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Abstract We formulate a two-patch mathematical model for Ebola Virus Dis-
ease dynamics in order to evaluate the effectiveness of travel restriction (cordons
sanitaires), mandatory movement restrictions between communities while explor-
ing their role on disease dynamics and final epidemic size. Simulations show that
strict restrictions in movement between high and low risk areas of closely linked
communities may have a deleterious impact on the overall levels of infection in the
total population.
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1 Introduction

Ebola virus disease (EVD) is caused by a genus of the family Filoviridae called
Ebolavirus. The first recorded outbreak took place in Sudan in 1976 with the longest
most severe outbreak taking place in West Africa during 2014–2015 [35]. Studies
have estimated disease growth rates and explored the impact of interventions aimed
at reducing the final epidemic size [12, 24, 25, 32]. Despite these efforts, research
that improves and increases our understanding of EVD and the environments where
it thrives is still needed [29].
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This chapter is organized as follows: Sect. 2 reviews past modeling work; Sect. 3
introduces a single Patch model, its associated basic reproduction number R0, and
the final size relationship; Sect. 4 introduces a two-Patch model that accounts for the
time spent by residents of Patch i on Patch j ; Sect. 5 includes selected simulations
that highlight the possible implications of policies that forcefully restrict movement
(cordons sanitaires); and, Sect. 6 collects our thoughts on the relationship between
movement, health disparities, and risk.

2 Prior Modeling Work

Chowell et al. [12] estimated the basic reproduction numbers for the 1995 outbreak in
the Democratic Republic of Congo and the 2000 outbreak in Uganda.Model analysis
showed that controlmeasures (education, contact tracing, quarantine) if implemented
within a reasonable window in time could be effective. Legrand et al. [24] built on
the work in [12] through the addition of hospitalized and dead (in funeral homes)
classes within a study that focused on the relative importance of control measures
and the timing of their implementation. Lekone and Finkenstädt [25] made use of
an stochastic framework in estimating the mean incubation period, mean infectious
period, transmission rate and the basic reproduction number, using data from the
1995 outbreak. Their results turned out to be in close agreement with those in [12]
but the estimates had wider confidence intervals.

The 2014 outbreak is the deadliest in the history of the virus and naturally, ques-
tions remain [11, 15, 23, 27, 28, 32, 33]. Chowell et al. [11] recently introduced a
mathematical model aimed at addressing the impact of early detection (via sophis-
ticated technologies) of pre-symptomatic individuals on the transmission dynamics
of the Ebola virus in West Africa. Patterson-Lomba et al. [33] explored the potential
negative effects that restrictive interventionmeasures may have had in Guinea, Sierra
Leone, and Liberia. Their analysis made use of the available data on Ebola Virus
Disease cases up to September 8, 2014. The focus on [33] was on the dynamics of
the “effective reproduction number” Reff, a measure of the changing rate of epidemic
growth, as the population of susceptible individuals gets depleted. Reff appeared to
be increasing for Liberia and Guinea, in the initial stages of the outbreak in densely
populated cities, that is, during the period of time when strict quarantine measures
were imposed in several areas in West Africa. Their report concluded, in part, that
the imposition of enforced quarantine measures in densely populated communities
in West Africa, may have accelerated the spread of the disease. In [15], the authors
showed that the estimated growth rates of EVD cases were growing exponentially
at the national level. They also observed that the growth rates exhibited polynomial
growth at the district level over three or more generations of the disease. It has been
suggested that behavioral changes or the successful implementation of control mea-
sures, or high levels of clustering, or all of them may nave been responsible for
polynomial growth. A recent review of mathematical models of past and current
EVD outbreaks can be found in [14] and references therein. Authors in [5, 19, 30]
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attempted to quantify the spread of EDV out of the three Ebola-stricken countries
via international flights. For instance, in [19] it was shown hypothetically that, for
a short-time period, a reduction of 80% of international flights from and to these
three countries delays the international spread for three week. Similarly, in [30], it is
showed that a reduction of 60% of international flights from and to of the affected
area would delay but not prevent the spread of the disease beyond the area. Bogoch
et al. [5] estimated about the travelers infected per month for a certain window of
reduction of international flights from and to Guinea, Liberia and Sierra Leone, and
assessed that exit screening for the departing travelers from the three countries is
more efficient in mitigating the risk of Ebola exportation. However, the effects of
movement of individuals between two or more neighborhoods or highly connected
cities to the best of our knowledge has not been explored. In this paper, we proceed
to analyze the effectiveness of forcefully local restrictions in movement on the dy-
namics of EVD.We study the dynamics of EVDwithin scenarios that resemble EVD
transmission dynamics within locally interconnected communities in West Africa.

3 The Model Derivation

Cordons Sanitaire or “sanitary barriers” are designed to prevent the movement, in
and out, of people and goods from particular areas. The effectiveness of the use of
cordons sanitaire have been controversial. This policy was last implemented nearly
one hundred years ago [9]. In desperate attempts to control disease, Ebola-stricken
countries enforced public health officials decided to use this medieval control strat-
egy, in the EVD hot-zone, that is, the region of confluence of Guinea, Liberia and
Sierra Leone [17]. In this chapter, a framework that allows, in the simplest possi-
ble setting, the possibility of assessing the potential impact of the use of a Cordon
Sanitaire during an EVD outbreak, is introduced and “tested”. The population of
interest is subdivided into susceptible (S), latent (E), infectious (I ), dead (D)
and recovered (R). The total population (including the dead) is therefore N =
S + E + I + D + R. The susceptible population is reduced by the process of in-
fection, which occurs via effective “contacts” between an infectious (I ) or a dead
body (D) at the rate of β( I

N + ε D
N ) and susceptible. EVD-induced dead bodies have

the highest viral load, that is, more infectious than individuals in the infectious stage
(I ); and, so, it is assumed that ε > 1. The latent population increases at the rate
βS( I

N + ε D
N ). However since some latent individuals may recover without develop-

ing an infection [1, 2, 12, 20, 21, 26], it is assumed that exposed individuals develop
symptoms at the rate κ or recover at the rate α. The population of infectious individ-
uals increases at the rate κE and decreases at the rate γ I . Further, individuals leaving
the infectious stage at rate γ, die at the rate γ fdead or recover at the rate (1 − fdead)γ.
The R class includes recovered or the removed individuals from the system (dead
and buried). By definition the R-class increases, the arrival of previously infected,
grows at the rate (1 − fdead)γ I .
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Fig. 1 An SEIDR model for Ebola virus disease

Table 1 Variables and parameters of the contagion model
Parameter Description Base model values

α Rate at which of latent recover without
developing symptoms

0 − 0.458 [26]

β Per susceptible infection rate 0.3056 [11, 14, 33]

γ Rate at which an infected recovers or
dies

1
6.5 [14]

κ Per-capita progression rate to
infectious stage

1
7 [11, 33]

ν Per-capita body disposal rate 1
2 [24]

fdead Proportion of infected who die due to
infection

0.708 [14]

ε Scale: Ebola infectiousness of dead
bodies

1.2

Aflowdiagramof themodel is in Fig.1, The definitions of parameters are collected
in Table1, including the parameter values used in simulations where the mathemat-
ical model built from Fig. 1, that models EVD dynamics is given by the following
nonlinear systems of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N = S + E + I + D + R

Ṡ = −βS I
N − εβS D

N

Ė = βS I
N + εβS D

N − (κ + α)E

İ = κE − γ I

Ḋ = fdeadγ I − νD

Ṙ = (1 − fdead)γ I + νD + αE

(1)

The total population is constant and the set Ω = {(S, E, I, R) ∈ R4
+/S + E + I +

R ≤ N } is a compact positively invariant, that is, solutions behave as expected bi-
ologically. Hence Model (1) is well-posed. Following the next generation operator
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approach [16, 34] (on E , I and D), we find that the basic reproductive number is
given by

R0 =
(

β

γ
+ ε fdeadβ

ν

)
κ

κ + α

That is, R0 is given by the sum of the secondary cases of infection produced by
infected and dead individuals during their infection period. The final epidemic size
relation that includes dead (to simplify the maths) being given by

log
N
S∞ = R0

(
1 − S∞

N

)
.

4 EDV Dynamics in Heterogeneous Risk Environments

Thework of Eubank et al. [18], Sara de Valle et al. [31], Chowell et al. [4, 13] analyze
heterogeneous environments. Castillo-Chavez and Song [10], for example, highlight
the importance of epidemiological frameworks that follow a Lagrangian perspective,
that is, models that keep track of each individual (or at least its place of residence or
group membership) at all times. The Fig. 2 represents a schematic representation of
the Lagrangian dispersal between two patches.

Bichara et al. [4] uses a general Susceptible-Infectious-Susceptible (SIS) model
involving n-patches given by the following system of nonlinear equations:

⎧
⎨

⎩

Ṡi = bi − di Si + γi Ii −∑n
j=1(Si infected in Patch j)

İi =
∑n

j=1(Si infected in Patch j) − γi Ii − di Ii
Ṅi = bi − di Ni .

Fig. 2 Dispersal of individuals via a Lagrangian approach where pi j is the proportion of time
individual of Patch i spend in Patch j , for (i, j) ∈ {1, 2}
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where bi , di and γi denote the per-capita birth, natural death and recovery rates
respectively. Infection is modeled as follows:

[Si infected in Patch j] = β j︸︷︷︸
the riskof infection inPatch j

× pi j Si︸ ︷︷ ︸
Susceptible fromPatch i whoare currently inPatch j

×
∑n

k=1 pkj Ik∑n
k=1 pkj Nk︸ ︷︷ ︸

Proportionof infected inPatch j

.

where the last term accounts for the effective infection proportion in Patch j at time.
The model reduces to the single n-dimensional system

İi =
n∑

j=1

(

β j pi j

(
bi
di

− Ii

) ∑n
k=1 pkj Ik∑n
k=1 pkj

bk
dk

)

− (γi + di )Ii i = 1, 2, . . . , n.

with a basic reproduction number R0 that it is a function of the risk vector B =
(β1,β2, . . . ,βn)

t and the residence times matrix P = (pi j ), i, j = 1, . . . , n, where
pi, j denotes the proportion of the time that an i-resident spends visiting patch j .
In [4], it is shown that when P is irreducible (patches are strongly connected), the
disease free state is globally asymptotically stable ifR0 ≤ 1 (g.a.s.) while, whenever
R0 > 1 there exists a unique interior equilibrium which is g.a.s.

The Patch-specific basic reproduction number is given by

Ri
0(P) = Ri

0 ×
n∑

j=1

(
β j

βi

)
pi j

⎛

⎝

(
pi j

bi
di

)

∑n
k=1 pkj

bk
dk

⎞

⎠ .

where Ri
0 are the local basic reproduction number when the patches are isolated.

This Patch-specific basic reproduction number gives the dynamics of the disease at
Patch level [4], that is, if Ri

0(P) > 1 the disease persists in Patch i . Moreover, if
pkj = 0 for all k = 1, 2, . . . , n and k ̸= i whenever pi j>1, it has been shown [4] that
the disease dies out form Patch i if Ri

0(P) < 1. The authors in [4] also considered
a multi-patch SIR single outbreak model and deduced the final epidemic size. The
SIR single outbreak model considered in [4] is the following:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡi = −
(

βi p2i i
pii Ni+p ji N j

+ β j p21i j
pi j Ni+p j j N j

)
Si Ii −

(
βi pii p ji

pii Ni+p ji N j
+ β j pi j p j j

pi j Ni+p j j N j

)
Si I j ,

İi =
(

βi p2i i
pii Ni+p ji N j

+ β j p21i j
pi j Ni+p j j N j

)
Si Ii +

(
βi pii p ji

pii Ni+p ji N j
+ β j pi j p j j

pi j Ni+p j j N j

)
Si I j − αi Ii ,

Ṙi = αi Ii ,
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where i, j = 1, 2, i ̸= j , and Si , Ii and Ri denotes the population of susceptible,
infected and recovered immune individuals in Patch i , respectively. The parameter
αi is the recovery rate in Patch i and Ni ≡ Si + Ii + Ri , for i = 1, 2.

In this chapter we will be making use of this modeling framework, but with a
slightly different formulation, to test under what conditions themovement of individ-
uals from high risk areas to nearby low risk areas due to the use of cordon sanitaire, is
effective in reducing overall transmission by considering two-Patch single outbreak
that captures the dynamics of Ebola in a two-patch setting.This Lagrangian approach
where dispersal is defined via residence times is useful in describing the movement
of commuters between two or more highly connected cities or neighborhoods. The
Eulerian approach of metapopulation is useful in describing long distance migration
of individuals between cities or countries.

4.1 Formulation of the Model

It is assumed that the community of interest is composed of two adjacent geographic
regions facing highly distinct levels of EVD infection. The levels of risk account
for differences in population density, availability of medical services and isolation
facilities, and the need to travel to a lower risk area towork. So,we let N1 denote be the
population in patch-one (high risk) and N2 be the population in patch-two (low risk).
The classes Si , Ei , Ii , Ri represent respectively, the susceptible, exposed, infectious
and recovered sub-populations in Patch i (i = 1, 2). The class Di represents the
number of disease induced deaths in Patch i . The dispersal of individuals is captured
via a Lagrangian approach defined in terms of residence times [3, 4], a concept
developed for communicable diseases for n patch setting [4] and applied to vector-
borne diseases to an arbitrary number of host groups and vector patches in [3].

We model the new cases of infection per unit of time as follows:

• The density of infected individuals mingling in Patch 1 at time t, who are only
capable of infecting susceptible individuals currently in Patch 1 at time t , that is,
the effective infectious proportion in Patch 1 is given by

p11
I1(t)
N1

+ p21
I2(t)
N2

,

where p11 denotes the proportion of time residents from Patch 1 spend in Patch 1
and p21 the proportion of time that residents from Patch 2 spend in Patch 1.

• The number of new infections within members of Patch 1, in Patch 1 is therefore
given by

β1 p11S1

(
p11

I1(t)
N1

+ p21
I2(t)
N2

)
.
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• The number of new cases of infection within members of Patch 1, in Patch 2 per
unit of time is therefore

β2 p12S1

(
p12

I1(t)
N1

+ p22
I2(t)
N2

)
,

where p12 denotes the proportion of time that residents fromPatch 1 spend in Patch
2 and p22 the proportion of time that residents from Patch 2 spend in Patch 2; given
by the effective density of infected individuals in Patch 1

p11
I1(t)
N1

+ p21
I2(t)
N2

, (∗)

while the effective density of infected individuals in Patch 2 is given by

p12
I1(t)
N1

+ p22
I2(t)
N2

. (∗∗)

Further, since, p11 + p12 = 1 and p21 + p21 = 1 then we see that the sum of (*)
and (**) gives the density of infected individuals in both patches, namely,

I1
N1

+ I2
N2

,

as expected. If we further assume that infection by dead bodies occurs only at
the local level (bodies are not moved) then, by following the same rationale as in
Model (1), we arrive at the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 = S1 + E1 + I1 + D1 + R1
N2 = S2 + E2 + I2 + D2 + R2

Ṡ1 = −β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
− ε1β1 p11S1

D1
N1

Ė1 = β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
+ ε1β1 p11S1

D1
N1

− κE1 − αE1

İ1 = κE1 − γ I1
Ḋ1 = fdeadγ I1 − νD1
Ṙ1 = (1 − fdead)γ I1 + νD1 + αE1

Ṡ2 = −β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
− ε2β2 p22S2

D2
N2

Ė2 = β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
+ ε2β2 p22S2

D2
N2

− κE2 − αE2

İ2 = κE2 − γ I2
Ḋ2 = fdeadγ I2 − νD2
Ṙ2 = (1 − fdead)γ I2 + νD2 + αE2

(2)
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The difference, in the formulation of the infection term, from the one considered in
[4] is the effective proportion of infected. Here, the effective proportion of infected
in Patch 1, for example, is

p11
I1
N1

+ p21
I2
N2

whereas in [4], it is
p11 I1 + p21 I1
p11N1 + p21N1

.

The proportions of infected individuals are taken, in each patch, before the coupling
for the former and after the coupling for the latter at the beginning of the infection.
Hence, modeling the effective proportion of infected as p11 I1

N1
+ p21 I2

N2
is well suited

for a single outbreak such as the one considered in this paper.
By using the next generation approach [16, 34], we arrive at the basic reproductive

number for the entire system, namely,

R0 = κ

2(κ + α)

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν
+ β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

+

√√√√√√√√√√√√√√√

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)2

+
(

β1 p221 + β2 p222
γ

+ fdeathε2β2 p22
ν

)2

− 2

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)(
β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

)

+ 4
(

β1 p11 p21
N1

γN2
+ β1 p12 p22

N1

γN2

)(
β1 p11 p21

N2

N1
+ β1 p12 p22

N2

N1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see, for example, that whenever the residents of Patch j ( j = 1, 2) live in
communities where travel is not possible, that is, when p12 = p21 = 0 or p11 =
p22 = 1, then the populations decouple and, consequently, we have that

R0 = max{R1,R2}

where Ri =
(

βi

γ
+ 1

ν
fdeathεiβi

)
κ

κ + α
for i = 1, 2; that is, basic reproduction

number of Patch i , i = 1, 2, if isolated.

4.2 Final Epidemic Size in Heterogeneous Risk
Environments

We keep track of the dead to make the mathematics simple. That is, to assuming that
the population within each Patch is constant. And so, from the model, we get that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1 = −β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
− ε1β1 p11S1

D1
N1

Ė1 = β1 p11S1
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p12S1

(
p12

I1
N1

+ p22
I2
N2

)
+ ε1β1 p11S1

D1
N1

− (κ + α)E1

İ1 = κE1 − γ I1
Ḋ1 = fdeadγ I1 − νD1

Ṡ2 = −β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
− β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
− ε2β2 p22S2

D2
N2

Ė2 = β1 p21S2
(
p11

I1
N1

+ p21
I2
N2

)
+ β2 p22S2

(
p12

I1
N1

+ p22
I2
N2

)
+ ε2β2 p22S2

D2
N2

− (κ + α)E2

İ2 = κE2 − γ I2
Ḋ2 = fdeadγ I2 − νD2,

(3)

with initial conditions

S1(0) = N1, E1(0) = 0, I1(0) = 0, D1(0) = 0,

S2(0) = N2, E2(0) = 0, I2(0) = 0, D2(0) = 0,

Weuse the abovemodel to find an “approximate” final size relationship, following
the method used in [1, 7–9].

Notation

We make use of the notation ĝ(t) for
∫ t
0 g(s)ds and g∞ for limt→+∞ g(t). We see

that our analysis results guarantee that if g(t) is a positive decreasing function then
g∞ = 0.

Since Ṡ1 + Ė1 = −(κ + α)E1 ≤ 0, then E∞
1 = 0 and since Ṡ1 + Ė1 + I1 =

−αE1 − γ I1 ≤ 0 then I∞
1 = 0. If we now consider that Ṡ1 + Ė1 + I1 + D1 =

−αE1 − (1 − fdead)γ I1 − νD1 ≤ 0 then it follows that D∞
1 = 0. Similarly, it can

be shown that
E∞
2 = I∞

2 = D∞
2 = 0.

Focusing on the first two equations of System (3), we arrive at

S∞
1 − N1 = −(κ + α)Ê1.

Consequently, since İ1 = kE1 − γ I1, we have that I∞
1 = κÊ1 − γ Î1 and therefore

κÊ1 = γ Î .

Using the equation for Ḋ1, we find that

ν D̂1 = fdeadγ Î1.

Similarly, we can deduce the analogous relationships for Patch 2, namely that,

S∞
2 − N2 = −(κ + α)Ê2, κÊ2 = γ Î and ν D̂2 = fdeadγ Î2
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From the equation for susceptible populations in Patch 1, we have that

Ṡ1
S1

= −β1 p11

(
p11

I1
N1

+ p21
I2
N2

)
− β2 p12

(
p12

I1
N1

+ p22
I2
N2

)
− ε1β1 p11

D1

N1

and, therefore that,

log
S01
S∞
1

= β1 p11

(

p11
Î1
N1

+ p21
Î2
N2

)

+ β2 p12

(

p12
Î1
N1

+ p22
Î2
N2

)

+ ε1β1 p11
D̂1

N1
.

For the second patch, we have that

log
S02
S∞
2

= β1 p21

(

p11
Î1
N1

+ p21
Î2
N2

)

+ β2 p22

(

p12
Î1
N1

+ p22
Î2
N2

)

+ ε2β2 p22
D̂2

N2
.

Rewriting the expressions of Îi and D̂i in terms of S∞
i , S0i , E

0
i and I 0i , we arrive at

the following two-patch “approximate” (since we are counting the dead), the final
size relation. More precisely, with N 0 = N , we have that

log
N1

S∞
1

= β1 p11

(
p11κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p21κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ β2 p12

(
p12κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p22κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ ε1β1 p11
fdead
ν

κ

α + κ

(
1 − S∞

1

N1

)

log
N2

S∞
2

= β1 p21

(
p11κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p21κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ β2 p22

(
p12κ

γ(κ + α)

(
1 − S∞

1

N1

)
+ p22κ

γ(κ + α)

(
1 − S∞

2

N2

))

+ ε2β2 p22
fdead
ν

κ

α + κ

(
1 − S∞

2

N2

)

Or in vectorial notation, we have that
⎡

⎢⎢⎢⎣

log
N1

S∞
1

log
N2

S∞
2

⎤

⎥⎥⎥⎦
=

⎡

⎣
K11 K12

K21 K22

⎤

⎦

⎡

⎢⎢⎢⎣

1 − S∞
1

N1

1 − S∞
2

N2

⎤

⎥⎥⎥⎦
(4)
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where

K11 =
(

β1 p211 + β2 p212
γ

+ fdeathε1β1 p11
ν

)
κ

κ + α
.

Furthermore, we note that K11 = A1 also appears in the next generation matrix, used
to compute R. Further, we also have that,

K12 = K21 = (β1 p11 p21 + β2 p12 p22)
κ

γ(κ + α)
,

K22 =
(

β1 p221 + β2 p222
γ

+ ε2β2 p22
fdead
ν

)
κ

α + κ

Note that the vector in (4) is given by

⎡

⎢⎣
1 − S∞

1
N1

1 − S∞
2
N2

⎤

⎥⎦

representing the proportion of people in patches one and two able to transmit Ebola in-
cluding transmission fromhandlingdeadbodies. K 2

12 = K12K21 = A2A3, K22 = A4,
we conclude that the matrix K and the next generation matrix have the same eigen-
values, a result also found in [4].

5 Simulations

The basic model parameters used in the simulations are taken directly from the liter-
ature [11, 14, 24, 26, 33]. We consider two patches and, for simplicity, it is assumed
that they house the same number of individuals, namely, N1 = N2 = 1000000. How-
ever, implicitly, it is assumed that the density is considerably higher in the high risk
area. We assume that an outbreak starts in the high risk Patch 1 with β1 = 0.3056.
It propagates into Patch 2, low risk, defined by β2 = 0.1. The difference between β1

and β2 or β1 − β2 provides a rough measure of the capacity to transmit, treat and
control Ebola within connected two-patch systems. The initial conditions are set as
S1(0)= N − 1, S2(0)= N , E1,2(0)= 0, D1,2(0)= 0, R1,2(0)= 0, I1 = 1, I2 = 0.
The local basic reproductive numbers for each patch under isolation areR1

0 = 2.41 >

1 and R2
0 = 1.08 > 1.

We chose to report on three different mobility scenarios: one way movement,
symmetric and asymmetric mobility. For the first case, only residents from Patch 1
travel, that is p12 ≥ 0 and p21 = 0. Given that Patch 1 is facing an epidemic, it is
reasonable to assume that people in Patch 2 prefer to avoid traveling to Patch 1, and
so, it is reasonable to assume that p21 = 0. Mobility is allowed in both directions
in a symmetric way, that is, residents of Patch 1 spend the same proportion of time
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in Patch 2 that individuals from Patch 2 spend in Patch 1; i.e. p21 = p12. The third
scenario assumes that mobility is asymmetric, and so, we make use, in this case, of
the relation p21 = 1 − p12.

5.1 One Way Mobility

Simulations show that when only individuals from Patch 1 are allowed to travel, the
prevalence and final size are lower that under a cordon sanitaire. Figure3, shows the
levels of Patch prevalence when p12 = 0, 20, 40 and 60%. For low p12’s, prevalence
decreases in Patch 1 but remains high in both patches, which as expected, has a direct
impact in the final size of the outbreak.

In Fig. 4, simulations show that the total final size is only greater than the cor-
doned case when p12 = 20%, possibly the result of the assumption that γ1 = γ2
and ν1 = ν2. However, we see under the assumption of higher body disposal rates
in Patch 2, that the total final size under p12 = 20% may turn out to be smaller than
in the cordoned case. That is, it is conceivable that a safer Patch 2, may emerge as a
result of a better health care infrastructure and efficient protocols in the handling of
dead bodies.

Finally, Fig. 4 shows that mobility can produce the opposite effect; that is, reduce
the total final epidemic size, given that (for the parameters used) the residence times
are greater than p12 = 25% but smaller than p12 = 94%.

Fig. 3 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60%
and p21 = 0, with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α =
0, ν = 1/2, γ = 1/6.5
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Fig. 4 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60% and
p21 = 0, with parameters: ε1,2 = 1,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α = 0, ν =
1/2, γ = 1/6.5

5.2 Symmetric Mobility

Simulations under symmetric mobility show that prevalence and final size are
severely affectedwhen compared to the cordoned case. Figure5 shows that the preva-
lence in Patch 1 exhibits the same behavior as in the one way scenario. However, in
this case the prevalence in Patch 1 is decreasing at a slower rate due to the secondary
infections produced by individuals traveling from Patch 2. On the other hand, preva-
lence in Patch 2 is much bigger than in the one way scenario, the result of secondary
infections generated by individuals traveling from Patch 2 to Patch 1.

We saw that final size in Patch 1 decreases when residency increases while an
increment of the final size in Patch 2. That is, the total final size curve may turn out
to be greater than in the cordoned case for almost all residence times. As seen in
Fig. 6, allowing symmetric travel would negatively affect the total final size (almost
always).

Fig. 5 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60%
and p21 = 0, with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α =
0, ν = 1/2, γ = 1/6.5
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Fig. 6 Dynamics of prevalence in each Patch for values of mobility p12 = 0, 20, 40, 60%
and p21 = 0, with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α =
0, ν = 1/2, γ = 1/6.5

5.3 Final Size Analysis

In order to clarify the effects of residence times and mobility on the total final size.
We analyze its behavior under one way and symmetric mobility (Fig. 7). Figure7a
shows, one way mobility, the existence of a proportional resident time interval when
the total final size is reduced below that generated under the cordoned case. For
residence times between 25 and 94%. In particular, the best case scenario takes
place when p12 = 58%, that is, when the final size reaches its all time minimum.

Figure7b shows that under symmetric mobility, the total final size increases for
almost all resident times. Therefore traveling under these initial conditions has a
deleterious effect to the overall population for almost all residence times.

Fig. 7 Dynamics of maximum final size and maximum prevalence in Patch-one with parameters:
ε1,2 = 1.2,β1 = 0.305,β2 = 0.1, fdeath = 0.708, k = 1/7,α = 0, ν = 1/2, γ = 1/6.5
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5.4 Final Size and Basic Reproductive Number Analysis

It is important to notice that reductions in the total final size are related not only to
residence times and mobility type but also to the prevailing infection rates. In Fig. 8
simulations show the existence of an interval of residence times for which the total
final size is less than the final size under the cordoned case under β2 < 0.12.

Simulations (see Fig. 9) show that mobility is always beneficial, that is, it reduces
the global R0. However, mobility on its own is not enough to reduce R0 below the
threshold (less than 1). Bringing R0 < 1 would require reducing local risk, that is,
getting a lower β2.

Fig. 8 Dynamics of maximum final size in the one way case with parameters: ε1,2 = 1.2,β1 =
0.305,β2 = 0.122, 0.12, 0.118, fdeath = 0.708, k = 1/7,α = 0, ν = 1/2, γ = 1/6.5

Fig. 9 Dynamics ofR0 with parameters: ε1,2 = 1.2,β1 = 0.305,β2 = 0.06, 0.05, 0.04, fdeath =
0.708, k = 1/7,α = 0, ν = 1/2, γ = 1/6.5
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6 Conclusion

A West-Africa calibrated two-patch model of the transmission dynamics of EVD is
used to show that the use of cordons sanitaires not always leads to the best possible
global scenario and neither does allowing indiscriminate mobility. Mobility may
reduced the total epidemic size as long as the low risk Patch 2 is “safe enough”,
otherwise mobility would produce a detrimental effect. Having an infection rate
β2 < 0.12 in Patch 2 guarantees (under our simulations) the existence of non-trivial
residence times that reduce the total final size under one way mobility. The global
basic reproductive number may be brought bellow one by mobility, whenever a
the transmission rate in Patch 2 is low enough. Finally, the choice of non zero α,
that is, the recovery rate of asymptomatic that do not develop infection, bring the
reproduction number R0 below one much faster for one way mobility than the case
of α = 0 for a wide range of residence times.
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Appendix 1: Computation ofR0 and Final Epidemic Size

Let us consider the infected compartments, i.e. E, I and D. By following the next
generation approach [16, 34], we have that:

F =

⎛

⎝
βS I

N + εβS D
N

0
0

⎞

⎠ and V =

⎛

⎝
−(κ + α)E
κE − γ I

fdeadγ I − νD

⎞

⎠

thus, we have:

DF =

⎛

⎝
0 β S

N εβ S
N

0 0 0
0 0 0

⎞

⎠ and DV =

⎛

⎝
−(κ + α) 0 0

κ −γ 0
0 fdeadγ −ν

⎞

⎠ .

At the DFE, S = N , hence

F =

⎛

⎝
0 β εβ
0 0 0
0 0 0

⎞

⎠ and V =

⎛

⎝
−(κ + α) 0 0

κ −γ 0
0 fdeadγ −ν

⎞

⎠ ,

and the basic reproduction number is the spectral radius of the next generationmatrix:
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−FV−1 =

⎛

⎝
κβ

(κ+α)γ + εκ fdeadβ
(κ+α)ν

β
γ + ε fdeadβ

ν
εβ
ν

0 0 0
0 0 0

⎞

⎠ .

Thus the basic reproduction number is

R0 =
(

β

γ
+ ε fdeadβ

ν

)
κ

κ + α
,

The total population of system (1) is constant, we can consider only the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = −βS I
N − εβS D

N

Ė = βS I
N + εDβS D

N − (κ + α)E

İ = κE − γ I

Ḋ = fdeadγ I − νD

(5)

We suppose S(0) = N , E(0) = I (0) = D(0) = 0. By summing the first two equa-
tions of (5),we have: Ṡ + Ė = −(κ + α)E ≤ 0. This implies that E∞ = 0. Similarly
by adding the first three and first four equations, we will have I∞ = 0 and D∞ = 0.

By integrating the first 2 equations, we have S∞ − N = −(κ + α)Ê . Hence Ê =
N − S∞

κ + α

Similarly, we have Î = κ

γ(κ + α)
(N − S∞) and D̂ = fdead

ν

κ

κ + α
(N − S∞)

By using the first equation, we have:

log
N
S∞ = β

γ

κ

κ + α

N − S∞

N
+ εβ

fdead
ν

κ

κ + α

N − S∞

N

Hence, we have the final epidemic relation:

log
N
S∞ = R0

(
1 − S∞

N

)

Appendix 2: Basic Reproduction Number and Final
Epidemic Size in Heterogeneous Risk Environments

In heterogeneous risk environments let us consider the infected compartments, i.e.
E1, I1, D1, E2, I2 and D2. By following the next generation approach, we have:
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F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 p11S1
(
p11 I1

N1
+ p21 I2

N2

)
+ β2 p12S1

(
p12 I1

N1
+ p22 I2

N2

)
+ ε1β1 p11S1 D1

N1

0
0

β1 p21S2
(
p11 I1

N1
+ p21 I2

N2

)
+ β2 p22S2

(
p12 I1

N1
+ p22 I2

N2

)
+ ε2β2 p22S2 D2

N2

0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

And

V =

⎛

⎜⎜⎜⎜⎜⎜⎝

−(κ + α)E1

κE1 − γ I1
fdeadγ I1 − νD1

−(κ + α)E2

κE2 − γ I2
fdeadγ I2 − νD2

⎞

⎟⎟⎟⎟⎟⎟⎠

Hence, we have:

DF =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 β1 p211
S1
N1

+ β2 p212
S1
N1

β1 p11ε1
S1
N1

0 β1 p11 p21
S1
N2

+ β11p12 p22 S1
N2

0
0 0 0 0 0 0
0 0 0 0 0 0
0 β1 p11 p21

S2
N1

+ β1p12 p22 S2
N1

0 0 β1 p221
S2
N2

+ β2 p222
S2
N2

β2 p22ε2
S2
N2

0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and

DV =

⎛

⎜⎜⎜⎜⎜⎜⎝

−(κ + α) 0 0 0 0 0
κ −γ 0 0 0 0
0 fdeathγ −ν 0 0 0
0 0 0 −(κ + α) 0 0
0 0 0 κ −γ 0
0 0 0 0 fdeathγ −ν

⎞

⎟⎟⎟⎟⎟⎟⎠

At the DFE, S∗
1 = N1 and S∗

2 = N2, hence

F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 β1 p211 + β2 p212 β1 p11ε1 0 β1 p11 p21
N1
N2

+ β11p12 p22 N1
N2

0
0 0 0 0 0 0
0 0 0 0 0 0
0 β1 p11 p21

N2
N1

+ β1p12 p22 N2
N1

0 0 β1 p221 + β2 p222 β2 p22ε2
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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and

V =

⎛

⎜⎜⎜⎜⎜⎜⎝

−(κ + α) 0 0 0 0 0
κ −γ 0 0 0 0
0 fdeathγ −ν 0 0 0
0 0 0 −(κ + α) 0 0
0 0 0 κ −γ 0
0 0 0 0 fdeathγ −ν

⎞

⎟⎟⎟⎟⎟⎟⎠

The basic reproduction number is the spectral radius of the next generation matrix:

−FV−1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

A1 A2
β1 p11ε1

ν A3 A4 0
0 0 0 0 0 0
0 0 0 0 0 0
A5 A6 0 A7 A8

β2 p22ε2
ν

0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

where

A1 =
(

β1 p211 + β2 p212
γ

+ fdeathε1 p11β1

ν

)
κ

κ + α
,

A2 =
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν
,

A3 = (β1 p11 p21 + β2 p12 p22)
N1

N2

κ

γ(κ + α)
,

A4 = (β1 p11 p21 + β2 p12 p22)
N1

γN2
,

A5 = (β1 p11 p21 + β2 p12 p22)
N2

N1

κ

γ(κ + α)
=
(
N2

N1

)2

A3,

A6 =
1
γ
(β1 p11 p21 + β2 p12 p22)

N2

N1
,

A5 = (β1 p11 p21 + β2 p12 p22)
N2

N1

κ

γ(κ + α)
=
(
N2

N1

)2

A3,

A6 =
1
γ
(β1 p11 p21 + β2 p12 p22)

N2

N1
,

A7 =
(

β1 p221 + β2 p222
γ

+ fdeathε2β2 p22
ν

)
κ

κ + α
,

A8 =
β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν
.
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We can easily see that −FV−1 has the same nonzero eigenvalues as the matrix
(
A1 A3

A5 A7

)
=
(
Ã1 Ã2

Ã3 Ã4

)

R0 =
1
2

(
Ã1 + Ã4 +

√
( Ã1 + Ã4)2 − 4( Ã1 Ã4 − Ã2 Ã3)

)
κ

κ + α

= 1
2

(
Ã1 + Ã4 +

√
Ã2
1 + Ã2

4 + 2 Ã1 Ã4 − 4( Ã1 Ã4 − Ã2 Ã3)

)

= 1
2

(
Ã1 + Ã4 +

√
Ã2
1 + Ã2

4 − 2 Ã1 Ã4 + 4 Ã2 Ã3

)

More precisely, we have:

R0 = κ

2(κ + α)

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν
+ β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

+

√√√√√√√√√√√√√√√

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)2

+
(

β1 p221 + β2 p222
γ

+ fdeathε2β2 p22
ν

)2

− 2

(
β1 p211 + β2 p212

γ
+ fdeathε1β1 p11

ν

)(
β1 p221 + β2 p222

γ
+ fdeathε2β2 p22

ν

)

+ 4
(

β1 p11 p21
N1

γN2
+ β1 p12 p22

N1

γN2

)(
β1 p11 p21

N2

N1
+ β1 p12 p22

N2

N1

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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