More Nore

Assembly Language Programming

Tuesday, June 9, 2015

8086 Assembly Language Programming

Assembly Language Programming is a low level programming language which is processor apacific. It means it will run only on the processor architecture for which it was written.

Pros:

- 1. <u>Faster</u>- Basically assembly language program are executed in much less time as compared to the high-level programing language like c,c+.
- <u>Low memory usage</u> As assembly is processor specific it consumes less memory and are compiled in low memory space.
- <u>Real Time Systems</u> Real time applications use assembly because they have a deadline for their output. (i.e system should response or generate output within a specific period of time.)

<u>Cons:</u>

- 1. <u>Portability</u>- Assembly language is processor specific so it cannot run on multiple platforms. It is machine specific language.
- <u>Difficult to program</u>. The programmer should have a keen knowledge about the architecture of the processor as different processors will have different register set and different combinations to use them.
- <u>Debugging</u>- Debugging becomes very difficult for assembly language if program has some error.

So why to use Assembly Language Programming?

If you are programming for a specific processor or for real time applications assembly larguage programming can be more useful to you in terms of processing speed, performance and in ow memory systems.

Where to write the Code?

The code can be written in Notepad and saved with an extension of ${\bf asm.}$ i.e Flename.asm

This file can be made to run on various assembler packages like TASM, MASM etc.

There are also different Emulators (a software which simulates a hardware) available for various processors for compiling and running the code.

I will be using TASM to run few of my codes written for 8086 processor.

Things to know before writing an Assembly Language Program (ALP)

About Me

Rahul Setpal

Blog Archive

- ▼ 2015 (1) ▼ June (1)
 - 8086 Assembly Language Programming

Assembler Directives or Pseudo Codes

Trese are the Statements or Instructions that Direct the assembler to perform a task.

The inform the processor about the start/end of segment, procedure or program and reserve a appropriate space for data storage etc.

1. <u>Basic Assembler Directives(Pseudo Codes) Used in</u> Programming

1) ASSUME

Assume CS: CODE, DS: DATA

It is used to inform the complier that **CS** (**CODE SEGMENT**) contains the **CODE** and **DS** (**DATA SEGMENT**) contains **DATA** *****The above Directive can also be written as: (***Not Recommended as STD. Coding***)

Assume CS: DATA, DS: CODE Here CODE is written in DATA SEGMENT and DATA in CODE SEGMENT

2) <u>DUP()</u>

Declaring an array with garbage

Eg. A DB 04H DUP (?) A = Variable DB = Data Type 04H = Length of Array ? = Element to be DUPLICATED (DUP)

Declaring an array with Same value

Eg. A DB 04H DUP (33H)

Defines the array with variable name A of length 04H having values 33H FOUR locations of array are having value 33H

Declaring an array with Different Elements

Eg. 1) A DB 03H, 04H, 05H Eg. 2) A DB 'R', 'A', 'H', 'U', 'L'

3) <u>START</u>

It indicates the start of Program.

4) <u>END</u>

It indicates end of Program.

5) <u>ENDS</u>

Indicates End of Segment.

6) <u>PROC</u>

Used to indicate the beginning of Procedure.

7) <u>ENDP</u>

Used to indicate the end of Procedure.

8) <u>EQU</u>

EQU (Equates) it is used for declaring variables having constants

values.

Eg. A EQU 13H Variable A is a constant having value 13H

2. <u>SOFTWARE INTERRUPTS</u>

1) INT 03H

INT 03H (3) Breakpoint

INT 3 is the breakpoint interrupt.

Debuggers use this interrupt to establish breakpoints in a program that is being debugged. This is normally done by substituting an **INT 3** instruction, which is one byte long, for a byte in the actual program. The original byte from the program is restored by the debugger after it receives control through **INT 3**

2) KEYBOARD INTERRUPTS

Taking Input from USER

i) MOV AH,0AH INT 21H

> Keeps on taking input from user until terminated by '\$'. The input is taken in reg. AL

ii) MOV AH,01H INT 21H

Takes only one character from user. The input is taken in reg. AL

Display Messages

i) MOV AH,09H INT 21H

Displays a message terminated by '\$'. The Characters are taken in DX reg. (for word) or DL reg. (for byte) and Displayed.

ii) MOV AH,02H INT 21H

Displays only single Character whose ASCII value is in DL reg.

3) INT 10H

INT 10h / AH = 0 - set video mode.

Input: AL = desired video mode.

These video modes are supported: 00h - text mode. 40x25. 16 colors. 8 pages 03h - text mode. 80x25. 16 colors. 8 pages

13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.

Example: MOV AL, 13H MOV AH, 0 INT 10H

***NOTE: This Interrupt is used for clearing the DOS screen.

3. Macros and Procedure

1) MACRO

Definition of the macro

A macro is a group of repetitive instructions in a program which are coded only once and can be used as many times as necessary.

The main difference between a macro and a procedure is that in the macro the passage of parameters is possible and in the procedure it is not, this is only applicable for the TASM - there are other programming languages which do allow it. At the moment the macro is executed each parameter is substituted by the name or value specified at the time of the call.

Syntax of a Macro

The parts which make a macro are:

- i) Declaration of the macro.
- ii) Code of the macro
- iii) Macro termination directive

The declaration of the macro is done the following way: NameMacro MACRO [parameter1, parameter2...]

Eg. To Display a message

DSPLY MACRO MSG MOV AH,09H LEA DX,MSG INT 21H ENDM

To use a macro it is only necessary to call it by its name, as if it were another assembler instruction, since directives are no longer necessary as in the case of the procedures.

Example:

DSPLY MSG1

2) PROC

Procedure Definition of procedure

A procedure is a collection of instructions to which we can direct the flow of our program, and once the execution of these instructions is over control is given back to the next line to process of the code which called on the procedure.

At the time of invoking a procedure the address of the next instruction of the program is kept on the stack so that, once the flow of the program has been transferred and the procedure is done, one can return to the next line. of the original program, the one which called the procedure.

Syntax of a Procedure

There are two types of procedures, the **INTRA-SEGMENTS**, which are found on the same segment of instructions, and the **INTER-SEGMENTS** which can be stored on different memory segments.

When the intra-segment procedures are used, the value of IP is stored on the stack and when the intra-segments are used the value of CS:IP is stored.

The part which make a procedure are:

- i) Declaration of the procedure
- ii) Code of the procedure
- iii) Return directive
- iv) Termination of the procedure

Eg. ADD PROC NEAR MOV AX,30H MOV BX,30H ADD AX,BX

RET ADD ENDP

To divert the flow of a procedure (calling it), the following directive is used: CALL Name of the Procedure, Example CALL ADD

The LEA Instruction LOAD EFFECTIVE (OFFSET) ADDRESS

LEA SI, A ; Loads effective address of A in ; SI reg.

The above instruction can also be written as MOV SI, OFFSET A

Eg. A DB 01H,20H,30H,40H,50H

To load the effective address of 50H in SI:

LEA SI, A+04H

This is because by Default LEA SI,A points at location 01H to make it point at location 50H we add +04H

To Initialize the address of DATA SEGMENT and EXTRA SEGMENT in DS and ES respectively

Getting address of DATA SEGMENT:

MOV AX,DATA MOV DS,AX

***Similarly it can be done for extra segment.

Why can't we write MOV DS, DATA?

DS is a SEGMENT REGISTER. In 8086 only registers that can give the value to SEGMENT REGISTERS are the GENERAL PURPOSE REGISTERS. i.e. registers AX,BX,CX,DX CODE SEGMENT can never initialize by a programmer. It is automatically initialized by assembler.

How to use TASM ?

Download TASM. you can use the following link to download.

https://drive.google.com/file/d/0B2UREG3dWedjVU4tZ1RlQ3ltM0k/view?usp=sharing

Compile and run a code in TASM

I) Save the file in C: \Tasm\Bin

2) Open command prompt.

3) Change the path to that of installation to \tasm\bin

if your installation directory is c then type this

cd c:\tasm\bin

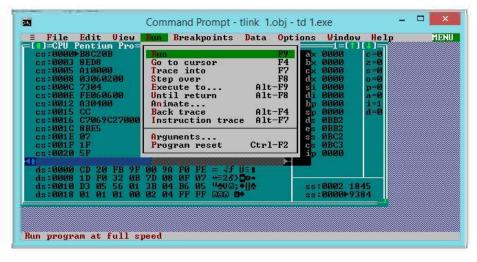
 4) Checking for errors- type this tasm filename.asm


Here my filename is 1

5) Create a object file - type this tlink filename.obj

6) Now creating the .exe file of your code -type td 1.exe

Now press "Enter"


Program cs:0012 cs:0015 cs:0016 cs:001	CC C7069C	lelp mo in d mo	u li t Q u V	x.0BC2 s.ax x.[0000] x.[0002] 012 yte ptr [0006 0094].ax 33 ord ptr [2790	cx dx si di bp sp sp	9999 9999 9999 9999 9999 9999 9999 9999 9882 9882	c=0 z=0 s=0 p=0 a=0 i=1 d=0	
cs:001E cs:001F cs:0020	07 1F 5F	 mo po po po	pe pd pd	p,bp s ls li	SS CS	0882 08C2 08C3 0000		
ds:0000 ds:0008 ds:0010 ds:0018	1D FØ D3 Ø5	00 9A 7D 08 3B 04 02 04	ØF Ø7 B6 Ø5	+=26) 0 0+ 400©;• 0		:0002 18 :0000⊳93		

you will be returned to above screen with the message "Program has no symbol table" click ok.

7) Run the code

💼 to MENU->Run -> Run

or press F9

to view the Dump goto

MENU ->View -> Dump

Dump contains your Stored data.

Now let us move towards programming

1 CPU			n Pi	70				- 22	A 12444		T com	1	
cs:0003	8E]	D8				mo	v	d	s,ax			0B10	c=Ø
cs:0005	B90	0900	0			mo	v	C	<,000	9	bx	0000	z=1
cs:0008	BA	0900	0			mo	v	d	c,000	9	CX	0000	s=Ø
cs:000B	BE	000	0			mo	v	S	i,000	0	dx	0000	o=Ø
cs:000E	8A(04				mo	v	a	l,[si]	si	0009	p=1
cs:0010	46					in	C	S	i		di	0000	a=0
cs:0011	380	04				CM	D	a	l.[si]	bp	0000	i=1
cs:0013	730	06				.in		00	31B		sp	0000	d=0
cs:0015	860	04				xc	hq	E	sil.a	1	ds	ØB4D	
cs:0017	4 E					de		S	i		es	ØB3D	
cs:0018	880	04				mo	v	E	sil,a	1	SS	ØB4D	
cs:001A	46					in	С	S	L.		CS	ØB4E	
cs:001B						de	C	d:	<	-	ip	0020	
ds:0000		FE	90	70	60	25	20	13	∎É D	`x !!			
ds:0008	10	00	ØØ	00	00	00			•	10 00			_
ds:0010	B8	4D	ØB	8Ē	D8	B 9	09	00	AQWE	뷔이	55:	0002 7	090
ds:0018		09	00	BE	00	00	8A		llo ±	è.		0000+I	

NOTE: Assembly language is not case sensitive.

I'll be covering few programs on **8086** processor

List of Programs

1) Addition of two 16-bit nos 2) Adding two 16-bit BCD nos 3) To sort the nos. in ascending order 4) To sort the nos. in descending order 5) To find largest of 10 nos 6) To find smallest of 10 nos 7) To find the no of even & odd nos. from series of 10 nos 8) To find the no. of positive, negative & zeros from series of 10 nos 9) To take String from user find its length and reverse the string 10) To take a string from user & find its length (using Macro and Procedure) 11) Palindrome (single word)-----Programmer Defined Input/ Input by programmer 12) Palindrome (single word)------User Defined Input/ Input by User 13) Palindrome (palindrome string/sentence) --- User Defined Input (using Macro and Procedure) 14) Palindrome (palindrome string/sentence) --- User Defined Input (without using Macro and Procedure) 15) Multiplication of 32 bit nos 16) 3x3 Matrix Multiplication

PROGRAMS

1) Addition of two 16-bit nos

Program:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT A DW 9384H B DW 1845H SUM DW ? CARRY DB 00H DATA ENDS

CODE SEGMENT START: MOV AX, DATA MOV DS, AX

MOV AX, A ADD AX, B JNC SKIP INC CARRY SKIP: MOV SUM, AX INT 03H CODE ENDS END START Output:

			, d
cs:0000 B8E916	mov	ax.16E9	ax ABC9 lc=0
cs:0003 8ED8	MOV	ds.ax	bx 0000 z=0
cs:0005 A10000	MOV	ax,[0000]	cx 0000 s=1
cs:0008 03060200	add	ax,[0002]	dx 0000 o=0
cs:000C 7304	.jnb	0012	si 0000 p=1
cs:000E FE060600	inc	byte ptr [0006]	di 0000 a=0
cs:0012 A30400	mov	[0004],ax	bp 0000 i=1
cs:0015>CC	int	03	sp 0000 d=0
cs:0016 48	dec	ax	ds 16E9
cs:0017 D1E3	shl	bx,1	es 16D9
cs:0019 2EFFA77333	յաթ	cs:[bx+3373]	ss 16E9
cs:001E C45EF8	les	bx,[bp-08]	cs 16EA
cs:0021 26FF7704	push	es:word ptr [bx+04]	ip 0015
cs:0025 26FF7702	push	es:word ptr [bx+02]	
cs:0029 E89806	call	06C4	
=[]=Dump	AD 00		- 0000 0000
ds:0000 84 93 45 18 C9			ss:0008 0000
		00 00 - 0 × ± 4	ss:0006 0000
ds:0010 B8 E9 16 8E D8 ds:0018 03 06 02 00 73		00 90=A∓1 Ø6 ¥♠® s♦I♠	ss:0004 ABC9 ss:0002 1845
T 02-0010 03 00 07 00 13	04 FE	UO VIU SVII	ss:0002 1845
<u>n</u>			55-00007384

2 Adding two 16-bit BCD nos

Piogram:

ASSUME CS: CODE, DS: DATA DATA SEGMENT A DW 9384H B DW 1845H SUM DW ? CARRY DB 00H DATA ENDS CODE SEGMENT START: MOV AX, DATA MOV DS, AX MOV AX, A MOV BX, B ADD AL, BL DAA MOV CL, AL MOV AL, AH ADC AL, BH DAA MOV CH, AL JNC SKIP INC CARRY SKIP: MOV SUM, CX INT 03H CODE ENDS END START

Output:

CPU PERIAN PRO-				
cs:0022▶CC	int	03	ax 9312	c=1 [
cs:0023 7704	ja	0029		z=0
cs:0025 26FF7702	push	es:word ptr [bx+02]	cx 1229	s=0
cs:0029 E89806	call	Ø6C4	dx 0000	o=0
cs:002C 83C404	add	sp,0004		p=0
cs:002F EB2E	.imp	005F		a=0
cs:0031 C45EF8	les	bx,[bp-08]		i=1
cs:0034 26FF7704	push	es:word ptr [bx+04]		d=0
cs:0038 26FF7702	push	es:word ptr [bx+02]	ds ØB53	
cs:003C E89A06	call	Ø6 D9	es ØB43	
cs:003F EBEB	յան	002C	ss ØB53	
cs:0041 C45EF8	les	bx,[bp-08]	cs ØB54	
cs:0044 26FF7702	push	es:word ptr [bx+02]	ip 0022	
cs:0048 E89F06	call	06 EA		
cs:004B 59	pop	cx		
		=[,][]¬¬		-
ds:0000 84 93 45 18 2			ss:0002 184	
ds:0008 00 00 00 00 0			ss:0000)+938	
ds:0010 B8 53 0B 8E I		00 3SCA+1	ss:FFFE 000	
ds:0018 8B 1E 02 00 0	2 03 27	8H 1AC C 'e	ss:FFFC 082	
e		_	ss:FFFA ØA9	5

3) To sort the nos. in ascending order

Program:

ASSUME CS:CODE,DS:DATA DATA SEGMENT A DB 0FFH,70H,90H,60H,0FEH,20H,10H,13H,25H,00H DATA ENDS CODE SEGMENT START : MOV AX, DATA MOV DS,AX MOV CX,0009H BACK: MOV DX,0009H LEA SI,A BACK1: MOV AL,[SI] INC SI CMP AL,[SI] JC SKIP XCHG AL,[SI] DEC SI MOV [SI],AL INC SI SKIP: DEC DX JNZ BACK1 LOOP BACK INT 03H CODE ENDS

END START

Output:

CPU Fentium Fro	Theory Market Street Market	r 1 r
cs:0003 8ED8	mov ds,ax	ax ØBFE c=1
cs:0005 B90900	mov cx,000	
cs:0008 BA0900	mov dx,000	9 cx 0000 s=0
cs:000B BE0000	mov si,000	0 dx 0000 o=0
cs:000E 8A04	mov al,[si] si 0009 p=1
cs:0010 46	inc si	di 0000 a=0
cs:0011 3A04	cmp al,[si] bp 0000 i=1
cs:0013 7206	jb 001B	sp 0000 d=0
cs:0015 8604	xchg [si],a	1 ds ØB4D
cs:0017 4E	dec si	es ØB3D
cs:0018 8804	mov [si],a	1 ss ØB4D
cs:001A 46	inc si	cs ØB4E
cs:001B 4A	dec dx	ip 0020
Dump		
ds:0000 00 10 13 20 2	5 60 70 90 ▶!!	χ`pÉ
ds:0008 FE FF 00 00 0	0 00 00 00 1	
	8 B9 09 00 aMđã	ss:0002 2013
ds:0018 BA 09 00 BE 0	0 00 8A 04 o 4	è♦ ss:0000▶1000

4) To sort the nos. in descending order

Program:

ASSUME CS:CODE,DS:DATA DATA SEGMENT A DB 0FFH,70H,90H,60H,0FEH,20H,10H,13H,25H,00H DATA ENDS CODE SEGMENT START :MOV AX,DATA MOV DS,AX MOV CX,0009H HACK: MOV DX,0009H LEA SI,A BACK1: MOV AL,[SI] INC SI CMP AL,[SI] JNC SKIP XCHG AL,[SI] DEC SI MOV [SI],AL INC SI SKIP: DEC DX JNZ BACK1 LOOP BACK INT 03H CODE ENDS END START

Output:

CPU Pentium Pro	V202011 (2020 10.00)	1
cs:0003 8ED8	mov ds,ax	ax 0B10 c=0
cs:0005 B90900	mov cx,0009	bx 0000 z=1
cs:0008 BA0900	mov dx,0009	cx 0000 s=0
cs:000B BE0000	mov si,0000	dx 0000 o=0
cs:000E 8A04	mov al.[si]	si 0009 p=1
cs:0010 46	inc si	di 0000 a=0
cs:0011 3A04	cmp al.[si]	bp 0000 i=1
cs:0013 7306	jnb 001B	sp 0000 d=0
cs:0015 8604	xchg [si].al	ds ØB4D
cs:0017 4E	dec si	es ØB3D
cs:0018 8804	mov [si].al	ss ØB4D
cs:001A 46	inc si	cs ØB4E
cs:001B 4A	dec dx	ip 0020
քսաթ		
	Ø 25 20 13 ∎Ép`% ‼	
ds:0008 10 00 00 00 0	0 00 00 00 1	
	8 B9 09 00 gM&AHO	ss:0002 7090
	0 00 8A 04 llo ∃ è♦	ss:0000) FEFF

5) To find largest of 10 nos

Program:

AFSUME CS:CODE,DS:DATA DATA SEGMENT A DB 10H,50H,40H,20H,80H,00H,00FFH,30H,60H,00FEH DATA ENDS CODE SEGMENT START: MOV AX,DATA MOV DS,AX LEA SI,A MOV BH,00H

MOV CX,000AH BACK: CMP BH,[SI] JNC SKIP MOV BH,[SI] SKIP: INC SI LOOP BACK MOV [SI],BH INT 03H CODE ENDS END START

Output:

6) To find smallest of 10 nos

Program:

ASSUME CS:CODE,DS:DATA

CFU Fentium Pro cs:0000 B8530B cs:0003 8ED8 cs:0003 8ED8 cs:0008 B700 cs:0000 B90A00 cs:0000 P302 cs:0013 46 cs:0014 E2F7 cs:0014 E2F7 cs:0018 883C cs:0019 2EFFA77333 cs:0019 C45EF8 cs:0021 26FF7704 m=L 1=Dump	mov mov mov cmp jnb mov inc loop nov int jmp les push	ax,0853 ds.ax si,0000 bh,00 cx,000A bh,[si] 0013 bh,[si] si 000D [si],bh 03 cs:[bx+3373] bx,[bp-08] es:word ptr [bx+04] == [1]]	1 ax 0B53 bx FF00 cx 0000 se0 dx 0000 si 0000 bp 0000 ds 0000 ds 0053 es 0B53 es 0B53 cs 0B54 ip 0018
ds:0000 10 50 40 20 ds:0008 60 FE FF 00 ds:0010 B8 53 0B 8E ds:0018 B7 00 B9 0A	00 00 00 D8 BE 00	30 ▶PC C 0	ss:0002 2040 ss:0000⊳5010 ss:FFFE 0000 ss:FFFC 082A ss:FFFA 0A95

SEGMENT

A DB 10H,50H,40H,20H,80H,01H,00FFH,30H,60H,00FEH MTA ENDS ODE SEGMENT START: MOV AX,DATA MOV DS,AX LEA SI,A MOV BH,[SI] MOV CX,0009H BACK: INC SI CMP BH,[SI] JC SKIP MOV BH,[SI]

SKIP: LOOP BACK INC SI MOV [SI],BH INT 03H CODE ENDS END START

Output:

CFU Frontium Front cs:0019►CC cs:001A FFA77333	int jmp	03 [bx+3373]	ax 0B53 c=1 bx 0100 z=0
cs:001E C45EF8 cs:0021 26FF7704 cs:0025 26FF7702 cs:0029 E89806	les push push call	bx,[bp-08] es:word ptr [bx+04] es:word ptr [bx+02] 06C4	cx 0000 s=0 dx 0000 o=0 si 000A p=1 di 0000 a=0
cs:002C 83C404 cs:002F EB2E cs:0031 C45EF8	add jmp les	sp,0004 005F bx,[bp=08]	bp 0000 i=1 sp 0000 d=0 ds 0B53
cs:0034 26FF7704 cs:0038 26FF7702 cs:003C E89A06	push push call	es:word ptr [bx+04] es:word ptr [bx+02] 06D9	es ØB43 ss ØB53 cs ØB54
cs:003F EBEB cs:0041 C45EF8 =[]=Dump ds:0000 10 50 40 20	jmp les	002C bx,[bp-08] 	ip 0019
ds:0008 60 FE 01 00 ds:0010 B8 53 0B 8E ds:0018 8A 3C B9 09	00 00 00 D8 BE 00	00 `∎☺ ⁻ 00 =S&Ä牛	ss:0002 2040 ss:0000►5010 ss:FFFE 0000
ds:0020 72 02 8A 3C			ss:FFFC Ø82A ss:FFFA ØA95

7) To find the no of even & odd nos. from series of 10 nos

Piogram:

ASSUME CS:CODE,DS:DATA DATA SEGMENT A DB 10H,15H,25H,16H,17H,19H,23H,77H,47H,34H DATA ENDS CODE SEGMENT START: MOV AX,DATA MOV DS,AX LEA SI,A

MOV BX,0000H MOV CX,000AH BACK: MOV AL,[SI] ROR AL,1 JC ODD INC BL JMP NEXT ODD: INC BH NEXT: INC SI LOOP BACK INT 03H CODE ENDS END START

Output:

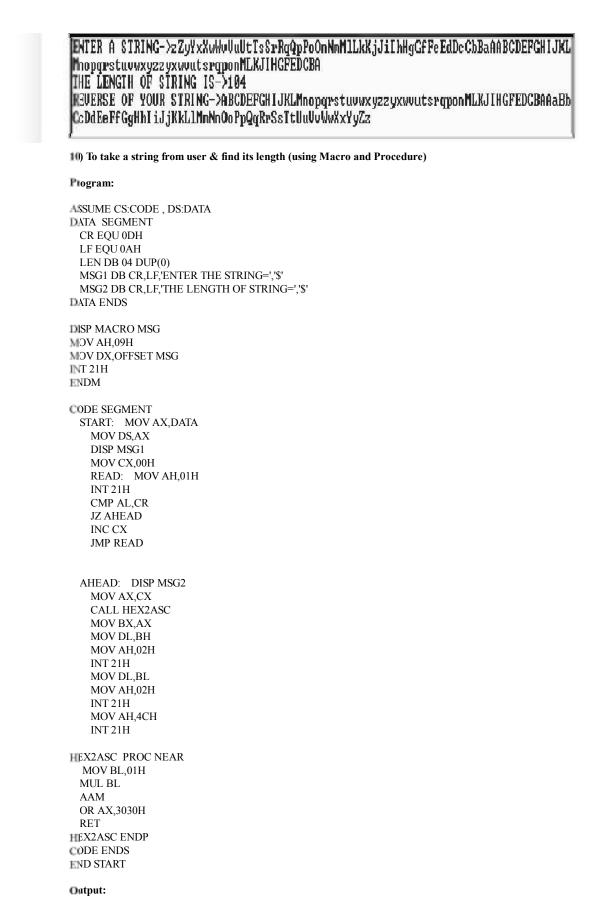
		1	
int	03	ax ØB1A	c=Ø
pop	si	bx 0703	z=0
clc	51 8899 103000	cx 0000	s=Ø
push	es:word ptr [bx+04]	dx 0000	0=0
	es:word ptr [bx+02]	si 000A	p=1
		di 0000	a=0
add	sp.0004	bp 0000	i=1
	005F	sp 0000	d=0
	es:word ptr [bx+02]		
		The corre	
paon			
17 19 23	77 ▶§×_11#w	ss:0002 1	625
NA NA 8A	Ø4 a	SS:FFFC Ø	82A
011 00 011		ss:FFFA Ø	
	pop clc push push call add jmp les push call jmp les push call jmp les jmp les jush call jmp les push call jmp les push call jmp les push call jms les push call jms les push call jms	popsiclcpushes:word ptr [bx+04]pushes:word ptr [bx+02]call06C4addsp.0004jmp005Flesbx, [bp-08]pushes:word ptr [bx+04]pushes:word ptr [bx+02]call06D9jmp002Clesbx, [bp-08]	pop si bx 0703 cx 0000 push es:word ptr [bx+04] dx 0000 push es:word ptr [bx+02] si 0000 call 06C4 di 0000 add sp,0004 bp 0000 jmp 005F sp 0000 les bx, [bp-08] es 0B43 push es:word ptr [bx+02] cs 0B53 call 06D9 cs 0B54 jmp 002C ip 001E jmp 002C ip 001E jmp 062C is 0000 jmp 062C ss 0B53 jmp es:word ptr [bx+02] cs 0054 jmp 062C ss 0053 jmp 062C ss 0053 jmp 062C ss 0000 jmp 062C ss 00000 jmp ss sc

8) To find the no. of positive, negative & zeros from series of 10 nos

Program:

AESUME CS:CODE,DS:DATA DATA SEGMENT A DB 50H,41H,30H,00H,80H,90H,00FFH,00H,00H,70H D//TA ENDS CODE SEGMENT START: MOV AX, DATA MOV DS,AX MOV BX,0000H LEA SI,A MOV CX,000AH BACK: MOV AL,[SI] CMP AL,00H JZ ZERO ROL AL,1 JC NEGAT INC DL JMP SKIP ZERO: INC BX JMP SKIP NEGAT: INC DH SKIP: INC SI LOOP BACK INT 03H ODE ENDS END START Output:

cs:0026►CC ir	nt 03	ax ØBEØ c=Ø
cs:0027 7702 .ja	a 002B	bx 0003 z=0
	all 06C4	cx 0000 s=0
cs:002C 83C404 ad	ld sp,0004	dx 0304 o=0
cs:002F EB2E .jr	np 005F	si000A p=1
	s bx,[bp-08]	di 0000 a=0
cs:0034 26FF7704 pu	ish es:word ptr [bx+04]	bp 0000 i=1
	ish es:word ptr [bx+02]	sp 0000 d=0
	all 06D9	ds 0B53
	np 002C	es ØB43
	s bx,[bp-08]	ss ØB53
	ish es:word ptr [bx+02]	cs ØB54
	all 06EA	ip 0026
	op cx	
cs:004C EB11 jr		
F=[I]=Dump=	=(](]¬	concentrational analysis an
ds:0000 50 41 30 00 80 9		ss:0002 0030
ds:0008 00 70 00 00 00 0	g 00 00 p	ss:0000►4150
ds:0010 B8 53 0B 8E D8 H	3B 00 00 1SCATI	ss:FFFE 0000
ds:0018 BE 00 00 B9 0A 0	00 8A 04	ss:FFFC 082A
I.F.		ss:FFFA ØA95


9) To take String from user find its length and reverse the string

Piogram:

```
ASSUME DS:DATA,CS:CODE
DATA SEGMENT
 CR EQU 13D
                  ; EQU defines constant, CR and LF are constants
 LF EQU 10D
                  ; CARRIAGE RETURN and LINE FEED initialize with
         ; ASCII VALUES
 ER DB CR, LF, 'NO STRING ENTERED PRESS ANY KEY TO EXIT ......$'
 LEN DB CR, LF, 'THE LENGTH OF STRING IS->$'
 REV DB CR, LF, 'REVERSE OF YOUR STRING->$'
 INPUT DB 'ENTER A STRING->$'
 TEMP DB 00FFH DUP (?)
DATA ENDS
CODE SEGMENT
 START: MOV AX, DATA ; Initialize DATA SEGMENT
     MOV DS,AX
     MOV AL,03H
                      ; CLEAR the DOS SCREEN
     MOV AH,0
     INT 10H
     MOV CX,0000H
                      ; CLEAR the COUNT reg.
     MOV DX, OFFSET INPUT ; Print the INPUT message
     MOV AH,09H
     INT 21H
     LEA DI, TEMP
                     ; CHECKING whether STRING is
     MOV AH,01H
                     ; PROVIDED
     MOV [DI],AL
     INC CX
     INC DI
     INT 21H
     CMP AL,13D
     JE EXIT
 BACK: MOV AH,01H
                        ; KEEP ON taking CHARACTERS
     MOV [DI],AL
                      ; until press ENTER
     INT 21H
     INC DI
     INC CX
     CMP AL,13D
     JNZ BACK
              ; Print the LEN message
MOV AH,09H
     LEA DX,LEN
     INT 21H
     DEC CL
                      ; CHECK for STRING LENGTH greater
     CMP CL,64H
             ; than 100D (64H)
           ; CLEAR the OVERFLOW flag
PUSHF
     POP BX
     AND BH,00F7H
```

PUSH BX POPF JGE PRINT1 MOV BX,CX CMP CL,0AH ; CHECK for STRING LENGTH greater ; than 10D (0AH) JGE SKIP MOV BX,CX ADD BL,30H MOV AH,02H ; PRINT the LENGTH for SINGLE MOV DL,BL ; DIGIT (FROM 1-9) INT 21H JMP SKIP1 PRINT1:MOV AH,02H ; PRINT 1 as MSB when length is greater ; than 99D MOV DL,31H INT 21H SKIP: ; CONVERT the COUNT in BCD format MOV BL,CL ; for 2-DIGIT ; COUNT MOV AL,00H BACK0: ADD AL,01H DAA DEC BL JNZ BACK0 MOV BL,AL ROL AL,01H ; MASK the LOWER NIBBLE & PRINT ROL AL,01H ROL AL,01H ROL AL,01H AND AL,0FH ADD AL,30H MOV AH,02H MOV DL,AL INT 21H AND BL,0FH ; MASK the UPPER NIBBLE & PRINT ADD BL,30H MOV AH,02H MOV DL,BL INT 21H ; Print the REV message SKIP1: MOV AH,09H MOV DX, OFFSET REV INT 21H MOV DI, OFFSET TEMP ; Print the REVERSE STRING MOV BX,CX MOV AH,02H BACK1: MOV DL,[BX+DI] INT 21H DEC BX JNZ BACK1 JMP LAST EXIT: MOV AH,09H ; PRINT the ERROR message ; when no string is given LEA DX,ER INT 21H LAST: MOV AH,01H ; HOLD the O/P SCREEN INT 21H INT 03H CODE ENDS END START output:

(This program can give a maximum count of C7H i.e 199D)

C:\tasm\BIN>C.EXE

ENTER THE STRING=ABCDEFGHIJKLMNOPQRSTUUWXYZ0123456789 THE LENGTH OF STRING=36 C:\tasm\BIN>_

(This program gives a maximum count of 63H i.e. 99D)

11) Palindrome (single word)-----Programmer Defined Input/ Input by programmer

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT A DB 'M','A','D','A','M' DATA ENDS CODE SEGMENT START: MOV AX,DATA MOV DS,AX MOV CH,00H

LEA SI,A LEA DI,A+04H MOV CL,02H BACK: MOV AH,[SI] MOV BH,[DI] CMP AH,BH JNZ SKIP INC SI DEC DI DEC CL JNZ BACK

INC CH SKIP: INT 03H CODE ENDS END START

Output:

cs:001F►CC	int	03	ax 4146	c=Ø
cs:0020 398B4406	cmp	[bp+di+0644],cx	bx 4100	z=0
cs:0024 8B5404	mov	dx,[si+04]	cx 0100	s=Ø
cs:0027 EB7B	jmp	00A4	dx 0000	o=Ø
cs:0029 33FF	xor	di,di	si 0002	p=0
cs:002B 8B46FE	mov	ax,[bp-02]	di 0002	a=0
cs:002E 8B56FC	mov	dx,[bp-04]	bp 0000	i=1
cs:0031 83C204	add	dx,0004	sp 0000	d=0
cs:0034 8946FA	mov	[bp-06],ax	ds ØB46	
cs:0037 8956F8	mov	[bp-08],dx	es ØB36	
cs:003A EB58	jmp	0094	ss ØB46	
cs:003C C45EF8	les	bx,[bp-08]	cs ØB47	
cs:003F 268B1F	mov	bx,es:[bx]	ip 001F	
[]=Dump		100 American Anna 100		
ds:0000 4D 41 44 41				
ds:0008 00 00 00 00				
ds:0010 B8 46 0B 8E			ss:0002 4	
ds:0018 00 00 BF 04	00 B1 02	8A 1 🕈 🔁 🔁	ss:0000+4	14D

(After execution CH=01H indicates string is palindrome, CH=00H indicates not a palindrome. Comparison is done Length of string divided by 02H)

Program:

AESUME CS:CODE, DS:DATA DATA SEGMENT A DB 13D,10D,'THE GIVEN STRING IS PALINDROME \$' B DB 13D,10D,'THE GIVEN STRING IS NOT PALINDROME \$' C DB 'ENTER THE STRING- \$' TEMP DB 00FFH DUP(?) DATA ENDS ODE SEGMENT START: MOV AX, DATA MOV DS,AX MOV AL,03H ; CLEAR THE DOS SCREEN MOV AH,0 INT 10H MOV AH,09H LEA DX,C INT 21H MOV CX,0000H ; CLEAR THE COUNTER LEA SI, TEMP BUCK: MOV AH,01H ; TAKE STRING FROM USER AND SAVE IT IN "TEMP" MOV [SI],AL INT 21H INC SI INC CX CMP AL,13D JNZ BACK DEC CX MOV DX,CX ; MOVE COUNT IN AX MOV AX,CX MOV BL,02H ; COMPARISION SHOULD BE DONE HALF THE NO. OF CHARACTERS DIV BI MOV CL,AL LEA SI, TEMP ; SETTING THE POINTER SI TO FIRST CHARACTER OF STRING INC SI LEA DI, TEMP ADD DI,DX ; SETTING THE POINTER DI TO LAST CHARACTER OF STRING ; MOVING THE CHARACTER POINTED BY SI IN AL BUCK1: MOV AL,[SI] MOV BL,[DI] ; MOVING THE CHARACTER POINTED BY DI IN BL INC SI DEC DI CMP AL,BL ; COMPARING AL AND BL JNZ SKIP DEC CL JNZ BACK1 JMP SKIP2 SHIP: MOV AH,09H LEA DX,B INT 21H JMP EXIT SHIP2: MOV AH,09H LEA DX,A INT 21H E)IT: MOV AH,01H ; HOLDING THE OUTPUT SCREEN INT 21H ; GIVE ANY KEYBOARD INTERRUPT TO EXIT INT 03H CODE ENDS END START output:

ENTER THE STRING RADAR THE GIVEN STRING IS PALINDROME _ 13) Palindrome (palindrome string/sentence) --- User Defined Input (using Macro and Procedure) Piogram: ASSUME CS:CODE, DS:DATA DATA SEGMENT ER DB 13D,10D,""INVALID INPUT".....PLS TRY AGAIN!!!! \$' A DB 13D,10D, 'THE ENTERED STRING IS PALINDROME\$' B DB 13D,10D,'THE ENTERED STRING IS NOT A PALINDROME\$' INPUT DB 'ENTER A STRING->\$' TEMP DB 00FFH DUP (?) DATA ENDS DSPLY MACRO MSG ; MACRO function for DISPLAY MOV AH,09H LEA DX,MSG INT 21H ENDM CODE SEGMENT START: MOV AX, DATA MOV DS,AX MOV AL,03H ; CLEAR the DOS Screen MOV AH,0 INT 10H STRT: MOV CX,0000H ; PRINT INPUT msg DSPLY INPUT LEA SI, TEMP MOV AH,01H MOV [SI],AL INT 21H INC CX INC SI CMP AL,13D ; CHECK whether STRING PROVIDED JNE BACK ; PRINT ERROR msg on SCREEN DSPLY ER MOV AH,02H ; LINE FEED and CARRIAGE RETURN MOV DL,13D INT 21H MOV AH,02H MOV DL,10D INT 21H JMP STRT BACK: MOV AH,01H ; TAKE INPUT from user and STORE MOV [SI],AL INT 21H INC SI INC CX CMP AL,13D JNZ BACK DEC CX MOV BX,CX ; CALL sub-routine to CALCULATE NO. of CALL COUNT LEA SI, TEMP ; COMPARISION INC SI

LEA DI, TEMP ADD DI,BX BACK1: MOV AH,[SI] MOV DH,[DI] CMP AH,20H ; CHECK IF SPACE JE PLUS BAAK: INC SI CMP DH,20H JE PLUSS BAKK: DEC DI CMP AH,DH JNZ SKIP DEC CL JNZ BACK1 JMP LAST PLUS: INC SI MOV AH,[SI] JMP BAAK PLUSS: DEC DI MOV DH,[DI] JMP BAKK LAST: DSPLY A JMP EXIT SKIP: DSPLY B EXIT: MOV AH,01H INT 21H INT 03H COUNT PROC NEAR ; CALCULATE NO. OF COMPARISION MOV AX,CX MOV CL,02H DIV CL MOV CL,AL RET COUNT ENDP CODE ENDS END START Output:

ENTER A STRING-> "INVALID INPUT".....PLS TRY AGAIN!!!! ENTER A STRING->NEVER ODD OR EVEN THE ENTERED STRING IS PALINDROME_

If enter is given as first character it will show an error-----

"INVALID INPUT" PLS TRY AGAIN

And in next line will again ask for Input

14) Palindrome (palindrome string/sentence) ---User Defined Input (without using Macro and Procedure)

Program:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT A DB 13D,10D,'THE GIVEN STRING IS PALINDROME \$' B DB 13D,10D,'THE GIVEN STRING IS NOT PALINDROME \$' C DB 'ENTER THE STRING- \$' TEMP DB 00FFH DUP(?) DATA ENDS
CODE SEGMENT START: MOV AX,DATA MOV DS,AX
MOV AL,03H ; CLEAR THE DOS SCREEN MOV AH,0 INT 10H
MOV AH,09H LEA DX,C INT 21H
MOV CX,0000H ; CLEAR THE COUNTER LEA SI,TEMP BACK: MOV AH,01H ; TAKE STRING FROM USER AND SAVE IT IN "TEMP" MOV [SI],AL INT 21H INC SI INC CX CMP AL,13D JNZ BACK DEC CX
MOV DX,CX MOV AX,CX ; MOVE COUNT IN AX MOV BL,02H DIV BL ; COMPARISION SHOULD BE DONE HALF THE NO. OF CHARACTERS MOV CL,AL
LEA SI,TEMP ; SETTING THE POINTER SI TO FIRST CHARACTER OF STRING INC SI
LEA DI,TEMP ADD DI,DX ; SETTING THE POINTER DI TO LAST CHARACTER OF STRING
BACK1: MOV AL,[SI] ; MOVING THE CHARACTER POINTED BY SI IN
AL MOV BL,[DI] ; MOVING THE CHARACTER POINTED BY DI IN BL CMP AL,20H ; CHECK FOR "SPACE" AT SI JE SKIIP BAAK: INC SI
CMP BL,20H ; CHECK FOR "SPACE" AT DI JE SKIPP
HAKK: DEC DI CMP AL,BL ; COMPARING AL AND BL JNZ SKIP DEC CL JNZ BACK1 JMP SKIP2
SI-IIP: INC SI ; IF "SPACE" AT "SI" THEN INCREMENT SI AND MOVE ITS CONTENT TO AL MOV AL,[SI] JMP BAAK
SKIPP: DEC DI ; IF "SPACE" AT "DI" THEN DECREMENT DI AND

MOVE ITS CONTENT TO BL MOV BL,[DI] JMP BAKK SKIP: MOV AH,09H LEA DX,B INT 21H JMP EXIT SKIP2: MOV AH,09H LEA DX,A INT 21H EXIT: MOV AH,01H ; HOLDING THE OUTPUT SCREEN ; GIVE ANY KEYBOARD INTERRUPT TO EXIT INT 21H INT 03H CODE ENDS END START Output: NTER THE STRING- NO LEMON NO MELON THE GIVEN STRING IS PALINDROME

15) Multiplication of 32 bit nos

Piogram:

ASSUME CS:CODE,DS:DATA DATA SEGMENT MULD DW 1234H, 1234H MULR DW 4321H, 4321H RES DW 04H DUP(?) DATA ENDS CODE SEGMENT START: MOV AX, DATA MOV DS,AX MOV AX, MULD MUL MULR MOV RES,AX MOV RES+2,DX MOV AX, MULD+2 MUL MULR ADD RES+2,AX ADC RES+4, DX MOV AX, MULD MUL MULR+2 ADD RES+2,AX ADC RES+4,DX JNC SKIP INC RES+6 SKIP: MOV AX, MULD+2 MUL MULR+2 ADD RES+4,AX ADC RES+6,DX INT 03H CODE ENDS END START

Output:

	Pentium Pro-	1.200	12.0	1	
cs:0003	8ED8	MOV	ds,ax	ax F4B4	c=0
cs:0005		mov	ax,[0000]	bx 0000	2=Ø
cs:0008	F7260400	mul	word ptr [0004]	cx 0000	s=0
cs:000C	A30800	mov	[0008],ax	dx 04C5	0=0
cs:000F	89160A00	mov	[000A],dx	si 0000	p=1
cs:0013	A10200	mov	ax,[0002]	di 0000	a=6
cs:0016	F7260400	mul	word ptr [0004]	bp 0000	i=1
cs:001A	01060A00	add	[000A],ax	sp 0000	d=6
cs:001E	11160C00	adc	[000Cl.dx	ds ØB46	122.0
cs:0022	A10000	mov	ax,[0000]	es ØB36	1
cs:0025	F7260600	mul	word ptr [0006]	ss ØB46	
cs:0029	01060A00	add	[000A],ax	cs ØB47	
cs:002D	11160C00	adc	[000Cl.dx	ip 0046	
=[]=Dump:		100/11 2000 at 2		2	1
ds:0000	34 12 34 12	21 43 21	43 4\$4\$!C!C		1
	B4 F4 2D EE				
ds:0010	B8 46 ØB 8E	D8 A1 00	00 a Főä‡í	ss:0002 12	34
ds:0018	F7 26 04 00	A3 08 00	89 ≈&♦ ú∎ ë	ss:0000>12	34

16) 3x3 Matrix Multiplication

Note: In this program all entered elements should be single digit and space should be given after each element.

Piogram:

ASSUME CS:CODE,DS:DATA

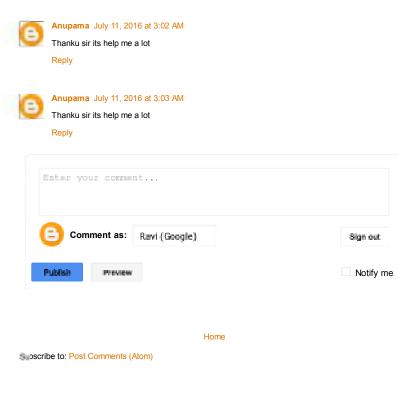
```
DATA SEGMENT
 A DB 'MULTIPLICATION OF 3X3 MATRIX$'
 B DB 13D,10D,10D,'THE 1st MATRIX$'
 C DB 13D,10D,10D,'THE 2nd MATRIX$'
 D DB 13D,10D,'ENTER THE 1st ROW $'
 E DB 13D,10D,'ENTER THE 2nd ROW $'
 F DB 13D,10D,'ENTER THE 3rd ROW $'
 M1 DB 20H DUP (?)
 M2 DB 20H DUP (?)
 ANS DB 20H DUP(?)
 G DB 13D,10D,10D, THE RESULT OF MULTIPLICATION IS $'
 I DB 13D,10D,'$'
 K DB 20H,'$'
DATA ENDS
CODE SEGMENT
 DSPLY MACRO MSG
   MOV AH,09H
   LEA DX,MSG
   INT 21H
   ENDM
 START: MOV AX, DATA
   MOV DS,AX
   MOV AL,03H
   MOV AH,0
   INT 10H
   DSPLY A
   DSPLY B
   LEA SI,M1
   CALL INPUT
   DSPLY C
   LEA SI,M2
   CALL INPUT
   DSPLY G
   DSPLY I
   LEA SI,M1+01H
   LEA DI,M2+01H
   CALL AD
   DSPLY K
```

LEA SI,M1+01H LEA DI,M2+03H CALL AD DSPLY K LEA SI,M1+01H LEA DI,M2+05H CALL AD DSPLY I LEA SI,M1+07H LEA DI,M2+01H CALL AD DSPLY K LEA SI,M1+07H LEA DI,M2+03H CALL AD DSPLY K LEA SI,M1+07H LEA DI,M2+05H CALL AD DSPLY I LEA SI,M1+0DH LEA DI,M2+01H CALL AD DSPLY K LEA SI,M1+0DH LEA DI,M2+03H CALL AD DSPLY K LEA SI,M1+0DH LEA DI,M2+05H CALL AD MOV AH,01H INT 21H INT 03H INPUT PROC NEAR DSPLY D BACK0: MOV AH,01H AND AL,0FH MOV [SI],AL INT 21H INC SI CMP AL,13D JNE BACK0 DSPLY E BACK1: MOV AH,01H AND AL,0FH MOV [SI],AL INT 21H INC SI CMP AL,13D JNE BACK1 DSPLY F BACK2: MOV AH,01H AND AL,0FH MOV [SI],AL INT 21H

INC SI

CMP AL,13D JNE BACK2 RET INPUT ENDP AD PROC NEAR MOV AX,0000H MOV CX,0000H MOV DL,0003H LEA BX,ANS BAAK: MOV AL, [SI] MOV CL,[DI] MUL CL MOV [BX],AX ADD SI,02H ADD DI,06H INC BX DEC DL JNZ BAAK MOV AX,0000H LEA SI,ANS MOV AL,[SI] INC SI MOV CL,[SI] ADD AL,CL INC SI MOV CL,[SI] ADC AL,CL MOV BL,AL ROL BL,01H JNC SKIP0 SUB AL,64H CMP AL,64H PUSHF POP BX AND BX,00F7H PUSH BX POPF JL SKIIP SUB AL,64H MOV BL,AL MOV AH,02H MOV DL,32H INT 21H JMP SKIP1 SKIP0: CMP AL,64H PUSHF POP BX AND BH,00F7H PUSH BX POPF JL SKIP SUB AL,64H SKIIP: MOV BL,AL MOV AH,02H MOV DL,31H INT 21H SKIP1: MOV AL, BL SKIP: MOV BL,01H MUL BL AAM OR AX,3030H MOV BX,AX MOV DL,BH MOV AH,02H

INT 21H MOV DL,BL MOV AH,02H INT 21H RET AD ENDP CODE ENDS END START


Output:

DULII	PIC	1110	V OF		SA:	B MATRIX
THE 1:	st MA	ATRIX	{			
ENTER	THE	1st	ROW	7	8	9
ENTER	THE	2nd	ROW	5	1	2
ENTER	THE	3rd	ROW	4	6	1
THE 2	nd Mi	ATRIX	<			
ENTER	THE	1st	ROW	7	8	9
INTER	THE	2nd	ROW	9	5	1
ENTER						9
THE R	SUL	C OF	MULT	TT	PL I	CATION IS
202 1			133653		3533	
62 63	64					
91 71						

That's all about ALP.....

Posted by Rahul Setpal at 4:51 AM
Labels: 8086, ALP, ASM, Assembly language programming

2 comments:

Simple theme. Powered by Blogger.