

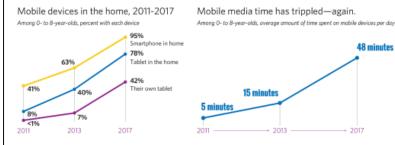
Learning and Assessment for **DIGITAL CITIZENSHIP**

Funded by HK Research Grants Council under the Themebased Research Scheme [Project No. T44-707/16-N]

Assessing digital competence

Nancy Law University of Hong Kong

Assessing digital competence:



Digital citizenship is the responsible use of technology to learn, create, and participate.

The Digital Landscape by the Numbers

Here is what we know about kids' use of technology.

Kids 0-8

NEWS & MEDIA LITERACY We are critical thinkers & creators.

RELATIONSHIPS & COMMUNICATION We know the power of words & actions.

Tweens (8-12) and Teens (13-18)

Tween Daily Screen Time 6 hours 5:55 Total Hours

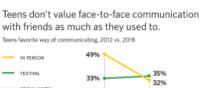
72%

on their devices

Of teens believe that tech companies manipulate

users to spend more time

Teen Daily Screen Time 9 hours


8:56 Total Hours 6:40 Hours of Screen Time

4:36 Hours of Screen Time

VIDEO-CHATTING

Sources: (Rideout, 2015); (Rideout, 2017); (Rideout & Robb, 2018)

CYBERBULLYING, DIGITAL DRAMA & HATE SPEECH We are kind & courageous.

PRIVACY & SECURITY We care about everyone's privacy.

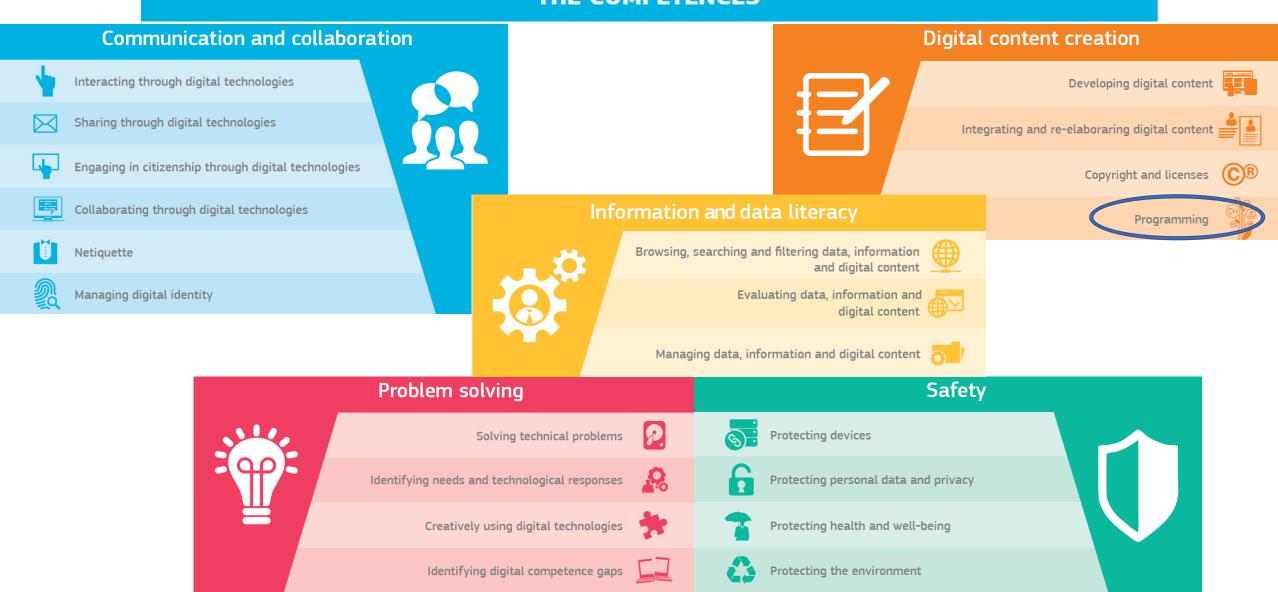
DIGITAL FOOTPRINT & IDENTITY We define who we are.

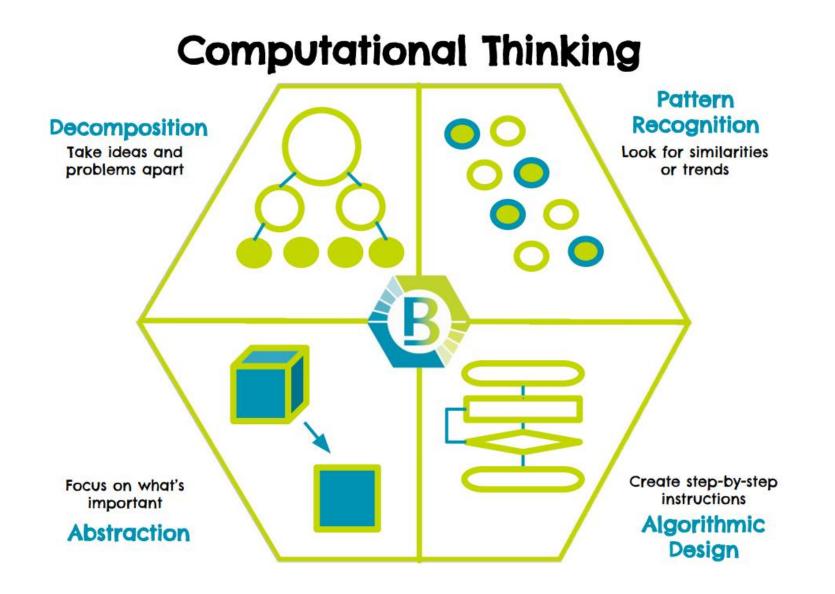
What is digital competence?

- Digital literacy
- Problem solving
- Computational thinking
- Collaborative problem solving
- Digital citizenship

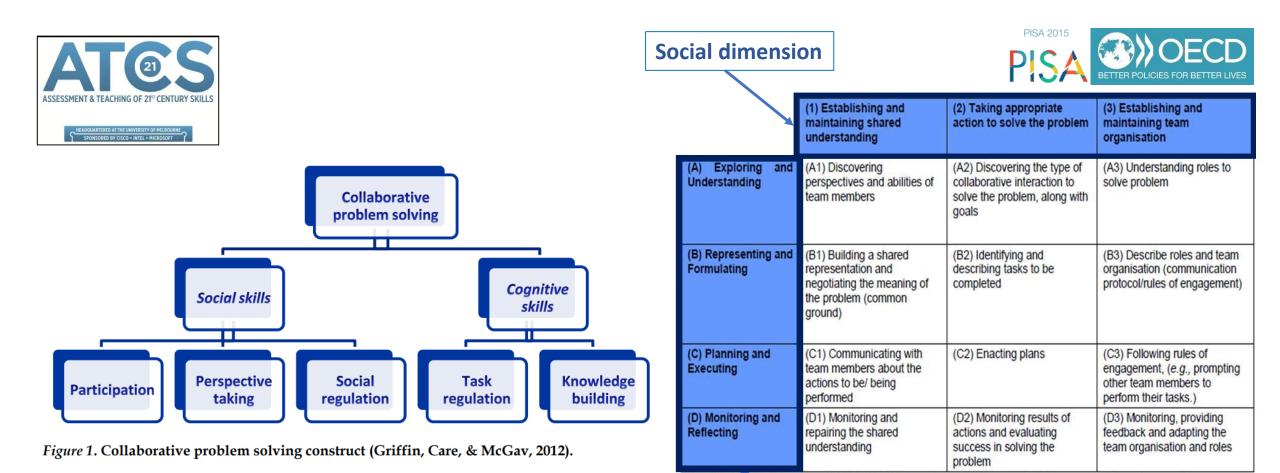
DIGCOMP 2.0

THE DIGITAL COMPETENCE FRAMEWORK FOR CITIZENS WHY - WHAT - FOR WHOM




Digital society needs digitally-competent citizens

Being digitally competent means using digital technologies in a confident and safe way for various purposes such as working, getting a job, learning, shopping online, obtaining health information, being included and participating in society, entertainment, etc.


DGCOMP 2.0 THE DIGITAL COMPETENCE FRAMEWORK FOR CITIZENS THE COMPETENCES

Source: https://www.wcpss.net/domain/17003

Assessment frameworks for collaborative problem solving (CPS)

Cognitive dimension

Digital Citizenship competence

Is assessing DC different? If so, in what ways?

- Cognitive maturity, development and experience: Do older students necessarily perform better? (e.g. DL)
- Technological advancement, tool familiarity and dependence: Can there be a "fair comparison" of performance ? (e.g. DL)
- Generic competence or technology dependent competence? (e.g. CT)
- Generic competence or context dependent competence? (e.g. problem solving)
- Individual competence or interdependent competence? (e.g. group dynamics & leadership in CPS)

Measuring digital competence

<u>lssues</u>

- Validity-measuring what we want to measure
- **Reliability**-stable across measurement contexts

Functions

- Measuring growth, development
- Comparing individuals' aptitude/ achievement
- Measuring change over time (cohort)

<u>Challenges (measurement of outcomes as relatively stable latent variables)</u>

- 1. Need for technology mediation
 - Technology as non-neutral context affecting definition of assessment framework & indicators
 - Equity-learner experience and exposure to the technology impact on outcomes
- 2. Context dependence
 - Task and experience of learners
 - Social context-characteristics of others and the social setting
- 3. Rapid technological and social changes
 - Can population (cohort) achievement be compared/tracked?

What HK students can do

Data collection period: Dec 2018 - Apr 2019 **Target students:** * P3 * S1 * S3 Learning and Assessment for DIGITAL CITIZENSHIP Hong Kong Students'

> **Digital Citizenship** Development **Initial Findings**

e 1

What HK students cannot do

Information and data literacy	*Formulate complex search for highly relevant results, evaluate information
Communication and collaboration	*Adapt communication strategy to context, protect digital identity
Digital content creation	*Identify media uses that violate intellectual property rights
Digital Safety	* Sophisticated safety measures, e.g. identify safe ways to use USB drives
Problem solving using ICT	Solve complex device + application problems: e.g. no sound in video

Data collection period: Dec 2018 - Apr 2019 **Target students:**

* P3

* **S1** * S3

Learning and Assessment for DIGITAL CITIZENSHIP

Hong Kong Students' **Digital Citizenship Development**

사 위 2

ŨIJ

Initial Findings

Contents lists available at ScienceDirect

Computers & Education

journal homepage: http://www.elsevier.com/locate/compedu

Computer Education

Measuring digital literacy across three age cohorts: Exploring test dimensionality and performance differences

Kuan-Yu Jin^{a,b}, Frank Reichert^{a,*}, Louie P. Cagasan Jr.^{a,c}, Jimmy de la Torre^a, Nancy Law^a

^a Faculty of Education, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China

^b Hong Kong Examinations and Assessment Authority, 248 Queen's Road East, Wan Chai, Hong Kong, Hong Kong SAR, China ^c Assessment, Curriculum & Technology Research Centre, UP-CIDS, Ang Bahay ng Alumni, Magsaysay Avenue, University of the Philippines, Diliman, Quezon City, 1104, The Philippines

ARTICLE INFO

ABSTRACT

Keywords: Assessment DigComp Digital literacy Gender differences Item response theory

Digital literacy (DL) is an important capacity for students' learning in a rapidly changing world. However, tension exists between the theoretical conceptualizations of DL as a multidimensional construct and empirical studies reporting unidimensional DL scores. Also, little is known about how DL may vary among different age cohorts, and whether and at which age do performance gaps emerge with respect to gender. The focus of this research is to develop a test appropriate for measuring DL performance at different ages and a comprehensive DL assessment framework has been adopted for this purpose. Using data from three age cohorts of students (one from primary schools and two from secondary schools), the dimensionality of DL and performance differences are examined. Comparisons of unidimensional and multidimensional item response models suggest the measured DL to be a unidimensional construct. The results also show that secondary school students obtained higher levels of DL compared to primary school students. A gender gap in DL is found among secondary school students. There is also a need for further research to understand through longitudinal studies the emergence of the gender gap in DL performance.

Exploring the structure of digital literacy competence assessed using authentic software applications

Frank Reichert, Deju (James) Zhang, Nancy W. Y. Law, Gary K. W. Wong & Jimmy de la Torre

D Springer

Educational Technology Research and Development A bi-monthly publication of the Association for Educational Communications & Technology

ISSN 1042-1629

Education Tech Research Dev DOI 10.1007/s11423-020-09825-x Education Tech Research Dev https://doi.org/10.1007/s11423-020-09825-x

RESEARCH ARTICLE

Check fo

Exploring the structure of digital literacy competence assessed using authentic software applications

Frank Reichert¹ · Deju (James) Zhang² · Nancy W. Y. Law³ · Gary K. W. Wong⁴ · Jimmy de la Torre⁵

Accepted: 10 September 2020 © Association for Educational Communications and Technology 2020

Abstract

Digital literacy competence (DL) is an important capacity for students' learning in a rapidly changing world. However, little is known about the empirical structure of DL. In this paper, we review major DL assessment frameworks and explore the dimensionality of DL from an empirical perspective using assessment data collected using authentic software applications, rather than simulated assessment environments. Secondary analysis on representative data collected from primary and secondary school students in Hong Kong using unidimensional and multidimensional item response theory reveals a general dimension of digital literacy performance and four specific, tool-dependent dimensions. These specific DL dimensions are defined by the software applications that students use and capture commonality among students' performance that is due to their familiarity with the assessment tools and contexts. The design of DL assessment is discussed in light of these findings, with particular emphasis on the influence of the nature of digital applications and environments used in assessment on the DL achievement scores measured.

Keywords Assessment \cdot Authentic software applications \cdot Digital literacy \cdot Purpose-built software \cdot Twenty-first century skills

Different approach to instrument design regarding technology

Joan is looking for pictures of penguins that she can use in her personal blog. She decides to search for copyright-free resources that allow her to edit images suitable for her blog post. Choose the right search option under the "usage rights"

Learning and Assessment for **DIGITAL CITIZENSHIP**

so that Joan can achieve what she wants to do.

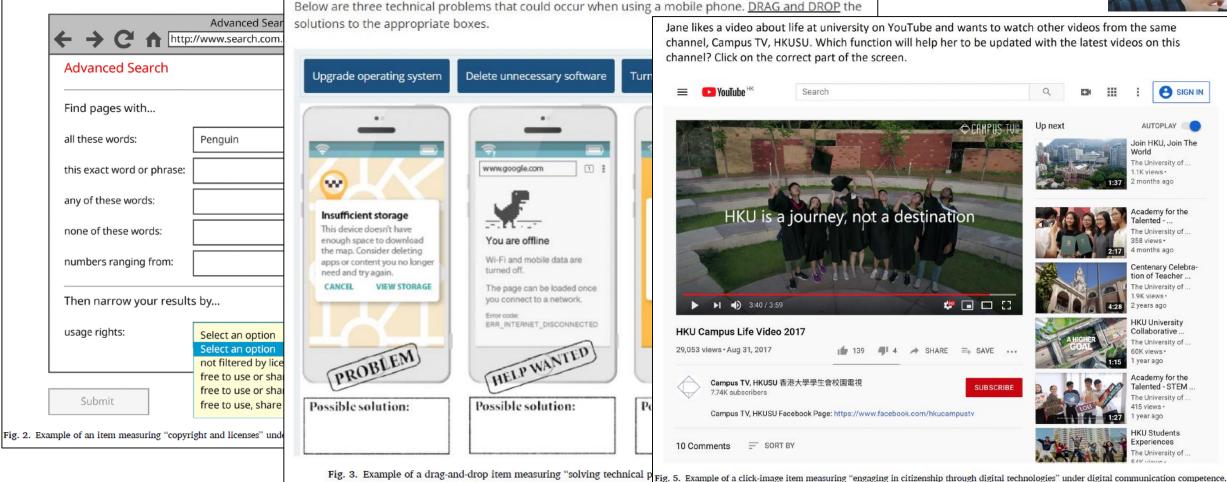
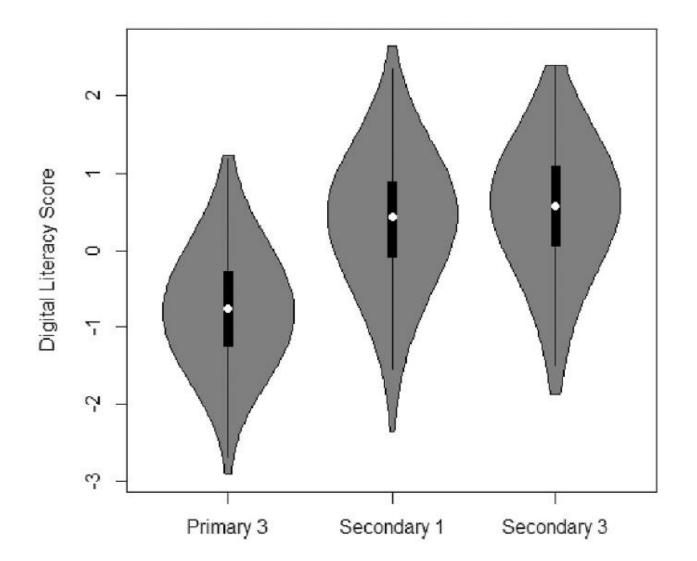


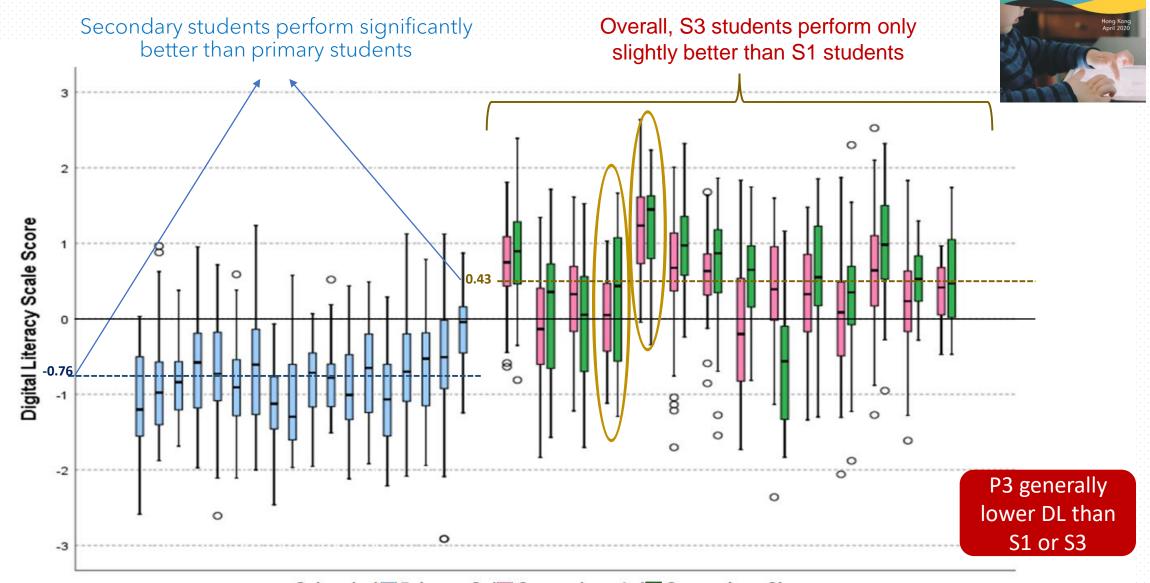
Fig. 5. Example of a click-image item measuring "engaging in citizenship through digital technologies" under digital communication competence. Note. Used with permission from Campus TV, Hong Kong University Students' Union (https://www.youtube.com/watch?v=s8kMynR1rKg), and The University of Hong Kong. ©2018 Google LLC, used with permission. All rights reserved. YouTube is a trademark of Google LLC.


1

Hong Kong Students' Digital Citizenship Development Inital Findings

Comparing performance of the three age cohorts

Digital Citizenship Development Initial Findings Hong Kong April 2020


Hong Kong Students'

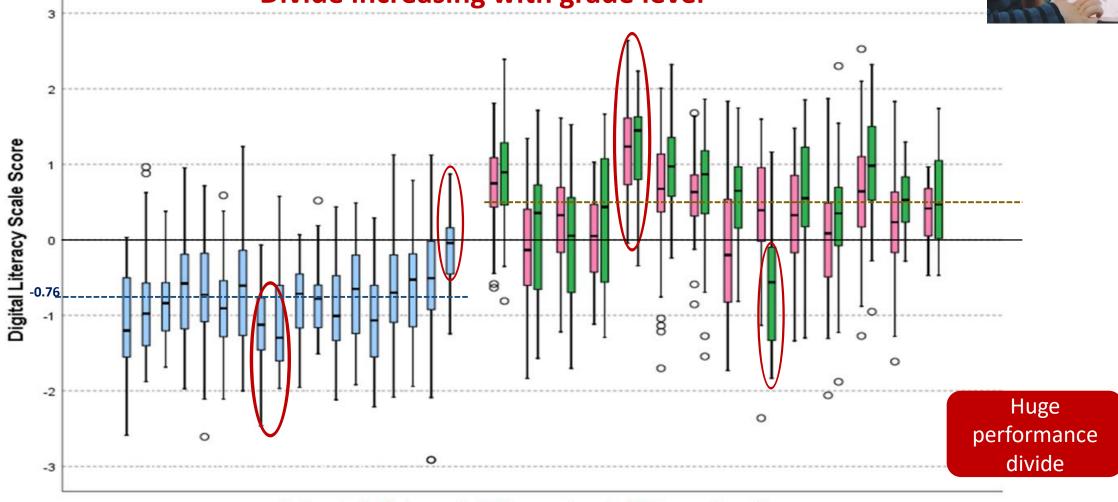
0 📩

Violin plots showing the spread of students' DL performance across cohorts.

Learning and Assessment for **DIGITAL CITIZENSHIP**

Schools (Primary3 / Secondary 1 / Secondary 3)

D 📩


Hong Kong Students' Digital Citizenship Development

Learning and Assessment for **DIGITAL CITIZENSHIP**

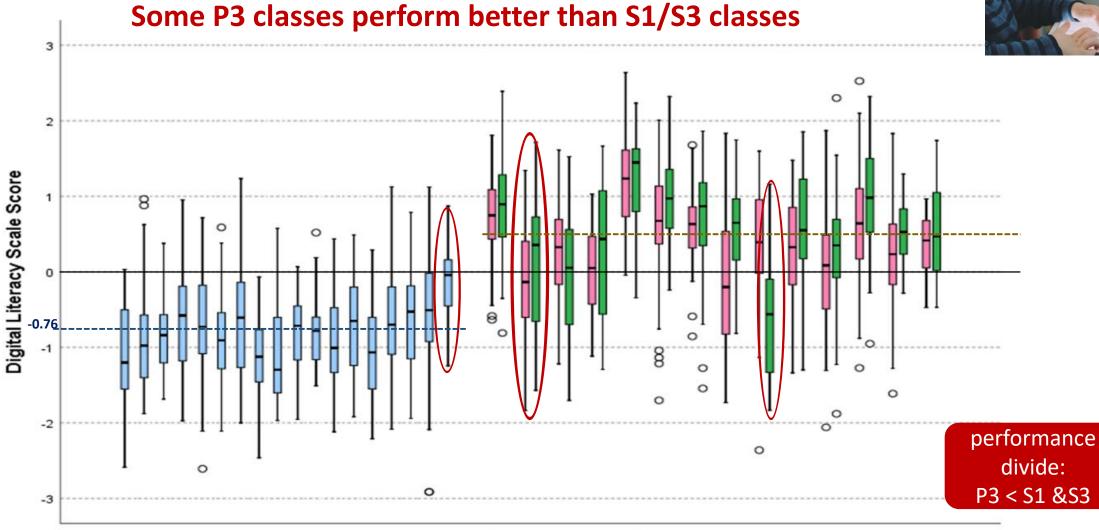
Digital literacy: our findings

Digital Literacy performance divide—large *between-school* differences Divide increasing with grade level

Schools (Primary3 / Secondary 1 / Secondary 3)

5 0

Hong Kong Students Digital Citizenship Development

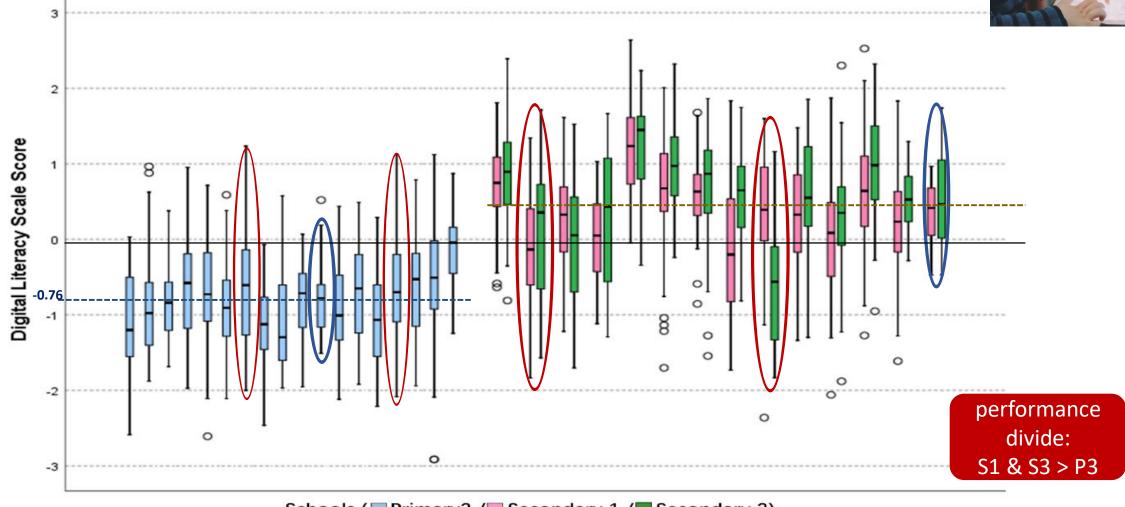

Digital Literacy performance divide—large *between-school* differences

Learning and Assessment for

DIGITAL CITIZENSHIP

Hong Kong Students Digital Citizenship

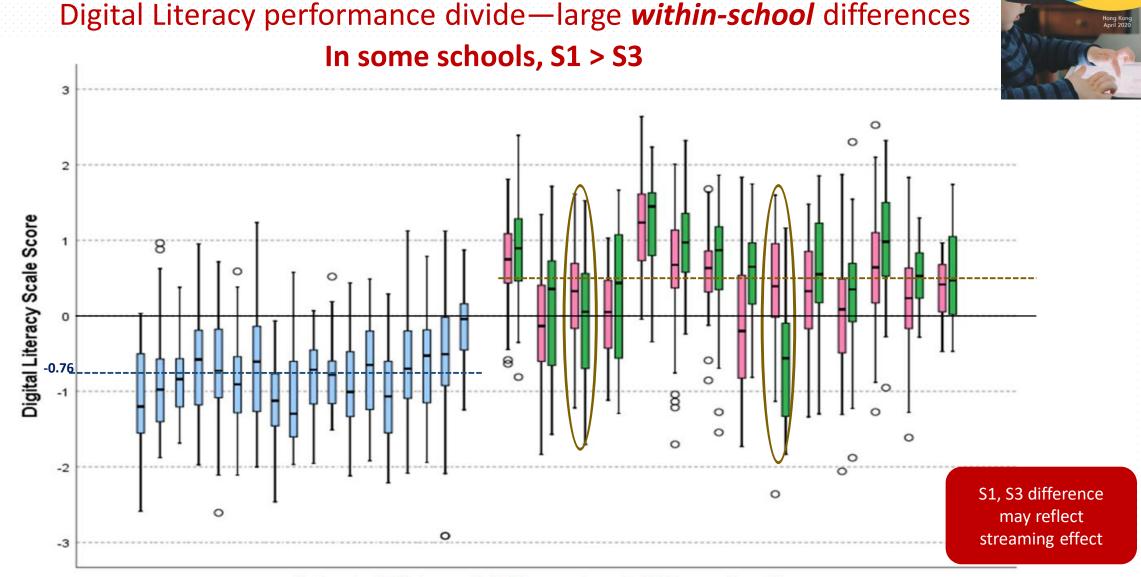
Schools (Primary3 / Secondary 1 / Secondary 3)


🗖 🖞

Learning and Assessment for **DIGITAL CITIZENSHIP**

Digital literacy: our findings

Digital Literacy performance divide—large *within-school* differences Divide increasing with grade level


Schools (Primary3 / Secondary 1 / Secondary 3)

E 🕯

Hong Kong Students Digital Citizenship Development

Digital literacy: our findings

Learning and Assessment for **DIGITAL CITIZENSHIP**

Schools (Primary3 / Secondary 1 / Secondary 3)

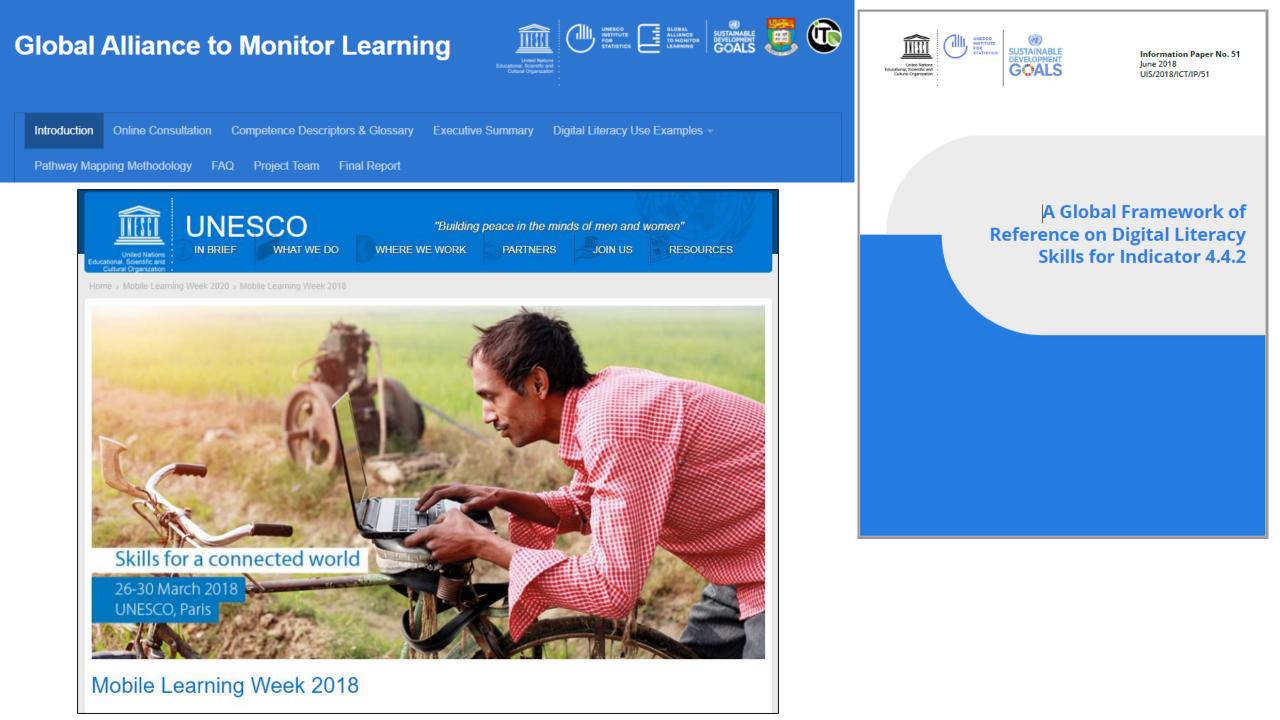
5 i

Hong Kong Students Digital Citizenship Development

Example: Pathways mapping for agriculture (farmers)

Trading using mobile phone

Using smartphone to cut out middlemen

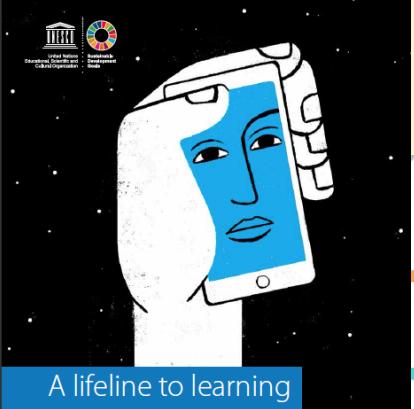

A data-driven irrigation system using Internet-of-things

Example: Pathways mapping for e-government

Bidding for government procurement through e-government website Applying for single sign-on account to access a range of e-government online services

Example from MLW 2018: Women empowerment in India

DISTANCE


PRIVACY

HEALTH

SECURITY

Addressing children's first teachers through empowering mothers with a multidisciplinary, computerized approach. The tablet based Rural Toilet Builder course gives students a selfpaced, DIY platform to become proficient in construction skills while also developing capacity in digital literacy. Here Jyothi and her child in Byse refer to

Leveraging technology to support education for refugees

Example from MLW 2018: Supporting refugee learning

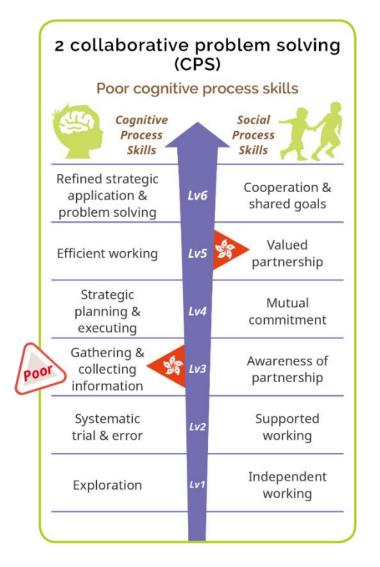
Rm.



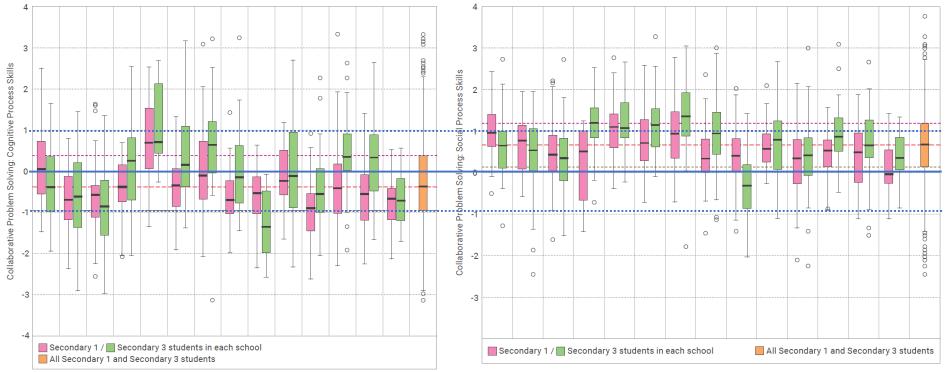
LATEST NEWS "July 2010: Re-imagining West Bank and Gaza Program Voices Beyond Walls Blog | YouTube Channel: Youth Videos July 2009: Youth Visions of Jerusalem: Workshops & Exhibits

Consortium of coding schools

Digital storytelling



Measuring CPS skills performance of 13- & 15year-olds in Hong Kong using ATC21S CPS system



Hong Kong Students' Digital Citizenship Development Initial Findings

CPS achievement measured using ATC21S

Cognitive process skills

Social process skills

Digital Literacy (DL) and ATC21S CPS score:							
- DL with cognitive CPS: - DL with social CPS:							
r = .35 in S1	r = .19 in S1						
r = .40 in S3	r = .29 in S3						

5

Hong Kong Students' Digital Citizenship Development Inital Findinas

The ATC21S CPS assessment framework (Hesse et al., 2015, p. 41-52)

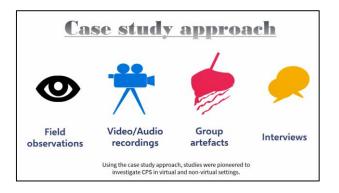
	The ATC21S CPS assessment framework						
Collaborative	(1) Social	(i) Participation	(a) Action				
problem	process	skills	(b) Interaction				
solving	skills		(c) Task completion/perseverance				
(CPS) skill		(ii) Perspective	(a) Adaptive responsiveness				
		taking skills	(b) Audience awareness (mutual modelling)				
		(iii) Social	(a) Negotiation				
		regulation	(b) Self-evaluation (Metamemory)				
		skills	(c) Transactive memory				
			(d) Responsibility initiative				
	(2)	(j) Task	(a) Problem analysis				
	Cognitive	regulation	(b) Goal setting				
	process	skills	(c) Resource management				
	skills		(d) Flexibility and ambiguity				
			(e) Information collection				
			(f) Systematicity				
		(ii) Learning and	(a) Relationships (Representations and				
		knowledge	formulations)				
		building skills	(b) Rules: "Ifthen"				
			(c) Hypothesis "what if" (Reflection and				
			monitoring)				

PISA 2015 CPS Assessment Framework (OECD, 2017b, p. 50)

		PISA collabo	rative problem solving	competencies
		(1)Establishing andmaintaining sharedunderstanding	(2) Taking appropriate action to solve the	
	(a) Exploring and understanding	(a1) Discovering perspectives and abilities of team members	(a2) Discovering the type of collaborative interaction to solve the problem, along with goals	(a3) Understanding roles to solve the problem
Problem solving process	(b) Representing and formulating	(b1) Building a shared representation and negotiating the meaning of the problem (common ground)	(b2) Identifying and describing tasks to be completed	(b3) Describing roles and team organization (communication protocol/rules of engagement)
	(c) Planning and executing	(c1) Communicating with team members about the actions to be/being performed	(c2) Enacting plans	(c3) Following rules of engagement, (e.g. prompting other team members to perform their tasks)
	(d) Monitoring and reflecting	(d1) Monitoring and repairing the shared understanding	(d2) Monitoring results of actions and evaluating success in solving the problem	(d3) Monitoring, providing feedback and adapting the team organization and roles

ATC21S & PISA CPS

Differences:


- Human-to-human v.s. human-to-agent
- Jigsaw model v.s. decision tree

Similarities:

- CPS is an individual attribute/capacity
- CPS as a relatively stable, context independent attribute (measurement ideal)–Context: task, social, technological

Exploring assessment of CPS

- Use ATC21S assessment framework
- Investigate CPS in virtual and non-virtual task setting
- Observe both individual and group performance
- Observe group dynamics during problem solving stages
- Study CPS skills of young children (~ 8 to 13 years

Task context: anti-cyberbullying—recognizing and handling cyberbullying situations

Study 1 (fully open-ended tasks):

* Open-ended design of learning game (on story board) over 3 Friday mornings
* Groups of ~4 students, mixed age (8 to 13) & gender grouping, total 44 students
* Two groups with children 11 years and older (administered ATC21S CPS)

Study 2 (compare fully open-ended with structured task):

- * Class of 34 grade 3 students (groups of 4-5)
- * Two half-hour tasks
 - 1. collaborate on an online anti-cyberbullying game
 - 2. collaborate on improving the game design (on storyboard)

Study 3 (compare effect of task sequencing):

- * 2 groups of grades 4 & 5 students
- * Test effect of prior knowledge:
 - --group 1: game play before game design
 - --group 2: game design before game play

Study 1 – Research questions

- 1. How do students' CPS behaviors <u>change over time</u> during a collaboration process?
- 2. How do group dynamics affect individual & group level performance?
- 3. How does the CPS scores of individuals assessed through game design task and ATC21S CPS system compare?

Study 1 – Findings

Group A – workshop 2

		Stu	dent	Group			
	Skills	GD	28	GD29	GD30	GD31	Total
	Cognitive skill		<u>38</u>	<u>28</u>	<u>15</u>	23	<u>104</u>
	Learning and knowledge						
	building		6	1	3	3	13
	Task regulation		32	27	12	20	91
<	Social skill		<u>58</u>	<u>46</u>	40	41	> <u>185</u>
	Participation		60	46	42	41	189
	Perspective taking		15	15	8	11	49
	Social regulation		-17	-15	-10	-11	-53

Group A – overall

				\frown	
	Student				Group
Skills	GD28	GD29	GD30	GD31	Total
ATC21S Cognitive score	-0.46	-0.33	-0.45	<u>-0.19</u>	<u>-1.42</u>
Cognitive skill	<u>63</u>	50	<u>31</u>	<u>75</u>	<u>219</u>
Learning and knowledge					
building	8	3	4	4	19
Task regulation	55	47	27	71	200
ATC21S social score	0.85	<u>0.94</u>	0.89	<u>1.84</u>	<u>4.52</u>
Social skill	<u>126</u>	<u>93</u>	<u>102</u>	<u>123</u>	<u>444</u>
Participation	119	90	97	127	433
Perspective taking	35	34	20	21	110
Social regulation	-28	-31	-15	-25	-99
			-		

Group A – workshop 3

	Student						
	Skills	GD28	GD29	GD30	GD31	Total	
	Cognitive skill	<u>25</u>	22	<u>16</u>	<u>52</u>	<u>115</u>	
	Learning and knowledge						
	building	2	2	1	1	6	
	Task regulation	23	20	15	51	109	
<	Social skill	68	47	62	82	> 259	
	Participation	59	44	55	86	244	
	Perspective taking	20	19	12	10	61	
	Social regulation	-11	-16	-5	-14	-46	

Study 1 – Findings

Group B – workshop 2

	Student	Group			
Skills	GD21	GD22	GD23	GD24	Total
Cognitive skill	<u>14</u>	5	<u>23</u>	2	<u> </u>
Learning and knowledge					
building	0	0	0	0	0
Task regulation	14	5	23	2	44
Social skill	<u>173</u>	<u>128</u>	<u>143</u>	50	> <u>494</u>
Participation	160	124	149	49	482
Perspective taking	9	14	3	4	30
Social regulation	4	-10	-9	-3	-18

Group B – workshop 3

	Student	Group			
Skills	GD21	GD22	GD23	GD24	Total
Cognitive skill	20	5	21	7	47
Learning and knowledge					
building	0	0	0	0	0
Task regulation	20	5	21	1	47
Social skill	165	84	102	56	407
Participation	169	85	105	57	416
Perspective taking	1	7	3	0	11
Social regulation	-5	-8	-6	-1	-20

Group B – overall

	Student					
Skills	GD21	GD22	GD23	GD24	Total	
ATC21S Cognitive score	<u>-1.97</u>	<u>-0.25</u>	<u>-1.31</u>	-0.04	<u>-3.57</u>	
Cognitive skill	34	<u>10</u>	44	3	<u>91</u>	
Learning and knowledge						
building	0	0	0	0	0	
Task regulation	34	10	44	3	91	
ATC21S social score	0.83	<u>0.96</u>	-0.29	0.28	<u>1.78</u>	
Social skill	338	<u>212</u>	245	106	<u>901</u>	
Participation	329	209	254	106	898	
Perspective taking	10	21	6	4	41	
Social regulation	-1	-18	-15	-4	-38	
		$\overline{\bigcirc}$	-			

Study 1 – Findings

- The CPS behavior of individuals and groups changed over time.
- Group dynamics could affect group performance when students' behaviours and group work products are examined together.
- No correlation between assessment results between Study 1 score and the ATC21S score of individuals.
- Exhibited CPS behavior changes with:
 - The nature of the task
 - The stage of the problem-solving progress
 - The other members' behavioral changes in the group

Assessing digital competence:

What do we know about the challenges? How should we tackle them?

lssues

Reliability-enforce stability across measurement contexts

DIGITAL CITIZEN

Validity-measuring what we can measure

- Does context dependence of performance mean that there is no latent ability underpinning Digital Competence?
- Would it be possible to explore latent ability and its context dependence?
- Is the context dependence of achievement measures a unique feature of digital competence/21st century skills?
- Digital competence can only be realistically reflected through interactions in dynamic situations—Can we use big data & machine learning to address these challenges?

Thank you!

Q&A

https://ecitizen.hk/

What is digital competence

- Digital literacy
- Problem solving
- Computational thinking
- Collaborative problem solving