
10/15/2014 Assemly Language-Lecture 1 1

Assembly Language
Lecture 1

Ahmed Sallam

10/15/2014 Assemly Language-Lecture 1 2

 Introduction to the course
 General information
 Syllabus
 Course arrangment
 General rules

 Why Assembly?
 Blast from the past
 Layered Perspective of Computing
 Data Representation
 Base 2, 8, 10, 16 Number systems

 Boolean operations and algebra

Outline

10/15/2014 Assemly Language-Lecture 1 3

General information

 Lecture
 Lecturer: Ahmed Sallam
 Contact: sallam.ah@gmail.com Subject “Student”
 Office hours Wednesday, 10:00 AM to 12:00 PM email first

 Lab
 Assitant Israa
 Contact is-raa@hotmail.com

 Textbook
 Assembly Language for x86 Processors 6th ed.
(Kip Irvine)

 Course Web page:
 Http://sallamah.weebly.com

10/15/2014 Assemly Language-Lecture 1 4

Syllabus

 Ch1 : Basic Concept

 Ch 2: X86 processor architecture

 Ch 3: Assembly language fundamentals

 Ch 4: Data transfer, addressing and arithmetic

 Ch 5: Procedures

 Ch 6: Conditional processing

 Ch 7: Integer arithmetic

 Ch 8: Advanced procedure

 Ch 9: Strings and arrays

10/15/2014 Assemly Language-Lecture 1 5

Course Organization

 Lecture Assignment
 Submitted in groups (3-5 students)
 Submitted to Israa
 (Firm deadline)

 Quiz every 3rd Lecture (Second half)
 Mostly, from assignments.

 Midterm exam

 Bonus

10/15/2014 Assemly Language-Lecture 1 6

General rules

 Coming late with logical
exception (<=10 min)

 Drinking

 Asking any time

 Correcting me when I made a
mistake

 Leave the room- don’t come
back before a new start

 Emailing me

 Disturb others

 Eating/Sleeping

 Mobile phones

 Topics other than CS

 Not attending the lecture and
asking me to repeat

 Outdoor discussions

 Calling me (except the
monitor)

10/15/2014 Assemly Language-Lecture 1 7

 Introduction to the course
 General information
 Syllabus
 Course arrangment
 General rules

 Blast from the past
 Why Assembly?
 Layered Perspective of Computing
 Data Representation
 Base 2, 8, 10, 16 Number systems

 Boolean operations and algebra

Outline

10/15/2014 Assemly Language-Lecture 1 8

Blast from the past

 Once upon a time

Abacus

Slide rule

10/15/2014 Assemly Language-Lecture 1 9

Blast from the past cont.1

 17th Century (Gears/Machines)

Pascaline

Curta (1948)

10/15/2014 Assemly Language-Lecture 1 10

Blast from the past cont.2

 20th Century (Electronic)

Half Adder

Vacuum Tube

10/15/2014 Assemly Language-Lecture 1 11

Blast from the past cont.3

 Memory ?!!

Punched Card

10/15/2014 Assemly Language-Lecture 1 12

Blast from the past

 Everything is there now, let’s start to code ?!!!
Intel Machine Language

A1 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Assembly Language

mov eax, A
mul B
add eax, C
call WriteInt

=

C++ language

cout<<(A*B+C)

10/15/2014 Assemly Language-Lecture 1 13

 Introduction to the course
 General information
 Syllabus
 Course arrangment
 General rules

 Blast from the past
 Why Assembly?
 Layered Perspective of Computing
 Data Representation
 Base 2, 8, 10, 16 Number systems

 Boolean operations and algebra

Outline

10/15/2014 Assemly Language-Lecture 1 14

Why Assembly

 Communicate with hardware (drivers, embedded
systems)

 Games, Graphics

 Some thing High level programming can’t do
(context switch)

 Better understanding of programming (reverse
engineering)

10/15/2014 Assemly Language-Lecture 1 15

 Introduction to the course
 General information
 Syllabus
 Course arrangment
 General rules

 Blast from the past
 Why Assembly?
 Layered Perspective of Computing
 Data Representation
 Base 2, 8, 10, 16 Number systems

 Boolean operations and algebra

Outline

10/15/2014 Assemly Language-Lecture 1 16

Layered Architecture
 Computers are complicated

 Layers  abstraction (Hiding the complexity of layers below)

 We also layer programming languages!

 Program execution:

 Interpretation

 Compilation (Translation)

 Every CPU has a built-in interpreter for its own "instruction set"

(ISA, Instruction Set Architecture; the binary language it is

programmed in)

10/15/2014 Assemly Language-Lecture 1 17

Machine Levels

High Level
Language

Assembly Language

Instruction Set
Architecture (ISA)

Digital LogicLevel 1

Level 2

Level 3

Level 4

10/15/2014 Assemly Language-Lecture 1 18

C++ Concepts

Visual
Studio

•Programmer (with an editor)
•Produces a C Program

Microsoft C
Compiler

•C Compiler (translator)
•Produces assembly language (object file)

MASM

•Microsoft Assembler "MASM" (translator)
•Produces Intel Binary code

x86

•Intel x86 CPU (e.g., Intel Core i5)
•Executes (interprets) Intel Binary Instructions

10/15/2014 Assemly Language-Lecture 1 19

Java – Different Concepts

JEdit
•Programmer
•Produces a Java Program

Javacc
•Java Compiler (translator)
•Produces Java Byte Code (class file)

Java
•JVM (Java Virtual Machine – Interpreter)
•Runs the byte code to produce output

10/15/2014 Assemly Language-Lecture 1 20

The Key Concepts

1. A High-Level Language (C, C++, Fortran,

Cobol) is compiled (translated) into Assembly

Language

2. The Assembly Language (for a specific CPU)

is assembled into binary machine language

3. The binary machine language is interpreted by

one of the CPUs in the computer

4. The CPU (Intel, AMD, etc.) uses digital logic

circuits to do the interpretation and generate

the results

High Level
Language

Assembly
Language

Instruction Set
Architecture (ISA)

Digital Logic

10/15/2014 Assemly Language-Lecture 1 21

Linking and Loading
 Assembling (running MASM) does not actually create

a program that can be executed …

 There are (at least) 4 basic steps that need to be
performed:
 Assembling – translate code into binary
 Linking – join all the parts together and resolve names
 Loading – move the program into memory
 Execution – run the program

10/15/2014 Assemly Language-Lecture 1 22

Assembly Language

 Designed for a specific family of CPUs (i.e., Intel x86)

 Consists of a mnemonic (simplified command word)
followed by the needed data
 Example: mov eax, A
 Move into register eax the contents of the location called A

 Generally each mnemonic (instruction) is equivalent to
a single binary CPU instruction

10/15/2014 Assemly Language-Lecture 1 23

CPU Instruction Set

 Appendix B: (Intel IA-32) we will not cover all

 Varies for each CPU

 Intel machines use an approach known as CISC
 CISC = Complex Instruction Set Computing
 Lots of powerful and complex (but slow) instructions

 Opposite is RISC (Reduced) with only a few very
simple instructions that run fast

10/15/2014 Assemly Language-Lecture 1 24

Digital Logic
 CPUs are constructed from digital logic gates such as

NAND, OR, XOR, etc.

 Implemented using transistors and various families of
silicon devices

 Super complicated – Many millions of transistors on a
single CPU

Logic is the
fundamental language of computing

10/15/2014 Assemly Language-Lecture 1 25

 Introduction to the course
 General information
 Syllabus
 Course arrangment
 General rules

 Blast from the past
 Why Assembly?
 Layered Perspective of Computing
 Data Representation
 Base 2, 8, 10, 16 Number systems

 Boolean operations and algebra

Outline

10/15/2014 Assemly Language-Lecture 1 26

Data Representation

 Computers work with binary data (sometimes
represented in octal – base 8, or hexadecimal – base
16)

 You should know how to translate between these
formats – THERE ARE NO CALCULATORS ON AN
EXAM!

 I expect you to be able to do simple operations in these
bases (you can mostly ignore octal)

10/15/2014 Assemly Language-Lecture 1 27

Binary Numbers (Base 2)

 Digits are 1 and 0
 1 = true, current flowing/a charge present
 0 = false, no current flowing/no charge present

 MSB – most significant bit

 LSB – least significant bit

 Bits numbered from LSB to MSB, starting from 0

015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0
MSB LSB

10/15/2014 Assemly Language-Lecture 1 28

Binary  Decimal

 Simple! Don't memorize formulas from book (makes it harder)
 Learn the powers of 2:
 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,…

 Then, just add up the appropriate powers
 10110010 = 128 + 32 + 16 + 2 = 178

 Real programmers use a calculator! We'll just have simple values
in exams so you don't need a calculator and practice the basics

1 0 1 1 0 0 1 0

27=128 26=64 25=32 24=16 23=8 22=4 21 = 2 20=1

10/15/2014 Assemly Language-Lecture 1 29

Decimal  Binary

 Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

Division Quotient Remainder
37/2 18 1

18/2 9 0

9/2 4 1

4/2 2 0

2/2 1 0

1/2 0 1

37 = 100101

10/15/2014 Assemly Language-Lecture 1 30

Binary Addition

 Same as normal addition, from right to left
 0 + 0 = 0
 0 + 1 = 1, 1 + 0 = 1
 1 + 1 = 0 with a carry of 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

10/15/2014 Assemly Language-Lecture 1 31

Hexadecimal Numbers (Base 16)
 Binary values are represented in hexadecimal
 Not that hard: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

YOU WILL NEED THIS! Programmers work frequently in Hex

Binary Decimal Hex Binary Decimal Hex
0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F

10/15/2014 Assemly Language-Lecture 1 32

 Each hexadecimal digit corresponds to 4 binary bits.
Example: 000101101010011110010100
Group binary into groups of 4 digits (starting from the RIGHT)
Translate the binary into decimal by adding the powers of 1,2,4,
and 8
E.g., 0100 = 4, 1001 = 8 + 1 = 9, 0110 = 4 + 2 + 1 = 7, 1010 = 8 + 2
= 10, 0110 = 4 + 2 = 6, 0001 = 1
Translate the decimal into hex: 1 6 10 7 9 4 = 16A794

Binary  Hexadecimal

0001 0110 1010 0111 1001 0100
1 6 A 7 9 4

10/15/2014 Assemly Language-Lecture 1 33

 Need to know the powers of 16: 1,16,256, 4096, …

 TOO HARD! Just use a calculator for this!

 WHAT IS IMPORTANT is to know that, FROM the RIGHT, the
digits represent: 160 , 161, 162, …

 ALSO REMEMBER: x0 = 1 for all x

 The rightmost digit in a binary, octal, decimal, or hexadecimal
number is the base to the power of 0

Hexadecimal  Decimal

10/15/2014 Assemly Language-Lecture 1 34

Integer Storage Sizes (Types)

 Byte = 8 Bits
 Word = 2 Bytes
 Doubleword = 2 Words = 4 Bytes
 Quadword = 4 Words = 8 Bytes = 64 Bits = Max value for a 64 bit CPU

byte

16

8

32

word

doubleword

64quadword

Storage Type Max Value Power of 2

Unsigned byte 255 28-1

Unsigned word 65,535 216-1

Unsigned doubleword 4,294,967,295 ?

10/15/2014 Assemly Language-Lecture 1 35

Singed Integers

The highest bit indicates the sign.
1 = negative, 0 = positive

If the highest digit of a hexadecimal integer is > 7, the
value is negative.

Examples: 8A, C5, A2, 9D

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

10/15/2014 Assemly Language-Lecture 1 36

Two’s Complement
 Negative numbers are stored in two's complement notation

 Represents the additive Inverse
 If you add the number to its additive inverse, the sum is zero.

 Hexadecimal examples:
 6A3D  95C2 + 0001  95C3
 21F0  DE0F + 0001  DE10

Starting value: 00000001
Step1: reverse the bits 11111110

Step 2: add 1 to value from step 1 11111110
+

00000001
Sum: two’s complement representation 11111111

Note that 00000001 + 11111111 = 00000000

10/15/2014 Assemly Language-Lecture 1 37

Singed Binary Decimal

 If the highest bit is a 0, convert it directly as unsigned binary

 If the highest bit is 1, the number is stored in two’s complement, form

its two’s complement a second time to get its positive equivalent:

 Converting signed decimal to binary:

1. Convert the absolute value into binary

2. If the original decimal is negative, form the two’s complement

Starting value: 11110000
Step1: reverse the bits 00001111

Step 2: add 1 to value from step 1 00010000

Convert to decimal and add (-) sign -16

10/15/2014 Assemly Language-Lecture 1 38

Max & Min Values
Storage Type Range(Min-Max) Power of 2

Unsigned byte 0 to 255 0 to (28-1)

Singed byte -128 to +127 -27 to (27-1)

Unsigned word 0 to 65,535 0 to (216-1)

Signed word -32,768 to +32,767 -215 to (215-1)

10/15/2014 Assemly Language-Lecture 1 39

Character Storage

 Character sets (Variations of the same thing)

 Standard ASCII (0 – 127)

 Extended ASCII (0 – 255)

 ANSI (0 – 255)

 Unicode (0 – 65,535)

 Null-terminated String

 Array of characters followed by a null byte

 Null means zero/0

10/15/2014 Assemly Language-Lecture 1 40

Using the ASCII Table

 Back inside cover of book (Need to know

this)

 To find hexadecimal code of a character:

 ASCII Code of a is 61 hexadecimal

 Character codes 0 to 31  ASCII control

characters

Code
(Decimal)

Description

8 Backspace

9 Horizontal tab

10 Line feed (move to next line)

13 Carriage return (leftmost output
column)

27 Escape

10/15/2014 Assemly Language-Lecture 1 41

Endianism

 Intel CPUs are "Little Endian"

 For Words, Doublewords, and Quadwords (i.e., types with more than one

byte), Least Significant Bytes Come First

 Quadword (8 Bytes):

B7 B6 B5 B4 B3 B2 B1 B0

Address Byte

x B0

x+1 B1

x+2 B2

x+3 B3

x+4 B4

x+5 B5

x+6 B6

x+7 B7

Memory

10/15/2014 Assemly Language-Lecture 1 42

 Introduction to the course
 General information
 Syllabus
 Course arrangment
 General rules

 Blast from the past
 Why Assembly?
 Layered Perspective of Computing
 Data Representation
 Base 2, 8, 10, 16 Number systems

 Boolean operations and algebra

Outline

10/15/2014 Assemly Language-Lecture 1 43

Boolean Algebra
 The fundamental model by which digital circuits are designed and, as a

consequence, in which CPUs operate

 Basic assembly language instructions thus perform Boolean operations (so

we need to know them)

 Based on symbolic logic, designed by George Boole

 Boolean expressions created from: NOT, AND, OR

10/15/2014 Assemly Language-Lecture 1 44

NOT
 Inverts (reverses) a Boolean value

 Truth table for Boolean NOT operator:

NOT

Digital gate diagram for NOT:

10/15/2014 Assemly Language-Lecture 1 45

AND
Truth table for Boolean AND operator:

Digital gate diagram for AND:

AND

10/15/2014 Assemly Language-Lecture 1 46

OR
Truth table for Boolean OR operator:

Digital gate diagram for OR:

OR

10/15/2014 Assemly Language-Lecture 1 47

Operator Precedence

1. Parentheses

2. NOT

3. AND

4. OR

10/15/2014 Assemly Language-Lecture 1 48

Truth Tables

 You won't formally have to create these, but you should remember how to

trace out a complex logical operation

 Highly complex logical expressions are often a sign of poor program

structure and design!

 Example: (Y ^ S)  (X ^ ¬S)

mux
X

Y

S

Z

Two-input multiplexer

10/15/2014 Assemly Language-Lecture 1 49

 Assembly language is how software is constructed at the

lowest levels

 Assembly language has a one-to-one relationship with

binary machine language

 Many programmers never see more than a HLL (e.g.,

C++) inside and IDE (e.g., Visual Studio) but really, there

is a LOT more going on

Thoughts…

10/15/2014 Assemly Language-Lecture 1 50

 Nobody uses octal anymore

 Hex is nothing more than a useful way to manipulate

binary

 CPUs do 3 things – Assembly programming is just using

these concepts to do larger and more complicated tasks

 Add (basic integer math)

 Compare (Boolean algebra)

 Move things around

And…

