Breakpoint

INT 3 is the breakpoint interrupt.

Debuggers use this interrupt to establish breakpoints in a program that is
being debugged. This is normally done by substituting an INT 3 instruction,
which is one byte long, for a byte in the actual program. The original byte
from the program is restored by the debugger after it receives control
through INT 3

2) KEYBOARD INTERRUPTS

Taking Input from USER

i) MOV AH,0AH

INT 21H

Keeps on taking input from user until terminated by ‘$’.

The input is taken in reg. AL

ii) MOV AH,01H

INT 21H

Takes only one character from user.

The input is taken in reg. AL

Display Messages

i) MOV AH,09H

INT 21H

Displays a message terminated by ‘$’.

The Characters are taken in DX reg. (for word) or DL reg. (for

byte) and Displayed.

ii) MOV AH,02H

INT 21H

Displays only single Character whose ASCII value is in DL reg.

3) INT 10H

INT 10h / AH = 0 - set video mode.

Input:

AL = desired video mode.

These video modes are supported:

00h - text mode. 40x25. 16 colors. 8 pages

03h - text mode. 80x25. 16 colors. 8 pages

13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

3 of 28 7/6/2018 1:10 PM

Example: MOV AL, 13H

MOV AH, 0

INT 10H

 ***NOTE: This Interrupt is used for clearing the DOS screen.

3. Macros and Procedure

MACRO
Definition of the macro

A macro is a group of repetitive instructions in a program which are

coded only once and can be used as many times as necessary.

The main difference between a macro and a procedure is that in the

macro the passage of parameters is possible and in the procedure it

is not, this is only applicable for the TASM - there are other

programming languages which do allow it. At the moment the macro

is executed each parameter is substituted by the name or value

specified at the

time of the call.

Syntax of a Macro

The parts which make a macro are:

i) Declaration of the macro.

ii) Code of the macro

iii) Macro termination directive

The declaration of the macro is done the following way:

NameMacro MACRO [parameter1, parameter2...]

Eg. To Display a message

DSPLY MACRO MSG

MOV AH,09H

LEA DX,MSG

INT 21H

ENDM

To use a macro it is only necessary to call it by its name, as if it were another

assembler instruction, since directives are no longer necessary as in the case of the procedures.

Example:

DSPLY MSG1

PROC

 Procedure

 Definition of procedure

A procedure is a collection of instructions to which we can

direct the flow of our program, and once the execution of these

instructions is over control is given back to the next line to process of

the code which called on the procedure.

At the time of invoking a procedure the address of the next

instruction of the program is kept on the stack so that, once the flow

of the program has been transferred and the procedure is done, one

can return to the next line. of the original program, the one which

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

4 of 28 7/6/2018 1:10 PM

called the procedure.

Syntax of a Procedure

There are two types of procedures, the INTRA-SEGMENTS, which are found on the

same segment of instructions, and the INTER-SEGMENTS which can be stored on

different memory segments.

When the intra-segment procedures are used, the value of IP is stored on the stack and

when the intra-segments are used the value of CS:IP is stored.

The part which make a procedure are:

i) Declaration of the procedure

ii) Code of the procedure

iii) Return directive

iv) Termination of the procedure

Eg. ADD PROC NEAR

MOV AX,30H

MOV BX,30H

ADD AX,BX

RET

ADD ENDP

To divert the flow of a procedure (calling it), the following directive is

used:

CALL Name of the Procedure, Example

CALL ADD

**********************NOTE******************

The LEA Instruction

LOAD EFFECTIVE (OFFSET) ADDRESS

LEA SI, A ; Loads effective address of A in

; SI reg.

The above instruction can also be written as

MOV SI, OFFSET A

Eg. A DB 01H,20H,30H,40H,50H

To load the effective address of 50H in SI:

LEA SI, A+04H

This is because by Default LEA SI,A points at location 01H to make it

point at location 50H we add +04H

To Initialize the address of DATA SEGMENT and EXTRA

SEGMENT in DS and ES respectively

Getting address of DATA SEGMENT:

MOV AX,DATA

MOV DS,AX

***Similarly it can be done for extra segment.

Why can’t we write MOV DS,DATA?

DS is a SEGMENT REGISTER. In 8086 only registers that can give the

value to SEGMENT REGISTERS are the GENERAL PURPOSE

REGISTERS.

i.e. registers AX,BX,CX,DX

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

5 of 28 7/6/2018 1:10 PM

***********************IMP********************

CODE SEGMENT can never initialize by a programmer.

It is automatically initialized by assembler.

 How to use TASM ?

Download TASM.

you can use the following link to download.

https://drive.google.com/file/d/0B2UREG3dWedjVU4tZ1RlQ3ltM0k/view?usp=sharing

Compile and run a code in TASM

1) Save the file in C: \Tasm\Bin

2) Open command prompt.

3) Change the path to that of installation to \tasm\bin

if your installation directory is c then type this

cd c:\tasm\bin

4) Checking for errors- type this

 tasm filename.asm

Here my filename is 1

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

6 of 28 7/6/2018 1:10 PM

5) Create a object file - type this

 tlink filename.obj

6) Now creating the .exe file of your code -type

td 1.exe

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

7 of 28 7/6/2018 1:10 PM

Now press "Enter"

you will be returned to above screen with the message "Program has no symbol table"

click ok.

7) Run the code

go to MENU->Run -> Run

press F9

to view the Dump goto

MENU ->View -> Dump

Dump contains your Stored data.

Now let us move towards programming

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

8 of 28 7/6/2018 1:10 PM

NOTE: Assembly language is not case sensitive.

be covering few programs on 8086 processor

List of Programs

1) Addition of two 16-bit nos

2) Adding two 16-bit BCD nos

3) To sort the nos. in ascending order

4) To sort the nos. in descending order

5) To find largest of 10 nos

6) To find smallest of 10 nos

7) To find the no of even & odd nos. from series of 10 nos

8) To find the no. of positive,negative & zeros from series of 10 nos

9) To take String from user find its length and reverse the string

10) To take a string from user & find its length (using Macro and Procedure)

11) Palindrome (single word)------Programmer Defined Input/ Input by programmer
12) Palindrome (single word)-------User Defined Input/ Input by User

13) Palindrome (palindrome string/sentence) ---User Defined Input (using Macro and

Procedure)

14) Palindrome (palindrome string/sentence) ---User Defined Input (without using Macro

and Procedure)
15) Multiplication of 32 bit nos

16) 3x3 Matrix Multiplication

1) Addition of two 16-bit nos

 Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

 A DW 9384H

 B DW 1845H

 SUM DW ?

 CARRY DB 00H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, A

 ADD AX, B

 JNC SKIP

 INC CARRY

 SKIP: MOV SUM, AX

 INT 03H

CODE ENDS

END START

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

9 of 28 7/6/2018 1:10 PM

Output:

2) Adding two 16-bit BCD nos

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

 A DW 9384H

 B DW 1845H

 SUM DW ?

 CARRY DB 00H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, A

 MOV BX, B

 ADD AL, BL

 DAA

 MOV CL, AL

 MOV AL, AH

 ADC AL, BH

 DAA

 MOV CH, AL

 JNC SKIP

 INC CARRY

SKIP: MOV SUM, CX

 INT 03H

CODE ENDS

END START

Output:

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

10 of 28 7/6/2018 1:10 PM

3) To sort the nos. in ascending order

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 0FFH,70H,90H,60H,0FEH,20H,10H,13H,25H,00H

DATA ENDS

 CODE SEGMENT

 START :MOV AX,DATA

 MOV DS,AX

 MOV CX,0009H

 BACK: MOV DX,0009H

 LEA SI,A

 BACK1: MOV AL,[SI]

 INC SI

 CMP AL,[SI]

 JC SKIP

 XCHG AL,[SI]

 DEC SI

 MOV [SI],AL

 INC SI

 SKIP: DEC DX

 JNZ BACK1

 LOOP BACK

 INT 03H

CODE ENDS

END START

Output:

4) To sort the nos. in descending order

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 0FFH,70H,90H,60H,0FEH,20H,10H,13H,25H,00H

DATA ENDS

 CODE SEGMENT

 START :MOV AX,DATA

 MOV DS,AX

 MOV CX,0009H

BACK: MOV DX,0009H

 LEA SI,A

BACK1: MOV AL,[SI]

 INC SI

 CMP AL,[SI]

 JNC SKIP

 XCHG AL,[SI]

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

11 of 28 7/6/2018 1:10 PM

 DEC SI

 MOV [SI],AL

 INC SI

SKIP: DEC DX

 JNZ BACK1

 LOOP BACK

 INT 03H

CODE ENDS

END START

Output:

5) To find largest of 10 nos

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 10H,50H,40H,20H,80H,00H,00FFH,30H,60H,00FEH

DATA ENDS

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 LEA SI,A

 MOV BH,00H

 MOV CX,000AH

 BACK: CMP BH,[SI]

 JNC SKIP

 MOV BH,[SI]

 SKIP: INC SI

 LOOP BACK

 MOV [SI],BH

 INT 03H

CODE ENDS

END START

Output:

6) To find smallest of 10 nos

Program:

ASSUME CS:CODE,DS:DATA

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

12 of 28 7/6/2018 1:10 PM

DATA SEGMENT

 A DB 10H,50H,40H,20H,80H,01H,00FFH,30H,60H,00FEH

DATA ENDS

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 LEA SI,A

 MOV BH,[SI]

 MOV CX,0009H

 BACK: INC SI

 CMP BH,[SI]

 JC SKIP

 MOV BH,[SI]

 SKIP: LOOP BACK

 INC SI

 MOV [SI],BH

 INT 03H

CODE ENDS

END START

Output:

7) To find the no of even & odd nos. from series of 10 nos

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 10H,15H,25H,16H,17H,19H,23H,77H,47H,34H

DATA ENDS

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 LEA SI,A

 MOV BX,0000H

 MOV CX,000AH

 BACK: MOV AL,[SI]

 ROR AL,1

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

13 of 28 7/6/2018 1:10 PM

 JC ODD

 INC BL

 JMP NEXT

 ODD: INC BH

 NEXT: INC SI

 LOOP BACK

 INT 03H

CODE ENDS

END START

Output:

8) To find the no. of positive,negative & zeros from series of 10 nos

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 50H,41H,30H,00H,80H,90H,00FFH,00H,00H,70H

DATA ENDS

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 MOV BX,0000H

 LEA SI,A

 MOV CX,000AH

 BACK: MOV AL,[SI]

 CMP AL,00H

 JZ ZERO

 ROL AL,1

 JC NEGAT

 INC DL

 JMP SKIP

 ZERO: INC BX

 JMP SKIP

 NEGAT: INC DH

 SKIP: INC SI

 LOOP BACK

 INT 03H

CODE ENDS

END START

Output:

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

14 of 28 7/6/2018 1:10 PM

9) To take String from user find its length and reverse the string

Program:

ASSUME DS:DATA,CS:CODE

DATA SEGMENT

 CR EQU 13D ; EQU defines constant, CR and LF are constants

 LF EQU 10D ; CARRIAGE RETURN and LINE FEED initialize with

 ; ASCII VALUES

 ER DB CR,LF,'NO STRING ENTERED PRESS ANY KEY TO EXIT........$'

 LEN DB CR,LF,'THE LENGTH OF STRING IS->$'

 REV DB CR,LF,'REVERSE OF YOUR STRING->$'

 INPUT DB 'ENTER A STRING->$'

 TEMP DB 00FFH DUP (?)

DATA ENDS

CODE SEGMENT

 START: MOV AX,DATA ; Initialize DATA SEGMENT

 MOV DS,AX

 MOV AL,03H ; CLEAR the DOS SCREEN

 MOV AH,0

 INT 10H

 MOV CX,0000H ; CLEAR the COUNT reg.

 MOV DX,OFFSET INPUT ; Print the INPUT message

 MOV AH,09H

 INT 21H

 LEA DI,TEMP ; CHECKING whether STRING is

 MOV AH,01H ; PROVIDED

 MOV [DI],AL

 INC CX

 INC DI

 INT 21H

 CMP AL,13D

 JE EXIT

 BACK: MOV AH,01H ; KEEP ON taking CHARACTERS

 MOV [DI],AL ; until press ENTER

 INT 21H

 INC DI

 INC CX

 CMP AL,13D

 JNZ BACK

MOV AH,09H ; Print the LEN message

 LEA DX,LEN

 INT 21H

 DEC CL

 CMP CL,64H ; CHECK for STRING LENGTH greater

 ; than 100D (64H)

PUSHF ; CLEAR the OVERFLOW flag

 POP BX

 AND BH,00F7H

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

15 of 28 7/6/2018 1:10 PM

 PUSH BX

 POPF

JGE PRINT1

 MOV BX,CX

 CMP CL,0AH ; CHECK for STRING LENGTH greater

 JGE SKIP ; than 10D (0AH)

 MOV BX,CX

 ADD BL,30H

 MOV AH,02H ; PRINT the LENGTH for SINGLE

 MOV DL,BL ; DIGIT (FROM 1-9)

 INT 21H

 JMP SKIP1

 PRINT1:MOV AH,02H ; PRINT 1 as MSB when length is greater

 ; than 99D

 MOV DL,31H

 INT 21H

 SKIP: MOV BL,CL ; CONVERT the COUNT in BCD format

 ; for 2-DIGIT

 MOV AL,00H ; COUNT

 BACK0: ADD AL,01H

 DAA

 DEC BL

 JNZ BACK0

 MOV BL,AL

 ROL AL,01H ; MASK the LOWER NIBBLE & PRINT

 ROL AL,01H

 ROL AL,01H

 ROL AL,01H

 AND AL,0FH

 ADD AL,30H

 MOV AH,02H

 MOV DL,AL

 INT 21H

AND BL,0FH ; MASK the UPPER NIBBLE & PRINT

 ADD BL,30H

 MOV AH,02H

 MOV DL,BL

 INT 21H

 SKIP1: MOV AH,09H ; Print the REV message

 MOV DX,OFFSET REV

 INT 21H

 MOV DI,OFFSET TEMP ; Print the REVERSE STRING

 MOV BX,CX

 MOV AH,02H

 BACK1: MOV DL,[BX+DI]

 INT 21H

 DEC BX

 JNZ BACK1

 JMP LAST

 EXIT: MOV AH,09H ; PRINT the ERROR message

 ; when no string is given

 LEA DX,ER

 INT 21H

 LAST: MOV AH,01H ; HOLD the O/P SCREEN

 INT 21H

 INT 03H

CODE ENDS

END START

Output:

(This program can give a maximum count of C7H i.e 199D)

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

16 of 28 7/6/2018 1:10 PM

10) To take a string from user & find its length (using Macro and Procedure)

Program:

ASSUME CS:CODE , DS:DATA

DATA SEGMENT

 CR EQU 0DH

 LF EQU 0AH

 LEN DB 04 DUP(0)

 MSG1 DB CR,LF,'ENTER THE STRING=','$'

 MSG2 DB CR,LF,'THE LENGTH OF STRING=','$'

DATA ENDS

DISP MACRO MSG

MOV AH,09H

MOV DX,OFFSET MSG

INT 21H

ENDM

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 DISP MSG1

 MOV CX,00H

 READ: MOV AH,01H

 INT 21H

 CMP AL,CR

 JZ AHEAD

 INC CX

 JMP READ

 AHEAD: DISP MSG2

 MOV AX,CX

 CALL HEX2ASC

 MOV BX,AX

 MOV DL,BH

 MOV AH,02H

 INT 21H

 MOV DL,BL

 MOV AH,02H

 INT 21H

 MOV AH,4CH

 INT 21H

HEX2ASC PROC NEAR

 MOV BL,01H

 MUL BL

 AAM

 OR AX,3030H

 RET

HEX2ASC ENDP

CODE ENDS

END START

Output:

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

17 of 28 7/6/2018 1:10 PM

(This program gives a maximum count of 63H i.e. 99D)

11) Palindrome (single word)------Programmer Defined Input/ Input by

programmer

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 'M','A','D','A','M'

DATA ENDS

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 MOV CH,00H

 LEA SI,A

 LEA DI,A+04H

 MOV CL,02H

 BACK: MOV AH,[SI]

 MOV BH,[DI]

 CMP AH,BH

 JNZ SKIP

 INC SI

 DEC DI

 DEC CL

 JNZ BACK

 INC CH

 SKIP: INT 03H

CODE ENDS

END START

Output:

(After execution CH=01H indicates string is palindrome, CH=00H indicates not a

palindrome. Comparison is done Length of string divided by 02H)

12) Palindrome (single word)-------User Defined Input/ Input by User

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

18 of 28 7/6/2018 1:10 PM

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 13D,10D,'THE GIVEN STRING IS PALINDROME $'

 B DB 13D,10D,'THE GIVEN STRING IS NOT PALINDROME $'

 C DB 'ENTER THE STRING- $'

 TEMP DB 00FFH DUP(?)

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA

 MOV DS,AX

 MOV AL,03H ; CLEAR THE DOS SCREEN

 MOV AH,0

 INT 10H

 MOV AH,09H

 LEA DX,C

 INT 21H

 MOV CX,0000H ; CLEAR THE COUNTER

 LEA SI,TEMP

BACK: MOV AH,01H ; TAKE STRING FROM USER AND SAVE IT IN "TEMP"

 MOV [SI],AL

 INT 21H

 INC SI

 INC CX

 CMP AL,13D

 JNZ BACK

 DEC CX

 MOV DX,CX

 MOV AX,CX ; MOVE COUNT IN AX

 MOV BL,02H

 DIV BL ; COMPARISION SHOULD BE DONE HALF THE NO. OF CHARACTERS

 MOV CL,AL

 LEA SI,TEMP ; SETTING THE POINTER SI TO FIRST CHARACTER OF STRING

 INC SI

 LEA DI,TEMP

 ADD DI,DX ; SETTING THE POINTER DI TO LAST CHARACTER OF STRING

BACK1: MOV AL,[SI] ; MOVING THE CHARACTER POINTED BY SI IN AL

 MOV BL,[DI] ; MOVING THE CHARACTER POINTED BY DI IN BL

 INC SI

 DEC DI

 CMP AL,BL ; COMPARING AL AND BL

 JNZ SKIP

 DEC CL

 JNZ BACK1

 JMP SKIP2

SKIP: MOV AH,09H

 LEA DX,B

 INT 21H

 JMP EXIT

SKIP2: MOV AH,09H

 LEA DX,A

 INT 21H

EXIT: MOV AH,01H ; HOLDING THE OUTPUT SCREEN

 INT 21H ; GIVE ANY KEYBOARD INTERRUPT TO EXIT

 INT 03H

CODE ENDS

END START

Output:

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

19 of 28 7/6/2018 1:10 PM

13) Palindrome (palindrome string/sentence) ---User Defined Input (using Macro

and Procedure)

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 ER DB 13D,10D,'"INVALID INPUT"......PLS TRY AGAIN!!!! $'

 A DB 13D,10D, 'THE ENTERED STRING IS PALINDROME$'

 B DB 13D,10D,'THE ENTERED STRING IS NOT A PALINDROME$'

 INPUT DB 'ENTER A STRING->$'

 TEMP DB 00FFH DUP (?)

DATA ENDS

DSPLY MACRO MSG ; MACRO function for DISPLAY

 MOV AH,09H

 LEA DX,MSG

 INT 21H

ENDM

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 MOV AL,03H ; CLEAR the DOS Screen

 MOV AH,0

 INT 10H

 STRT: MOV CX,0000H

 DSPLY INPUT ; PRINT INPUT msg

 LEA SI,TEMP

 MOV AH,01H

 MOV [SI],AL

 INT 21H

 INC CX

 INC SI

 CMP AL,13D ; CHECK whether STRING PROVIDED

 JNE BACK

 DSPLY ER ; PRINT ERROR msg on SCREEN

 MOV AH,02H ; LINE FEED and CARRIAGE RETURN

 MOV DL,13D

 INT 21H

 MOV AH,02H

 MOV DL,10D

 INT 21H

 JMP STRT

 BACK: MOV AH,01H ; TAKE INPUT from user and STORE

 MOV [SI],AL

 INT 21H

 INC SI

 INC CX

 CMP AL,13D

 JNZ BACK

 DEC CX

 MOV BX,CX

 CALL COUNT ; CALL sub-routine to CALCULATE NO. of

 LEA SI,TEMP ; COMPARISION

 INC SI

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

20 of 28 7/6/2018 1:10 PM

 LEA DI,TEMP

 ADD DI,BX

 BACK1: MOV AH,[SI]

 MOV DH,[DI]

 CMP AH,20H ; CHECK IF SPACE

 JE PLUS

 BAAK: INC SI

 CMP DH,20H

 JE PLUSS

 BAKK: DEC DI

 CMP AH,DH

 JNZ SKIP

 DEC CL

 JNZ BACK1

 JMP LAST

 PLUS: INC SI

 MOV AH,[SI]

 JMP BAAK

 PLUSS: DEC DI

 MOV DH,[DI]

 JMP BAKK

 LAST: DSPLY A

 JMP EXIT

 SKIP: DSPLY B

 EXIT: MOV AH,01H

 INT 21H

 INT 03H

COUNT PROC NEAR ; CALCULATE NO. OF COMPARISION

 MOV AX,CX

 MOV CL,02H

 DIV CL

 MOV CL,AL

 RET

 COUNT ENDP

CODE ENDS

END START

Output:

If enter is given as first character it will show an error------------

INVALID INPUT”…..PLS TRY AGAIN

And in next line will again ask for Input

14) Palindrome (palindrome string/sentence) ---User Defined Input (without using

Macro and Procedure)

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

21 of 28 7/6/2018 1:10 PM

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 13D,10D,'THE GIVEN STRING IS PALINDROME $'

 B DB 13D,10D,'THE GIVEN STRING IS NOT PALINDROME $'

 C DB 'ENTER THE STRING- $'

 TEMP DB 00FFH DUP(?)

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA

 MOV DS,AX

 MOV AL,03H ; CLEAR THE DOS SCREEN

 MOV AH,0

 INT 10H

 MOV AH,09H

 LEA DX,C

 INT 21H

 MOV CX,0000H ; CLEAR THE COUNTER

 LEA SI,TEMP

BACK: MOV AH,01H ; TAKE STRING FROM USER AND SAVE IT IN

"TEMP"

 MOV [SI],AL

 INT 21H

 INC SI

 INC CX

 CMP AL,13D

 JNZ BACK

 DEC CX

 MOV DX,CX

 MOV AX,CX ; MOVE COUNT IN AX

 MOV BL,02H

 DIV BL ; COMPARISION SHOULD BE DONE HALF THE NO. OF

CHARACTERS

 MOV CL,AL

 LEA SI,TEMP ; SETTING THE POINTER SI TO FIRST CHARACTER OF

STRING

 INC SI

 LEA DI,TEMP

 ADD DI,DX ; SETTING THE POINTER DI TO LAST CHARACTER OF

STRING

BACK1: MOV AL,[SI] ; MOVING THE CHARACTER POINTED BY SI IN

AL

 MOV BL,[DI] ; MOVING THE CHARACTER POINTED BY DI IN BL

 CMP AL,20H ; CHECK FOR "SPACE" AT SI

 JE SKIIP

BAAK: INC SI

 CMP BL,20H ; CHECK FOR "SPACE" AT DI

 JE SKIPP

BAKK: DEC DI

 CMP AL,BL ; COMPARING AL AND BL

 JNZ SKIP

 DEC CL

 JNZ BACK1

 JMP SKIP2

SKIIP: INC SI ; IF "SPACE" AT "SI" THEN INCREMENT SI AND MOVE

ITS CONTENT TO AL

 MOV AL,[SI]

 JMP BAAK

SKIPP: DEC DI ; IF "SPACE" AT "DI" THEN DECREMENT DI AND

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

22 of 28 7/6/2018 1:10 PM

MOVE ITS CONTENT TO BL

 MOV BL,[DI]

 JMP BAKK

SKIP: MOV AH,09H

 LEA DX,B

 INT 21H

 JMP EXIT

SKIP2: MOV AH,09H

 LEA DX,A

 INT 21H

EXIT: MOV AH,01H ; HOLDING THE OUTPUT SCREEN

 INT 21H ; GIVE ANY KEYBOARD INTERRUPT TO EXIT

 INT 03H

CODE ENDS

END START

Output:

15) Multiplication of 32 bit nos

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 MULD DW 1234H, 1234H

 MULR DW 4321H, 4321H

 RES DW 04H DUP(?)

DATA ENDS

CODE SEGMENT

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX, MULD

 MUL MULR

 MOV RES,AX

 MOV RES+2,DX

 MOV AX, MULD+2

 MUL MULR

 ADD RES+2,AX

 ADC RES+4, DX

 MOV AX, MULD

 MUL MULR+2

 ADD RES+2,AX

 ADC RES+4,DX

 JNC SKIP

 INC RES+6

 SKIP: MOV AX,MULD+2

 MUL MULR+2

 ADD RES+4,AX

 ADC RES+6,DX

 INT 03H

CODE ENDS

END START

Output:

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

23 of 28 7/6/2018 1:10 PM

16) 3x3 Matrix Multiplication

Note: In this program all entered elements should be single digit and space should be

given after each element.

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

 A DB 'MULTIPLICATION OF 3X3 MATRIX$'

 B DB 13D,10D,10D,'THE 1st MATRIX$'

 C DB 13D,10D,10D,'THE 2nd MATRIX$'

 D DB 13D,10D,'ENTER THE 1st ROW $'

 E DB 13D,10D,'ENTER THE 2nd ROW $'

 F DB 13D,10D,'ENTER THE 3rd ROW $'

 M1 DB 20H DUP (?)

 M2 DB 20H DUP (?)

 ANS DB 20H DUP(?)

 G DB 13D,10D,10D,'THE RESULT OF MULTIPLICATION IS $'

 I DB 13D,10D,'$'

 K DB 20H,'$'

DATA ENDS

CODE SEGMENT

 DSPLY MACRO MSG

 MOV AH,09H

 LEA DX,MSG

 INT 21H

 ENDM

 START: MOV AX,DATA

 MOV DS,AX

 MOV AL,03H

 MOV AH,0

 INT 10H

 DSPLY A

 DSPLY B

 LEA SI,M1

 CALL INPUT

 DSPLY C

 LEA SI,M2

 CALL INPUT

 DSPLY G

 DSPLY I

 LEA SI,M1+01H

 LEA DI,M2+01H

 CALL AD

 DSPLY K

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

24 of 28 7/6/2018 1:10 PM

 LEA SI,M1+01H

 LEA DI,M2+03H

 CALL AD

 DSPLY K

 LEA SI,M1+01H

 LEA DI,M2+05H

 CALL AD

 DSPLY I

 LEA SI,M1+07H

 LEA DI,M2+01H

 CALL AD

 DSPLY K

 LEA SI,M1+07H

 LEA DI,M2+03H

 CALL AD

 DSPLY K

 LEA SI,M1+07H

 LEA DI,M2+05H

 CALL AD

 DSPLY I

 LEA SI,M1+0DH

 LEA DI,M2+01H

 CALL AD

 DSPLY K

 LEA SI,M1+0DH

 LEA DI,M2+03H

 CALL AD

 DSPLY K

 LEA SI,M1+0DH

 LEA DI,M2+05H

 CALL AD

 MOV AH,01H

 INT 21H

 INT 03H

 INPUT PROC NEAR

 DSPLY D

 BACK0: MOV AH,01H

 AND AL,0FH

 MOV [SI],AL

 INT 21H

 INC SI

 CMP AL,13D

 JNE BACK0

 DSPLY E

 BACK1: MOV AH,01H

 AND AL,0FH

 MOV [SI],AL

 INT 21H

 INC SI

 CMP AL,13D

 JNE BACK1

 DSPLY F

 BACK2: MOV AH,01H

 AND AL,0FH

 MOV [SI],AL

 INT 21H

 INC SI

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

25 of 28 7/6/2018 1:10 PM

 CMP AL,13D

 JNE BACK2

 RET

 INPUT ENDP

 AD PROC NEAR

 MOV AX,0000H

 MOV CX,0000H

 MOV DL,0003H

 LEA BX,ANS

 BAAK: MOV AL,[SI]

 MOV CL,[DI]

 MUL CL

 MOV [BX],AX

 ADD SI,02H

 ADD DI,06H

 INC BX

 DEC DL

 JNZ BAAK

 MOV AX,0000H

 LEA SI,ANS

 MOV AL,[SI]

 INC SI

 MOV CL,[SI]

 ADD AL,CL

 INC SI

 MOV CL,[SI]

 ADC AL,CL

 MOV BL,AL

 ROL BL,01H

 JNC SKIP0

 SUB AL,64H

 CMP AL,64H

 PUSHF

 POP BX

 AND BX,00F7H

 PUSH BX

 POPF

 JL SKIIP

 SUB AL,64H

 MOV BL,AL

 MOV AH,02H

 MOV DL,32H

 INT 21H

 JMP SKIP1

 SKIP0: CMP AL,64H

 PUSHF

 POP BX

 AND BH,00F7H

 PUSH BX

 POPF

 JL SKIP

 SUB AL,64H

 SKIIP: MOV BL,AL

 MOV AH,02H

 MOV DL,31H

 INT 21H

 SKIP1: MOV AL,BL

 SKIP: MOV BL,01H

 MUL BL

 AAM

 OR AX,3030H

 MOV BX,AX

 MOV DL,BH

 MOV AH,02H

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

26 of 28 7/6/2018 1:10 PM

Home

Subscribe to: Post Comments (Atom)

Posted by Rahul Setpal at 4:51 AM

Labels: 8086, ALP, ASM, Assembly language programming

 INT 21H

 MOV DL,BL

 MOV AH,02H

 INT 21H

 RET

 AD ENDP

CODE ENDS

END START

Output:

That's all about ALP.......................

Notify me

Comment as:

Publish

2 comments:

Anupama July 11, 2016 at 3:02 AM

Thanku sir its help me a lot

Reply

Anupama July 11, 2016 at 3:03 AM

Thanku sir its help me a lot

Reply

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

27 of 28 7/6/2018 1:10 PM

Assembly Language Programming: 8086 Assembly Language Programming http://alpbyrs.blogspot.com/2015/06/assembly-language-programming.html

28 of 28 7/6/2018 1:10 PM

