ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

ASSEMBLY PROGRAMMING WITH CODE WARRIOR

The purpose of this lab is to introduce you to the layout and structure of assembly language
programs and their format, as well as to the use of the Code Warrior development tool. You will
write your own programs later on in the semester with similar structure.

In the following example source code, from left to right, you will notice four columns. The first
column contains label names. Leave a space if there is no label. The second column contains
assembly opcode. The third column contains data or operands. The fourth column is used for
comments. Comments start with semi colon. Your programs should always be in this format.

INTRODUCTION TO Code Warrior V5.1

Code Warrior (a free program from Freescale available on the Internet) is a windows based
program, which allows assembly programmer to assemble, debug, and download a program onto
the Dragon12 HCS12 board. This lab familiarizes the student with all the steps involved in
assembling, running, and debugging assembly language programs using Code Warrior. The
student will be required to understand and remember all the steps to download and debug
programs in future labs. Please download and install Code warrior V5.1 (Special Edition:
CodeWarrior for HCS12(X) Microcontrollers (Classic)) on your PC before coming to the lab.

http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW SPECIALEDITIONS

If your laptop’s operating system is not Windows, e.g., MAC. You should use Windows virtual
machine or dual operating systems to use the code warrior.

PROCEDURE:

I. USING CODE WARRIOR TO CREATE A NEW PROJECT

1. Run the code warrior program as follows:

Start > All Programs > Freescale CodeWarrior > CodeWarrior Development Studio for
S12(X) V5.1-> Code Warrior IDE

2. Close the “Tip of the Day” window if it comes up, and Click on File = New. This opens the
New Project window as shown in Figure 1.

3. From that window select: HCS12 then HCS12D family, then the microcontroller type
(MC9S12DG256B) and the default connection (HCS12 serial monitor). Then Click Next

Page 1 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

4. Change the project name to Lab one and Select ‘Absolute Assembly’ indicating that you are
writing all your assembly code in one single file using fixed addresses, as shown in figure 2.
Then click next.

HC(5)12(X) Microcontrollers Mew Project | X |
Wizard
Map Select the derivative you would lilkke to use: Choose your default connection:
Do e £ HCS12D Family A Connections p
Project Parameters - MC9512032 P&E Cyclone PRO (Serial)
o ... MC9512D64 | P&E Cyclone PRO (TCPIP) ll
Add Additional Files
. MIC9512DB1284 SofTec HCS12
Processor Expert .. MCO9512DB128E L -I.ﬂ:g;tn:l'lol_n BDI =
- MC9512DG1258 HC512 Serial Monitor -
. MC9512DG256B -
- MC85120)1288 B
... MICB51 202568 Connect to a board through Freescale -
HC512 Serial Monitor. Freescale HCS12
~MC3512D)s4 Serial Monitor must be on the board before
. MC3512DP256B connecting..
. MCB512DP512
- MC9512DT128B
.. MCES172NT256 22 =
| Next = Cancel
Figure 1
HC(5)12(X) Microcontrollers New Project [
Wizard Map
Please choose the set of languages to be Project name:
supported initially. You can make multiple
Device and Connection selections. |Lablmn::|:|
i Location:
Project el I i Absolute assembly | C:\Users\Mohd\Documents'\Lab
Add Additional Files I
r Set. .
Processor Expert -

Lizing only one single assembly source .
ile with absolute assembly. No suppart
or relocatable assembly ar linker.

< Back et > Finish Cancel

Figure 2

Page 2 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

5. Click on Finish to complete the project setup. The resultant screen will be similar to that
shown in Figure 3.

mmmmmﬁmﬁmﬁmmm

'Ihilvroﬁa\ll—li'tl@i_;llﬁ =
=—pF] '

tuor 01 mep |

|ﬁ PLE Mulilink CyelonzPro jﬂ ¥ & % oty Project
Fles | Link Order | Targets | Tool Bar

¥ Fe | Code | Dala Illi
ﬂmm m’a nla »

W

=
-
&
=
oo
-
I

w #(0) Sources 0

¥ & (2Pm 0 o
(] Livaries 0 0
w+{{] Debugger Froject File e, 0 0
#{1 Debugger Cmd Files 0 0

Lo ls bs be jle e le

. 2.4 m e . o ﬂ SRPRIRY o
< il 153

Figure 3: Initial Project Window

1. USING CODEWARRIOR TO ENTER THE PROGRAM

There are two methods to enter your code into Code Warrior.
a. Modify the pre-written main.asm file or

b. Write code in a new text file, add it to your project, and remove main.asm from the project.

1. (Using method a.) Open main.asm which is already present in the Sources folder of the Project
panel. Figure 4 and 5 gives the directions to open the main.asm file.

Page 3 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

« Fils Code Data ¥
— B I
: 5. ! [
Cff'[:k here... I“_l,+ [Sources 0 0« =
o " &3 Pm 0 0 =
+] Libraries 0 0 =
~ [+ ({3 Debugger Pioect File 0 0 =
+ 1 Debuoger Cd Files 0 0 x
Figure 4
: = ¢ S Sowces 0 R |
Double click here... L—ﬂ—’!m____ B main.asm C 0.
(. i
Figure 5

2- Replace the template code in main.asm provided by CodeWarrior with the example code
shown below and save the program. Keep the columns carefully aligned as shown to enhance
reading and understanding! (If you wish, you can use method b. instead).

;Code Entry, Assembly, and Execution

; (Put your name and date here)

absentry Entry ;to indicate the application entry point
include 'mc9sl2dg256.inc'

org $1000 ;Data starts at RAM address $1000
sum dc.b 0 ;Sum byte stored here

org $2000 ;Program code starts at address $2000
Entry:

ldaa #$25 ;Load $25 to reg A

adda #$34 ;Add $34 to A

adda #$11 ;Add $11 to A

adda #18 ;Add $12 to A

adda #%00011100 ;Add $1C to A

staa sum ;Store total in 'sum' M[$1000]
here: jmp here ;Stay here forever to end program

Page 4 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

If there is no label, leave a space otherwise you will get error

Note: The minimal requirements for an absolute assembly program are:

a) The ABSENTRY declaration at the top;

b) Inclusion of the mc9s12dg256.inc file that defines the registers and memory of this particular
microcontroller;

c) The ORG declarations for the starting memory addresses of the data and code.

I11. ASSEMBLING AND RUNNING THE PROGRAM ON THE BOARD

1. Make sure the Dragon12 board is connected to power and to the PC.

2. Hit the RESET button on the Dragon12 board. This pushbutton is located close to the middle

of the bottom edge of the board, labeled “Reset SW6”.

3. Assemble the code: From the main menu select Project - Make (F7). This will assemble the
project source code into object code and display errors, if any; the screen does not change if
there are no errors.

4. Download and debug the code: from main menu select Project > Debug (F5). This
downloads the user’s machine code into the HCS12 microcontroller.

5. When CodeWarrior works with a demo board with the Serial Monitor, the response is similar
to that shown in Figure 6.

-
DA | 28 «[2z£le|w @
M= = =
| e S — (5

Monios Comemumscstion | Vector Table Masorng | Load Optons: |
HOST Semsl Commumecabon Port

Plaase pelsct in the dislog the setisl commmmirscation paoal e
B conrct 1o the hardwane - et

m HOST Savial Cosemamic stion Pom | COMT: E3

Cosrmermsrscalzon probocol
I Shaviv Mondtor THUFX |

COCO00E0
. » loooD0084q
£ > DOOOD0ES 7 £l w

For Help, press F1 Loadng Target .

Figure 6: HCS12 Serial downleoad response

Page 5 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

6. Select the com number that is assigned to the board. Check your laptop’s device manager to
know the com number. If the com number is more than 8 you have to change it. To do that
right click on the board in the device manger and select properties — select port settings tab —
select advanced.

7. After clicking on OK, the screen changes to one similar to Figure 7

e True-Time Simulator & Real-Time Debugger C:WrojectsyHCS 1240 Tutonalsbull Chip Simulatbion. int |;||§||E|
File Wiew Run HCI312FECS Component Frocedure wWindow Hep

S = I AL A R R A

E source 0 Assembly
ID\PrqeclskHCS1 25 Tulprialsbirtmain dog Line: 12805 I
N |

000 IDnAa
! code section 2oADba gL
ORC EOMStart ADDA #17
Entrey! MDD #l12
5 ADDA #20
ADDS #6534 sodd 24H to A (A-5CH) STaa Ox0210
AIDA #8511 sadd 11H to A& (4=6iH) JHP 05000
ADDRL #18 *ho= A+ ZH = TCH STik O=Eh
ADL: #%00C11100 ;A - A+ CH - 28H
ST&L ST 3AWE The SIM 1R 1rm 210H
HERE THF HEEE s3tay here forever

(B! HZ12 CPU Cycles; O
P]| - it [ECE & |CE B
— pem———— T< |[CBCB IY [CECH
IP | BOOO PC (3000 PRAGE | D

| Buwto Symb Glabal =P |EBC5I CCR | sxFInzve

[Procedure

I Command
executing . \coehbull Chin Simalation postlead.cud

1f4 After load the commaads written below will he execou

domz houdyPall Chip Bnalecdon pootlead.cxd
03 0o 20
Postload commard £ile correctly executed. | 01 00 o0
03 00 00
02 oo FF
02 0o 0o

L I I U

For Help, prags F1L |2,000000 MHz Lt} MCS51 ZDPSLE |done Nermd\Ful_Chip_Smulation_pi ¢

Figure 7: Debug mode

Page 6 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

8. Figure 8 and 9 give details of the debug window and the main features to be used to debug the
code.

Start/Continue simulation (F5) Step out - \ Stop execution
\
f \
Single step (F11) Assembly step Reset target
Step over (F10)
Figure 8

P s T TAT— Y e — it~ L6
B Ui L HETTUND Sepeedd Minecirs Wedes . B
i) e ik ~islelai- 8

- b=y

mirloee

wratarl ey

Subedey e i Ty
i Sy e s

WIS A=
¥ EE L mx = !
™ ‘BE O el =EE
oW A e e =P MI
= me oo (W mismir wz
ERIM (@ G |8 mIREIT U MSE A el E
|

Pt el Temmed File =e=rae 3 L CmE S (e pres B o
3 ']

ety o Tl T, Siwnboraoy gast| 4

fohlee iEad Wt OOk i NEETOn inlod sull ie sesnEed
wege Nl T Simince e closd ond

NEO O W W R TR (2 TN W DO OO0 o R
WRDPD DU W WD 80000 N D OO D 0 O O
Fuical tomee Sily TOCCERLT e R LS chilrel B 3 O 0 OF 3 MO0 0080
o [LcaReek i Rl RolciReis B Ro Rl Bk
= RO AL b OB PR BN A G A O 0A B SHEE B GA Lo
e e i S L0 O
ot g pecce & HEES Dommiies e) wﬁ:rrwﬂ;—

Figure 9

- The Data window shows all variables present in the current source module or procedure

- The Register window displays the names, values and details device registers

Page 7 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

- The Memory window displays unstructured memory content, or memory dump, that is,
continuous memory words without distinction between variables.

- You can right click on the Data window or Register window to change the data format (binary,
decimal, signed, unsigned, character (ASCII)...)

- You can right click on the memory window to go to a specific memory location, to change the
memory content, or to change the format.

- Normally, you will run a program at full speed from start to finish by using the ‘start/continue
simulation’ icon or the F5 key. However, for this lab, we want to see what will happen as we
execute the program step-by-step.

- Use single step repeatedly to execute the code. Observe the content of the PC, accumulators A
& B, as well as four of the CCR (Condition Code Register) bits after each single step execution.
Record these values in Table 1. Note that the black flag means 1 and the gray one means 0.

Table 1
PC A B [$1000] N Z Vv C

Approve lab TA

Record the machine code that is equivalent to the assembly program.

Approve lab TA

Page 8 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

IV. ASSEMBLING AND RUNNING THE PROGRAM USING FULL CHIP SIMULATION:

You can use the full chip simulation feature in CODEWARRIOR to debug your code without
running it on a board. To do so associated the "Full Chip Simulator” Connection to your project.

The fastest way to do that is to select the full chip simulation option from the drop down menu

Lab1.mcp l

Wﬂ}‘ Full Chip Simulation jﬁ B % @ %

Files l Link. I:Irl:ler] Targets]

@ [—3 Sources

W [l main.asm
+{_7 Includes

« [#{_J Project Settings
+{_] Generated Code

W File Code | Data |4

oo oo

oo oo o

bls o s s
1]

Figure 10

Things to turn in as your Labl Report:

This assignment sheet, with your name at the top, signed by the TA where shown.
A. The answers in Table 1. [10 marks]
B. The machine code that is equivalent to the assembly program. [10 marks]

C. Answers to the following questions:

1. What was the original content of memory location sum after loading but before executing
the complete program? Why does it have this value? [10 marks]

2. What is the final content of memory location sum? [10 marks]

3. Explain two different ways to find the content of memory location sum using the debug
windows. [10 marks]

4. After execution of the last adda instruction, explain why the 4 status bits have those
particular values. Explain in details [20 marks]

Remember:
Z: zero flag it is 1 when the result is zero otherwise it is 0
N: Negative flag it is 1 when the result is negative otherwise it is 0

Page 9 of 10

ECE 3120

Lab 1 - Code Entry, Assembly, and Execution

C: carry flag it is 1 when the there is a carry in the last operation otherwise it is O
V: overflow flag it is 1 when there is signed overflow (+ve number + +ve number = -ve
number) or (-ve number + -ve number = +ve number) otherwise it is O

5. Explain in details how PC changes in Table 1. Why the increment value is not the same for
all the instructions. [20 marks]

Page 10 of 10

