
ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 1 of 10

ASSEMBLY PROGRAMMING WITH CODE WARRIOR

The purpose of this lab is to introduce you to the layout and structure of assembly language

programs and their format, as well as to the use of the Code Warrior development tool. You will

write your own programs later on in the semester with similar structure.

In the following example source code, from left to right, you will notice four columns. The first

column contains label names. Leave a space if there is no label. The second column contains

assembly opcode. The third column contains data or operands. The fourth column is used for

comments. Comments start with semi colon. Your programs should always be in this format.

INTRODUCTION TO Code Warrior V5.1
Code Warrior (a free program from Freescale available on the Internet) is a windows based

program, which allows assembly programmer to assemble, debug, and download a program onto

the Dragon12 HCS12 board. This lab familiarizes the student with all the steps involved in

assembling, running, and debugging assembly language programs using Code Warrior. The

student will be required to understand and remember all the steps to download and debug

programs in future labs. Please download and install Code warrior V5.1 (Special Edition:

CodeWarrior for HCS12(X) Microcontrollers (Classic)) on your PC before coming to the lab.

 http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_SPECIALEDITIONS

If your laptop’s operating system is not Windows, e.g., MAC. You should use Windows virtual

machine or dual operating systems to use the code warrior.

PROCEDURE:

I. USING CODE WARRIOR TO CREATE A NEW PROJECT

1. Run the code warrior program as follows:

Start  All Programs  Freescale CodeWarrior  CodeWarrior Development Studio for

S12(X) V5.1 Code Warrior IDE

2. Close the “Tip of the Day” window if it comes up, and Click on File  New. This opens the

New Project window as shown in Figure 1.

3. From that window select: HCS12 then HCS12D family, then the microcontroller type

(MC9S12DG256B) and the default connection (HCS12 serial monitor). Then Click Next

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 2 of 10

4. Change the project name to Lab one and Select ‘Absolute Assembly’ indicating that you are

writing all your assembly code in one single file using fixed addresses, as shown in figure 2.

Then click next.

Figure 1

Figure 2

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 3 of 10

5. Click on Finish to complete the project setup. The resultant screen will be similar to that

shown in Figure 3.

II. USING CODEWARRIOR TO ENTER THE PROGRAM

There are two methods to enter your code into Code Warrior.

a. Modify the pre-written main.asm file or

b. Write code in a new text file, add it to your project, and remove main.asm from the project.

1. (Using method a.) Open main.asm which is already present in the Sources folder of the Project

panel. Figure 4 and 5 gives the directions to open the main.asm file.

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 4 of 10

2- Replace the template code in main.asm provided by CodeWarrior with the example code

shown below and save the program. Keep the columns carefully aligned as shown to enhance

reading and understanding! (If you wish, you can use method b. instead).

;---------------------------------------
;Lab#1
;Code Entry, Assembly, and Execution
;(Put your name and date here)
;---------------------------------------
 absentry Entry ;to indicate the application entry point
 include 'mc9s12dg256.inc'

 org $1000 ;Data starts at RAM address $1000
sum dc.b 0 ;Sum byte stored here

 org $2000 ;Program code starts at address $2000
Entry:
 ldaa #$25 ;Load $25 to reg A
 adda #$34 ;Add $34 to A
 adda #$11 ;Add $11 to A
 adda #18 ;Add $12 to A
 adda #%00011100 ;Add $1C to A
 staa sum ;Store total in 'sum' M[$1000]
here: jmp here ;Stay here forever to end program

;-------End Program Lab#1-------------

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 5 of 10

If there is no label, leave a space otherwise you will get error

Note: The minimal requirements for an absolute assembly program are:

a) The ABSENTRY declaration at the top;

b) Inclusion of the mc9s12dg256.inc file that defines the registers and memory of this particular

microcontroller;

c) The ORG declarations for the starting memory addresses of the data and code.

III. ASSEMBLING AND RUNNING THE PROGRAM ON THE BOARD

1. Make sure the Dragon12 board is connected to power and to the PC.

2. Hit the RESET button on the Dragon12 board. This pushbutton is located close to the middle

of the bottom edge of the board, labeled “Reset SW6”.

3. Assemble the code: From the main menu select Project  Make (F7). This will assemble the

project source code into object code and display errors, if any; the screen does not change if

there are no errors.

4. Download and debug the code: from main menu select Project  Debug (F5). This

downloads the user’s machine code into the HCS12 microcontroller.

5. When CodeWarrior works with a demo board with the Serial Monitor, the response is similar

to that shown in Figure 6.

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 6 of 10

6. Select the com number that is assigned to the board. Check your laptop’s device manager to

know the com number. If the com number is more than 8 you have to change it. To do that

right click on the board in the device manger and select properties – select port settings tab –

select advanced.

7. After clicking on OK, the screen changes to one similar to Figure 7

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 7 of 10

8. Figure 8 and 9 give details of the debug window and the main features to be used to debug the
code.

- The Data window shows all variables present in the current source module or procedure

- The Register window displays the names, values and details device registers

Start/Continue simulation (F5)

Single step (F11)

Step over (F10)

Reset target Assembly step

Step out Stop execution

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 8 of 10

- The Memory window displays unstructured memory content, or memory dump, that is,
continuous memory words without distinction between variables.

- You can right click on the Data window or Register window to change the data format (binary,
decimal, signed, unsigned, character (ASCII)…)

- You can right click on the memory window to go to a specific memory location, to change the
memory content, or to change the format.

- Normally, you will run a program at full speed from start to finish by using the ‘start/continue
simulation’ icon or the F5 key. However, for this lab, we want to see what will happen as we
execute the program step-by-step.

- Use single step repeatedly to execute the code. Observe the content of the PC, accumulators A
& B, as well as four of the CCR (Condition Code Register) bits after each single step execution.
Record these values in Table 1. Note that the black flag means 1 and the gray one means 0.

Table 1

PC A B [$1000] N Z V C

Approve lab TA _______________________

Record the machine code that is equivalent to the assembly program.

Approve lab TA _______________________

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 9 of 10

IV. ASSEMBLING AND RUNNING THE PROGRAM USING FULL CHIP SIMULATION:

You can use the full chip simulation feature in CODEWARRIOR to debug your code without

running it on a board. To do so associated the "Full Chip Simulator" Connection to your project.

The fastest way to do that is to select the full chip simulation option from the drop down menu

Figure 10

Things to turn in as your Lab1 Report:

This assignment sheet, with your name at the top, signed by the TA where shown.

A. The answers in Table 1. [10 marks]

B. The machine code that is equivalent to the assembly program. [10 marks]

C. Answers to the following questions:

1. What was the original content of memory location sum after loading but before executing
the complete program? Why does it have this value? [10 marks]

2. What is the final content of memory location sum? [10 marks]

3. Explain two different ways to find the content of memory location sum using the debug
windows. [10 marks]

4. After execution of the last adda instruction, explain why the 4 status bits have those
particular values. Explain in details [20 marks]

Remember:
Z: zero flag it is 1 when the result is zero otherwise it is 0
N: Negative flag it is 1 when the result is negative otherwise it is 0

ECE	3120 																																																					
Lab	1	–	Code	Entry,	Assembly,	and	Execution	

Page 10 of 10

C: carry flag it is 1 when the there is a carry in the last operation otherwise it is 0
V: overflow flag it is 1 when there is signed overflow (+ve number + +ve number = -ve
number) or (-ve number + -ve number = +ve number) otherwise it is 0

5. Explain in details how PC changes in Table 1. Why the increment value is not the same for
all the instructions. [20 marks]

