
Embedded Systems 1 3-1 8051 Assembly Programming

8051 Programming
• The 8051 may be programmed using a low-level or a high-level programming

language.

• Low-Level Programming
– Assembly language programming writes statements that the microcontroller

directly executes
– Advantages

• 8051 assemblers are free
• Produces the fastest and most compact code

– Disadvantages
• Difficult to learn (8051 assembler has 111 instructions)
• Slow to program
• Not portable to other microcontrollers

Embedded Systems 1 3-2 8051 Assembly Programming

Assembly Language Instruction Set

Source Philips 80C51 Family Programmer’s Guide and Instruction Set

Embedded Systems 1 3-3 8051 Assembly Programming

8051 Programming
• High-Level Programming

– Uses a general purpose programming language such as C
– Advantages

• Easier to learn
• Faster to program
• More portable than assembly language

– Disadvantages
• Code may not be as compact or as fast as assembly language
• Good quality compilers are expensive

Embedded Systems 1 3-4 8051 Assembly Programming

8051 Programming Examples
•C program example to add 2 numbers

void main()
{

unsigned char x=5,y=6,z;
z = x + y;

}

•Same code written using assembly language

MOV A,#05H
ADD A,#06H
MOV R0,A ;result stored in R0

Embedded Systems 1 3-5 8051 Assembly Programming

Assembly Language Development Cycle

Embedded Systems 1 3-6 8051 Assembly Programming

Rules/Syntax
• All code is normally typed in upper case
• All comments are typed in lower case

– All comments must be preceded with a semicolon
• All symbols and labels must begin with a letter
• All labels must be followed by a colon

– Labels must be the first field in a line of assembler code
• The last line of any program must be the END directive

Embedded Systems 1 3-7 8051 Assembly Programming

Assembly Programme Example
File is saved with extension .A51

Code
comment

Title Section

label

directive

Embedded Systems 1 3-8 8051 Assembly Programming

Listing File Produced by Assembler

Program Memory
Address

Machine code

Embedded Systems 1 3-9 8051 Assembly Programming

8051 Assembly Language
• An assembler program is made up of 3 elements

– Instructions
– Assembler Directives

• Instructions used by the assembler to generate an object file
• The instructions are not translated to machine code
• e.g. ORG, END

– Assembler Controls
• Define the mode of the assembler
• e.g. produce a listing file

Embedded Systems 1 3-10 8051 Assembly Programming

8051 Instruction Set
The 8051 instruction set can be divided into 5 subgroups: -

• Data Transfer
– MOV instructions used to transfer data internal and external to the 8051

• Arithmetic
– Add, subtract, multiply, divide

• Logical
– AND, OR, XOR, NOT and rotate operations

• Boolean variable manipulation
– Operations on bit variables

• Program Branching
– Conditional and unconditional jump instructions

Embedded Systems 1 3-11 8051 Assembly Programming

8051 Instruction Set
8051 assembly code contains the following fields:-
<label:> MNEMONIC <DESTINATION>, <SOURCE> <;comment>

• The label and comment fields are optional.
• The mnemonic is the assembler instruction e.g. MOV, ADD
• The destination and source fields are optional

– It is important to remember that the destination comes first

• The 8051 uses 4 addressing modes: -
– Immediate Addressing
– Register Addressing
– Direct Addressing
– Register Indirect Addressing

Embedded Systems 1 3-12 8051 Assembly Programming

Immediate Addressing
• In immediate addressing the data source is always a number and is specified by a ‘#’.

– The number specified is copied into the destination

MOV A, #10 ;moves number 10 into Accumulator
MOV R0, #0AH ;moves number 10 into R0

• Assembler Number Representation
– Default numbering system is decimal
– Hexadecimal numbers must be followed by the letter H and must begin with a

number i.e. the number FA Hex is written as 0FAH.
– Binary numbers must be followed by the letter B.

– The following instructions have the same effect
MOV R0, #255
MOV R0, #0FFH
MOV R0, #11111111B

Embedded Systems 1 3-13 8051 Assembly Programming

Register Addressing
• Internal registers A, R0 to R7 and DPTR may be used as the source or the destination.

MOV A, R0 ;copies contents of R0 to A

• Note: - Data may not be copied from Rn to Rn
– MOV R0, R1 will generate an assembler error

• The source remains unchanged.

Embedded Systems 1 3-14 8051 Assembly Programming

Direct Addressing
• Direct Addressing is used in instructions that affect internal data memory locations or

the SFR’s.
– The internal data memory address range is 0 to 127 (0 to 7FH)

MOV A, 20H ;copies contents of address 20H into the Accumulator

MOV 30H, 40H ;copies contents of address 40H to address 30H

MOV P1, A ;move the contents of the Accumulator to Port 1

Embedded Systems 1 3-15 8051 Assembly Programming

Indirect Addressing
• The most powerful addressing mode.
• A register is used to store the address of the destination or source of data

– Similar to the use of pointers in high level languages
– The @ symbol is used before the register to specify indirect addressing
– SFRs may not be indirectly addressed
– Internal data memory may be directly or indirectly addressed

MOV R0, #20H ;Load R0 with the number 20H
MOV @R0, #55H ;Move 55H to the address contained in R0 (20H)

;R0 acts as a pointer to address 20H
MOV A, @R0 ;Copy the contents of address 20H to the Accumulator

• Only registers R0 and R1 may be used for moving data to/from internal data memory
when using indirect addressing

• Registers R0, R1 and DPTR may be used when indirectly addressing external
memory (more later)

Embedded Systems 1 3-16 8051 Assembly Programming

Addressing Modes Exercise
• What are the contents of registers A, R0, R7 and memory locations 30H and 31H

after the following code runs: -
MOV A, #5
MOV R7, #40H
MOV R0, #30H
MOV 31H, #14H
MOV @RO, A
INC R0
MOV R7, @R0

• How long does the code take to execute if the 8051 is operating off a 12MHz crystal?

Embedded Systems 1 3-17 8051 Assembly Programming

Some Useful Directives
• END

– Last line of code. Assembler will not compile after this line
• ORG

– Origin directive. Sets the location counter address for the following instructions
• EQU

– Equate directive. Used to equate a name with an address or a data value. Useful
for constant assignments.

• DATA
– Used to assign a symbol name to an address in internal data memory

AVERAGE DATA 30H
MOV AVERAGE, A

• BIT
– Used to assign a symbol name to a bit in bit-addressable data memory

Embedded Systems 1 3-18 8051 Assembly Programming

Programme Sequencing
• Normal program execution is sequential

– The PC is loaded with the address of instruction N+1 while instruction N is being
executed

• The program branching instructions allow the programmer to alter the program
execution sequence
– These instructions allow the address contained in the PC to be changed
– Program branching is used for jumps, function calls and interrupt service

routines.

Embedded Systems 1 3-19 8051 Assembly Programming

Program Branching Instructions

Embedded Systems 1 3-20 8051 Assembly Programming

Jump Instructions
• The 8051 has 2 types of JUMP instructions

• Unconditional Jump
– This instruction type will load the PC with a new address and will automatically

jump to the instruction at that address

• Conditional Jump
– This instruction type will only jump if a certain condition is true
– Similar to an “if” statement in C.

Test
Condition

Next
Instruction

Jump
False

True

Embedded Systems 1 3-21 8051 Assembly Programming

Unconditional Jumps
The 8051 has 3 unconditional jump instructions with a different range: -
• SJMP (Short Jump)

– Allows a jump of –128 to +127 bytes relative to the current PC value
– Instruction is 2 bytes long

• AJMP (Absolute Jump)
– Allows a jump with the same 2KByte page that the PC is currently located in
– Instruction is 2 bytes long

• LJMP (Long Jump)
– Allows a jump anywhere within the 64KByte program memory range of the 8051

• If unsure which of the 3 instructions to use, simply use the JMP instruction and let the
assembler decide which instruction to use.

Embedded Systems 1 3-22 8051 Assembly Programming

Conditional Jumps
• The 8051 can test conditions at the bit and byte level

• Bit Conditional Jump Instructions
– These instructions will jump if a bit is in a certain state
– e.g. JC label ;jump to label if carry bit is set
– JNC label2 ;jump to label2 if the carry bit is clear
– These instructions are commonly used for arithmetic instructions and for the

testing of flags

• Byte Conditional Jump Instructions
– DJNZ – Decrement and Jump if Not Zero
– CJNE – Compare and Jump if Not Equal

Embedded Systems 1 3-23 8051 Assembly Programming

DJNZ Instruction
• Decrement and Jump if Not Zero

– DJNZ Rn, label
– DJNZ direct address, label

• DJNZ is used to execute a block of code N times
– Similar to a for or while loop in C
– Very useful for generating delays

MOV R0, #10 ;R0 = loop counter
LOOP: DJNZ R0, LOOP ;DJNZ instruction executed 10 times

MOV A, R1

Embedded Systems 1 3-24 8051 Assembly Programming

DJNZ for Generating Delays
MOV R0, #10 ;R0 = loop counter

LOOP: DJNZ R0, LOOP ;DJNZ instruction executed 10 times
MOV A, R1

• The DJNZ instruction takes 2 machine cycles to execute (24 clocks)
• If the 8051 is operating from a 12MHz crystal, the loop execution time is

(10 * 24)/12000000 = 20usec

• The maximum delay for a single loop occurs when the loop counter is initialised to 0
– This will cause 256 loop iterations
– Delay = (256 * 24)/12000000 = 512usec

• How do we generate delays longer than 512usec?

Embedded Systems 1 3-25 8051 Assembly Programming

DJNZ for Generating Delays
• Longer delays may be generated by using nested DJNZ instructions

MOV R0, #0 ;12 clocks
MOV R1, #200 ;12 clocks

LOOP: DJNZ R0, LOOP ;256 * 24 clocks
DJNZ R1, LOOP ;executes inner loop + DJNZ 200 times

• Execution time is (12 + 12 + 200((256*24) + 24))/12000000 = 0.102802 sec

• Rewrite the code to generate a delay of 0.1usec accurate to 10usec

Embedded Systems 1 3-26 8051 Assembly Programming

DJNZ Exercise
MOV R0, #0
MOV R1, #0
MOV R2, #10

LOOP: DJNZ R0, LOOP
DJNZ R1, LOOP
DJNZ R2, LOOP

1. How long does the above code take to execute if the 8051 is operating off a 12MHz
crystal?

2. Repeat part 1 for a 16MHz crystal
3. Rewrite the code to generate a delay of 1 second accurate to 10usec (assume a

12MHz crystal)

Embedded Systems 1 3-27 8051 Assembly Programming

CJNE Instruction
• Compare and Jump if Not Equal to Zero

CJNE destination, source, label

• The destination and source bytes are compared and a jump takes place if they are not
equal.
– The carry flag is set if the destination byte is less than the source byte

• Often used to validate characters received via the serial port
• May be used for delays but code is not as efficient as DJNZ

MOV R0, #10
LOOP: CJNE R0, #0, LOOP1

JMP DONE
LOOP1: DEC R0

JMP LOOP
DONE:

Embedded Systems 1 3-28 8051 Assembly Programming

Subroutines
• A subroutine is a block of code that can be used many times in the execution of a

larger program (similar to functions in higher level languages)
• Subroutines allow the program to branch to a section of code and to remember where

it branched from.
• When the subroutine is complete program execution will continue from the line of

code following the subroutine call.

• Subroutines have the following advantages: -
– Code savings

• The same subroutine may be called over and over again
– Program structuring

• A large program may be divided into a number of small subroutines
• This makes the program easer to maintain and debug

Embedded Systems 1 3-29 8051 Assembly Programming

Subroutine Example
ORG 0000H

MAIN: ………..
………..
CALL SUB1 ;subroutine call (store PC on stack)
CALL SUB2
………..
JMP MAIN

SUB1: ……….. ;label defines start of subroutine
………..
RET ;return to line after CALL

SUB2: ………..
………..
RET
END

Embedded Systems 1 3-30 8051 Assembly Programming

Subroutines
• A subroutine is always executed with the CALL instruction

– When the CALL instruction is executed the PC register contains the address of
the next instruction to be executed (this is known as the return address)

– The PC is saved onto the stack low byte first
– The PC is then loaded with the address of the subroutine
– The subroutine is then executed

• The last line of a subroutine is always the RET instruction
– The RET instruction will cause the return address to be popped off the stack and

loaded into the PC
– The instruction at the return address is then executed

Embedded Systems 1 3-31 8051 Assembly Programming

Subroutine Parameter Passing

1. Place the parameter into an address in internal data memory
Most popular method used

2. Push the parameter onto the stack
This method is limited by the size of the stack

3. Place the parameter into external data memory
Used when internal data memory has been used up.
Slower execution speed than when using internal data memory

Embedded Systems 1 3-32 8051 Assembly Programming

Subroutine Call With No Parameter Passing
;code to output a waveform on P1.0 that is high for 5 seconds and low for 2.5 seconds

ORG 0
MAIN: CALL ON

CALL OFF
JMP MAIN

ON: SETB P1.0
MOV R0, #40
MOV R1, #0
MOV R2, #0

DELAY1:DJNZ R2, DELAY1
DJNZ R1, DELAY1
DJNZ R0, DELAY1
RET

OFF: CLR P1.0
MOV R0, #20
MOV R1, #0
MOV R2, #0

DELAY2:DJNZ R2, DELAY2
DJNZ R1, DELAY2
DJNZ R0, DELAY2
RET

END

Embedded Systems 1 3-33 8051 Assembly Programming

Subroutine Call With Parameter Passing
;code to output a waveform on P1.0 that is high for 5 seconds and low for 2.5 seconds

ORG 0
MAIN: CALL ON

CALL OFF
JMP MAIN

ON: SETB P1.0
MOV R0, #40
CALL DELAY
RET

OFF: CLR P1.0
MOV R0, #20
CALL DELAY
RET

DELAY: MOV R1, #0
MOV R2, #0

LOOP: DJNZ R2, LOOP
DJNZ R1, LOOP
DJNZ R0, LOOP
RET

END

Embedded Systems 1 3-34 8051 Assembly Programming

8051 Arithmetic Operations
• All arithmetic operations are carried out in the ALU
• The 8051 has 4 arithmetic flags that are stored in the PSW register

1. C Carry Flag
Set if there is a carry out after addition or a borrow after subtraction.
Used for unsigned arithmetic.

2. AC Auxiliary Carry Flag
Set if there is a carry out of bit 3 during addition or a borrow during subtraction.
Used for BCD arithmetic.

3. OV Overflow Flag
Set if there is a carry from bit 6 XOR bit 7
Used for signed arithmetic

4. P Parity Flag
Contains the parity of the accumulator. 1 if odd, 0 if even. Useful for some serial port
operations.

Embedded Systems 1 3-35 8051 Assembly Programming

Increment/Decrement Instructions
• INC Source

– Adds 1 to the source

• DEC Source
– Subtract 1 from the source

• Source may be a register or a direct or indirect address
– INC A
– DEC R1
– INC 30H
– DEC @R0

• No flags are affected by the INC and DEC instructions

Embedded Systems 1 3-36 8051 Assembly Programming

Multiply/Divide Instructions
• MUL AB

– Note no comma between source and destination
– Multiplies the A register by the B register. The low order byte of the result is

placed in A, the high order byte in B.
– The OV flag is set if the result exceeds 255

• DIV AB
– Divides A register by B register.
– The integer part of the quotient is placed in A, the integer part of the remainder is

placed in B.
– OV flag is set if a divide by 0 is attempted

Embedded Systems 1 3-37 8051 Assembly Programming

Addition
ADD A, SOURCE ;A = A + Source

ADDC A, SOURCE ;A = A + Source + C

• The accumulator is always used to store the result
• All addressing modes may be used.

• Affect on flags
– Carry bit C is set if there is a carry out of bit 7, cleared otherwise.

• Used for unsigned addition
– AC flag set if there is a carry from bit 3, cleared otherwise

• Used for BCD addition
– OV flag is set if C7 XOR C6, cleared otherwise

• Used for signed addition

Embedded Systems 1 3-38 8051 Assembly Programming

Unsigned Addition
• The carry bit C should always be tested after an addition to see if the result has

exceeded 255 (FFH).
– JC Label ;jump if carry bit is set
– JNC Label ;jump if carry bit is clear

Examples: -

25 00011001
47 00101111
72 01001000 No carry (result <=255)

65 01000001
208 11010000
273 1 00010001 Carry (result > 255)

Embedded Systems 1 3-39 8051 Assembly Programming

Unsigned Addition
• Write a program to add the contents of internal data memory locations 30H and 31H

If a carry occurs, set the pin P1.0

ERROR BIT P1.0
MAIN: CLR ERROR
LOOP: MOV A, 30H

ADD A, 31H
JNC MAIN ;no carry
SETB ERROR ;carry, set error pin
JMP LOOP
END

Embedded Systems 1 3-40 8051 Assembly Programming

Signed Addition
• For signed arithmetic bit 7 of the number is used as a sign bit.

– 1 for a negative number and 0 for a positive number
– Number range is restricted to –128 to +127

• The OV flag should always be tested after adding 2 signed numbers
– The OV flag will only change when adding numbers of the same sign yields a

result outside of the range –128 to +127

Examples: -
+25 00011001
-45 11010011
-20 11101100 ;OV = 0, take no action

+120 01111000
+48 00110000
+168 10101000 ;OV = 1, result is –88? Need to adjust result

Embedded Systems 1 3-41 8051 Assembly Programming

Signed Addition
+120 01111000
+48 00110000
+168 10101000 ;OV = 1, result is –88? Need to adjust result

• How do we adjust the result to get the correct value (+168)?
– Remember that the result range is –128 to +127
– If there is an overflow this range has been exceeded
– Invert bit 7 to get the correct polarity for the result
– The result then needs to be adjusted by +/-128 depending on whether we are

adding positive or negative numbers

• For the above example, inverting the result bit 7 yields 00101000 (+40)
– Because of the overflow the real result is 40 +128 = 168.

Embedded Systems 1 3-42 8051 Assembly Programming

Adding 2-Byte Numbers
• Write a program to add 2 integers.

– Integer 1 is stored at addresses 30H and 31H (low byte at address 30H)
– Integer 2 is stored at addresses 32H and 33H (low byte at address 32H)
– The result should be stored at addresses 34H to 36H (low byte at address 34H)

• Hint
– Use the ADDC instruction instead of ADD

Embedded Systems 1 3-43 8051 Assembly Programming

BCD Addition
• The 8051 performs addition in pure binary – this may lead to errors when performing

BCD addition

Example

49 BCD 01001001 BCD
38 BCD 00111000 BCD
87 BCD 10000001 (81BCD)

• The result must be adjusted to yield the correct BCD result
– DA A (decimal adjust instruction)
– The carry flag is set if the adjusted number exceeds 99 BCD

MOV A, #9
ADD A, #11 ;A = 1AH (expecting 20H if these are BCD numbers)
DA A ;A = 20H

Embedded Systems 1 3-44 8051 Assembly Programming

Subtraction
• SUBB A, SOURCE

– Subtracts source and carry flags from A
– Result placed in A

• For unsigned subtraction the carry flag C is set if there is a borrow needed for bit 7

• For signed subtraction the OV flag is set if the subtraction of a negative number from
a positive number yields a negative result or if the subtraction of a positive number
from a negative number yields a positive result.

Embedded Systems 1 3-45 8051 Assembly Programming

8051 Logical Operations
• All 4 addressing modes may be used for the 8051 logical instructions

• AND
– ANL A,SOURCE
– May be used to selectively clear bits in the destination operand
– e.g. ANL A, #11111100B ;will clear lower 2 bits of A register

• OR
– ORL A, SOURCE
– May be used to selectively set bits in the destination operand
– ORL A, #00000001B ;will set bit 0 of A register

• XOR
– XRL A, SOURCE
– May be used to selectively complement bits in the destination operand
– XRL P1, #00001111B ;will complement lower 4 bits of port 1

Embedded Systems 1 3-46 8051 Assembly Programming

8051 Logical Operations
• Complement

– CPL A
– Complements each bit of the A register

• Clear
– CLR A
– Clears each bit of the A register

Embedded Systems 1 3-47 8051 Assembly Programming

Rotate Operations
• All rotate operations are carried out on the accumulator
• RL A

– Rotate accumulator left, MSB becomes LSB

• RLC A
– Rotate accumulator left, MSB becomes carry, carry becomes LSB

• Similar operations for rotate right: - RR A, RRC A

01234567

C 01234567

Embedded Systems 1 3-48 8051 Assembly Programming

Bit Level Logical Operations
• These instructions allow a single bit to be altered without affecting the entire byte

– Can be used to set/clear a bit in bit-addressable memory
– Can be used to set/clear an I/O pin

• SETB BIT ;sets bit high
• CLR BIT ;clears bit low

• Example
SETB P1.0 ;P1.0 = ‘1’
CLR P1.0 ;P1.0 = ‘0’

or

LED BIT P1.0 ;use BIT directive to name pin
SETB LED

Embedded Systems 1 3-49 8051 Assembly Programming

Bit-level Boolean Operations

Embedded Systems 1 3-50 8051 Assembly Programming

Look-Up Tables
• A look-up table is a table of constants stored in program memory

– Look-up tables can be used to speed up arithmetic operations
– The look-up table may be accessed using the DPTR or PC as a pointer to the start

of the table. The A register is used as an index to the table.

MOVC A, @A+DPTR
MOVC A, @A+PC

– The look-up table is defined using the DB directive
ORG 200H
DB 1,2,4,9

– This code will create a look-up table at address 200H. The value 1 will be stored
at address 200H, 2 at address 201H etc

– Ensure that the look-up table does not overlap with the address space used by
code.

Embedded Systems 1 3-51 8051 Assembly Programming

Look-up Table Example
• Write a program to read an 8-bit temperature in Celsius from Port 1 and to output the

Farenheight temperature equivalent onto Port 2
– F = ((C * 9)/5) + 32

• This temperature conversion could be coded in 2 ways: -
– Use arithmetic operations to work out the formula

• This would involve a multiply and a divide operation which are the 2
instructions with the longest execution time

• The code would also have to deal with the 2-byte result of the multiply

– Use a look-up table that stores the Farenheight equivalent of all possible Celsius
readings

• This would require more program memory – 1 byte for each temperature
• The code is much simpler to implement

Embedded Systems 1 3-52 8051 Assembly Programming

Temperature Conversion Program
TABLE EQU 100H
ORG 0

MAIN: MOV DPTR, #TABLE
LOOP: MOV A, P1

MOVC A, @A+DPTR
MOV P2, A
JMP LOOP

;conversion look-up table for 0 to 40 degrees Celsius
ORG TABLE
DB 32,34,36,37,39,41,43,45,46,48,50,52,54,55,57,59,61,63,64,66
DB 70,72,72,75,77,79,81,82,84,86,88,90,91,93,95,97,99,100,102,104
END

;What happens if a value outside of the range 0 to 40 is read from Port 1?
;How do you deal with this scenario in code?

	8051 Programming
	Assembly Language Instruction Set
	8051 Programming
	8051 Programming Examples
	Assembly Language Development Cycle
	Rules/Syntax
	Assembly Programme Example
	Listing File Produced by Assembler
	8051 Assembly Language
	8051 Instruction Set
	8051 Instruction Set
	Immediate Addressing
	Register Addressing
	Direct Addressing
	Indirect Addressing
	Addressing Modes Exercise
	Some Useful Directives
	Programme Sequencing
	Program Branching Instructions
	Jump Instructions
	Unconditional Jumps
	Conditional Jumps
	DJNZ Instruction
	DJNZ for Generating Delays
	DJNZ for Generating Delays
	DJNZ Exercise
	CJNE Instruction
	Subroutines
	Subroutine Example
	Subroutines
	Subroutine Parameter Passing
	Subroutine Call With No Parameter Passing
	Subroutine Call With Parameter Passing
	8051 Arithmetic Operations
	Increment/Decrement Instructions
	Multiply/Divide Instructions
	Addition
	Unsigned Addition
	Unsigned Addition
	Signed Addition
	Signed Addition
	Adding 2-Byte Numbers
	BCD Addition
	Subtraction
	8051 Logical Operations
	8051 Logical Operations
	Rotate Operations
	Bit Level Logical Operations
	Bit-level Boolean Operations
	Look-Up Tables
	Look-up Table Example
	Temperature Conversion Program

