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Math review
Reference: Stokey, Lucas with Prescott (1989)

De�nition
A metric space is a set S, together with a metric (distance function) ρ :
S � S ! R, such that for all x , y , z 2 S :
a. ρ(x , y) � 0, with equality if and only if x = y ;
b. ρ(x , y) = ρ(y , x); and
c. ρ(x , z) � ρ(x , y) + ρ(y , z).

A metric abstracts the four basic properties of Euclidean distance:

the distance between distinct points is strictly positive;

the distance from a point to itself is zero;

distance is symmetric;

and the triangle inequality holds.
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Math review - A complete metric space

De�nition
A metric space (S , ρ) is complete if every Cauchy sequence in S
converges to an element in S.

A sequence fxng∞
n=0 in S is a Cauchy sequence (satis�es the Cauchy

criterion) if for each ε > 0, there exists Nε such that ρ(xn, xm) < ε, all
n, m � Nε.
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Math review -contraction mapping

De�nition
Let (S , ρ) be a metric space and T : S ! S be a function mapping S into
itself. T is a contraction mapping (with modulus β) if for some
β 2 (0, 1), ρ(Tx ,Ty) � βρ(x , y), for all x , y 2 S .

T is a function mapping: Tx = 0.3x + 9x2 + log(x), Tx = 0.3x
The �xed points of T : Tx = x

Example

On a closed interval S = [a, b], with ρ(x , y) = jx � y j. Then T : S ! S
is a contraction if for some β 2 (0, 1) :

jTx � Ty j
jx � y j � β < 1, all x , y 2 S with x 6= y .
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Math review - Contraction Mapping Theorem

Theorem
If (S , ρ) is a complete metric space and T : S ! S is a contraction
mapping with modulus β, then
a. T has exactly one �xed point v in S, and
b. for any v0 2 S , ρ(T nv0, v) � βnρ(v0, v), n = 0, 1, 2, ...
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Math review - Contraction Mapping Theorem

Proof.
To prove (a), we must �nd a candidate for v , show that it satis�es
Tv = v , and show that no other element v̂ 2 S does

De�ne the iterates of T , the mappings {T n}, by T 0x = x , and
T nx = T (T n�1x), n = 1, 2, ...

Choose v0 2 S , and de�ne fvng∞
n=0 by vn+1 = Tvn, so that

vn = T nv0
By the contraction property of T ,

ρ(v2, v1) = ρ(Tv1,Tv0) � βρ(v1, v0).

Continuing by induction, we get

ρ(vn+1, vn) � βnρ(v1, v0), n = 1, 2, ...
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Math review - Contraction Mapping Theorem

Proof.
Hence, for any m > n,

ρ(vm , vn) � ρ(vm , vm�1) + ...+ ρ(vn+2, vn+1) + ρ(vn+1, vn)

triangle inequality

ρ(vm , vn) �
�
βm�1 + ...+ βn+1 + βn

�
ρ(v1, v0)

� βn

1� β
ρ(v1, v0).

fvng is a Cauchy sequence. Since S is complete, it follows that
vn ! v 2 S .
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Math review - Contraction Mapping Theorem

Proof.
To show that Tv = v , note that for all n and all v0 2 S ,

ρ(Tv , v) � ρ(Tv ,T nv0) + ρ(T nv0, v)

� βρ(v ,T n�1v0) + ρ(T nv0, v).

: ! 0 ! 0 as n!∞

Hence, ρ(Tv , v) = 0, or Tv = v .

Note that T n�1v0 converges to v
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Math review - Contraction Mapping Theorem

Proof.
Finally, we must show that there is no other function v̂ 2 S satisfying
T v̂ = v̂ . Suppose to the contrary that v̂ 6= v is another solution. Then

0 < a = ρ(v̂ , v) = ρ(Tv̂ ,Tv) � βρ(v̂ , v) = βa,

which cannot hold, since β < 1. This proves part (a).
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Math review - Contraction Mapping Theorem

Proof.
To prove part (b), observe that for any n � 1,

ρ(T nv0, v) = ρ(T (T n�1v0),Tv) � βρ(T n�1v0, v),

So that (b) follows by induction, ρ(T nv0, v) � βnρ(v0, v).
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Math review
Apply the CMT to analyze dynamic programming problems

(Tv) (x) = sup
y
[F (x , y) + βv(y)]

s.t. y feasible given x

v(x), x is the beginning-of-period state variable

y is the end-of-period state to be chosen

x 2 X � R l , y 2 X
F (x , y) current period return

Operator T , �xed point Tv = v
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Blackwell�s su¢ cient conditions for a contraction

(Stokey, Lucas and Prescott 1989, page 54)

Theorem

Let X� R l and let B(X) be a space of bounded functions f : X ! R, with
the sup norm. Let T : B(X )! B(X ) be an operator satisfying

(monotonicity) f , g 2 B(X ) and f (x) � g(x), for all x 2 X , implies
(Tf )(x) � (Tg)(x), for all x 2 X ;
(discounting) there exists some β 2 (0, 1) such that

[T (f + a)] (x) � (Tf ) (x) + βa, all f 2 B(X ), a � 0, x 2 X

[Here (f + a) (x) is the function de�ned by (f + a) (x) = f (x) + a.]
Then T is a contraction with modulus β.
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Blackwell�s su¢ cient conditions for a contraction

Proof.
If f (x) � g(x) for all x 2 X , we write f � g .

For any f , g 2 B(X ), f � g + kf � gk .
Then properties (a) and (b) imply that

Tf � T (g + kf � gk) � Tg + β kf � gk

Reversing the roles of f and g gives by the same logic

Tg � Tf + β kf � gk

Combining these two inequalities, we �nd that
kTf � Tgk � β kf � gk , as was to be shown.
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Theorem of the Maximum

(Stokey, Lucas and Prescott 1989, page 62)

Theorem

Let X� R l and Y� Rm , let f : X � Y ! R be a continuous function, and
let Γ : X ! Y be a compact-valued and continuous correspondence.

Then the function h : X ! R de�ned in (1) is continuous,

and the correspondence G : X ! Y de�ned in (2) is nonempty,
compact-valued, and upper hemi-continuous (u.h.c.).

h(x) = max
y2Γ(x )

f (x , y) (1)

G (x) = fy 2 Γ(x) : f (x , y) = h(x)g (2)
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Theorecital examination of stochastic behavior of
equilibrium asset prices

Environment:

A single good
Pure exchange
Identical consumers
A number of di¤erent productive units
An assest is a claim to all or part of the output of one of these units

Shock: productivity in each unit �uctuates stochastically through time

Equilibrium asset prices will �uctuate as well
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Rationality of expectations

"Fully re�ect all available information" (in Fama�s term)

Not "behavioral": it does not describe the way agents think about
their environment, how they learn, possess information...

It is rather a property likely to be (approximately) possessed by the
outcome of this unspeci�ed process of learning and adapting

Contraction Mapping Operator � - learn and converge
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Consumption and Utility

Representative consumer:

E
n
∑∞
t=0 βtU(ct )

o
ct a stochastic process representing consumption of a single good

n distinct productive units, output is perishable

0 � ct �
n

∑
i=1
yit
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Output

Production is entirely "exogenous": no resources are utilized

Output yt follows a Markov process de�ned by its transition funciton

F (y 0, y) = Pr
�
yt+1 � y 0jyt = y
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Asset holdings

Ownership in this productive units is determined each period in a
competitive stock market

Each unit has outstanding one perfectly divisible equity share
A share entitles its owner as of the beginning of t to all of the unit�s
output in period t
Shares are traded, after payment of real dividends, at a competitively
determined price vector pt = (p1t , ...pnt )
Let zt = (z1t , ..., znt ) denote a consumer�s beginning-of-period share
holdings
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Quantities of consumption and asset holdings

All output will be consumed (ct = ∑n
i=0 yit)

All shares will be held (zt = (1, ..., 1) =1¯
)
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States and price function

The current output vector yt : summarizes all relevant information on
the current and future physical state of the economy

Equilibrium should be expressible as some �xed function p(�) of the
state of the economy, or pt = p(yt ) where the i th coordinate pi (yt ) is
the price of a share of unit i when the economy is in the state yt .

Knowledge of the transition function F (y 0, y) and this function p(y)
will su¢ ce to determine the stochastic character of the price process
fptg
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Policy funcitons

A consumer�s current consumption and portfolio decisions, ct and
zt+1, depend on his beginning of period portfolio, zt , the prices he
faces, pt , and the relevant information he possesses on current and
future states of the economy, yt .

His behavior can be described by �xed decision rules ct = c(zt ,yt , pt )
and zt+1 = z(zt ,yt , pt )
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De�nition of equilibrium

De�nition
An equilibrium is a continuous function p(y) : E n+ ! E n+ and a
continuous, bounded function v(z , y) : E n+ � E n+ ! R+ such that
(i)

v(z , y) = max
c , x

�
U(c) + β

Z
v(x , y 0)dF (y 0, y)

�
subject to

c + p(y) � x � y � z + p(y) � z , c � 0, 0 � x � z̄ ,

where z̄ is a vector with components exceeding one;
(ii) for each y , v(1

¯
, y) is attained by c = ∑i yi and x =1¯

.
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De�nition of equilibrium

Condition (i) says that, given the behavior of prices, a consumer
allocates his resources y � z + p(y) � z optimally among current
consumption c and end-of-period share holdings x

Condition (ii) requires that these consumption and portfolio decisions
be market clearing
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Value function

Since the market is always cleared, the consumer will never be
observed except in the state z =1

¯
. On the other hand, the consumer

has the option to choose security holdings x 6= 1
To evaluate these options, he needs to know v(z , y) for all z

The value v(z , y) will be interpreted as the value of the objective for
a consumer who begins in state y with holdings z , and follows an
optimum consumption-portfolio policy thereafter
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Lucas�s Tree

Every one is endowed with a tree that can produce fruit

An asset entitles the ownership to the tree
the claim to the fruit

Output of fruit is subject to uncertainty

Our interest:
The movement of the asset prices
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Construction of the equilibrium - propositions

Proposition 1: For each continuous price function p(�) there is a unique,
bounded, continuous, nonnegative function v(z , y : p) satisfying (i). For
each y , v(z , y : p) is an increasing, concave function of z .

Proof.
De�ne the operator T on functions v(z , y) such that (i) is equivalent
to Tv = v .

(Tv)(z , y) = max
c , x

�
U(c) + β

Z
v(x , y 0)dF (y 0, y)

�
= v(z , y)

The domain of T is the nonnegative orthant L2n+ of the space L2n of
continuous, bounded functions u : E n+ � E n+ ! R, normed (Norm
assigns length to a vector) by

kuk = sup
z , y

ju(z , y)j
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Proposition 1

Proof.
Since applying T involves maximizing a continuous function over a
compact set, Tu is well de�ned for any u 2 L2n+

Since U(c) is bounded, Tu is bounded, and by the Theorem of
Maximum Tu is consitnuous

Hence, T is monotone (u � v implies Tu � Tv) and for any constant
A, T (u + a) = Tu + βa.

(Tv)(z , y) = max
c , x

�
U(c) + β

Z
v(x , y 0)dF (y 0, y)

�

c + p(y) � x � y � z + p(y) � z , c � 0, 0 � x � z̄ ,
c + p(y) � x � A
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Proposition 1

(Tv)(z , y) = max
x

�
U [A� p(y)x ] + β

Z
v(x , y 0)dF (y 0, y)

�
Proof.

Monotonicity: If u � v everywhere, the maximum Tu > Tv

Discounting: T (u + a) = Tu + βa

(T (v + a))(z , y)

= max
x

�
U [A� p(y)x ] + β

Z
v(x , y 0)dF (y 0, y) + βa

�
Then according to the Blackwell�s condition for a contraction
mapping, T is a contraction mapping. It follows that Tv = v has a
unique solution v in L2n+. Further, limn!∞ T nu = v for any
u 2 L2n+ (ρ(T nv0, v) � βnρ(v0, v)).
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Proposition 1

Proof.
To prove that v is increasing in z , observe that Tu is an increasing
function of z for any u.

(Tv)(z , y) = max
x

�
U(z(y + p(y))� p(y)x) + β

Z
v(x , y 0)dF (y 0, y)

�
Since v = Tv , this implies that v is increasing in z .
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Proposition 1

Proof.
To prove that v is concave in z , we �rst show that if u(z , y) is concave in
z , so is (Tu) (z , y).

Let z0, z1 be chosen, let 0 � θ � 1

and let
zθ = θz0 + (1� θ)z1

Let (ci , xi ) attain
(Tu)(z i , y), i = 0, 1

Now
(cθ, x θ) = (θc0 + (1� θ)c1, θx0 + (1� θ)x1)

satis�es
cθ + p(y)x θ � yzθ + p(y)zθ
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Proposition 1

Proof.
so that

(Tu)(zθ, y) � U(cθ) + β
Z
u(x θ, y 0)dF (y 0, y)

� θ(Tu)(z0, y) + (1� θ)(Tu)(z1, y)

using the concavity of U and u.

Hence (Tu)(z , y) is concave in z for all n = 1, 2, ...

Then, since limn!∞ T nu = v , v is concave
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Proposition 2 (Envelope theorem)

Proposition 2: If v(z , y ; p) is attained at (c , x) with c > 0, then v is
di¤erentiable with respect to z at (z , y) and

∂v(z , y ; p)
∂zi

= U 0(c) [yi + pi (y)] , i = 1, ..., n

Proof.
De�ne f : R+ ! R+ by

f (A) = max
c ,x

�
U(c) + β

Z
v(x , y 0)dF (y 0, y)

�
subject to

c + p(y)x � A, c , x � 0

For each A, f (A) is attained at c(A), x(A) say, and since the
maximand is strictly concave in c , c(A) is unique and varies
continuously with A.
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Proposition 2

Proof.
If c(A) > 0 and if h is su¢ ciently small, c(A) + h and x(A) are
feasible at �income�A+ h

f (A+ h) � U(c(A) + h) + β
Z
v(x(A), y 0)dF (y 0, y)

= U(c(A) + h)� U(c(A)) + f (A)

c(A+ h)� h and x (A+ h) are feasible at income A. Thus

f (A) � U(c(A+ h)� h) + β
Z
v(x(A+ h), y 0)dF (y 0, y)

= U(c(A+ h)� h)� U(c(A+ h)) + f (A+ h)
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Proposition 2

Proof.
Combining these inequalities gives

U(c(A) + h)� U(c(A)) � f (A+ h)� f (A)
� U(c(A+ h))� U(c(A+ h)� h)

Dividing by h, letting h! 0, and utilizing the continuity of c(�) gives

f 0(A) = U 0(c(A))

Now letting A = yz + p(y)z , so that v(z , y ; p) = f (A), we obtain
(∂v/∂zi ) = f 0(A)(∂A/∂zi ), as was to be shown.
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Solution of the price function

First order condition

U 0(c)pi (y) = β
Z

∂v(x , y 0)
∂xi

dF (y 0, y)

c + p(y)x = yz + p(y)z

provided c , x > 0

If next period�s optimum consumption c 0 is also positive, Proposition
2 implies

∂v(x , y 0)
∂xi

= U 0(c 0)
�
y 0i + pi (y

0)
�
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Solution of the price function

Now in equilibrium z = x =1
¯
, c = ∑j yj , and c

0 = ∑j y
0
j

U 0
 

∑
j
yj

!
pi (y) = β

Z
U 0
 

∑
j
y 0j

! �
y 0i + pi (y

0)
�
dF (y 0, y)

for i = 1, ..., n

One may think this equation, loosely, as equating the marginal rate of
substitution of current for future consumption to the market rate of
transformation, as given in the market rate of return on security i

Mathematically, it is a stochastic Euler equation
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Solution of the price function

U 0
 

∑
j
yj

!
pi (y) = β

Z
U 0
 

∑
j
y 0j

! �
y 0i + pi (y

0)
�
dF (y 0, y) (*)

Since this equation does not involve the particular value function
v(z , y ; p) used in its derivation, it must hold for any equilibrium price
function

Conversely, if p�(y) solves this equation and v(z , y ; p�) is as
constructed in Proposition 1, then the pair (p�(y), v(z , y ; p�)) is an
equilibrium

Thus solutions to this equation and equilibrium price functions are
coincident
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Solution of the price function

De�ne

gi (y) = β
Z
U 0
 

∑
j
y 0j

!
y 0i dF (y

0, y)

fi (y) = U 0
 

∑
j
yj

!
pi (y)

We have n independent functional equations

fi (y) = gi (y) + β
Z
fi (y 0)dF (y 0, y)
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Solution of the price function

If
f (y) = gi (y) + β

Z
f (y 0)dF (y 0, y)

have solutions (f1(y), ..., fn(y))

the price functions

pi (y) =
fi (y)

U 0
�
∑j yj

�
will solve (*), and p(y) = (p1(y), ..., pn(y)) will be the equilibrium
price function
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Solution by contraction mapping

If f is any continuous, bounded, nonnegative function on E n+, the
function Ti f : E n+ ! R+ given by

(Ti f )(y) = gi (y) + β
Z
f (y 0)dF (y 0, y)

is well-de�ned and continuous in y

Since U is concave and bounded (by B, say) we have for any c :

0 = U(0) � U(c) + U 0(c)(�c) � B � cU 0(c)

So that cU 0(c) < B for all c .
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Solution by contraction mapping

cU 0(c) < B, it follows that the functions gi (y) are bounded,

gi (y) = β
Z
U 0
 

∑
j
y 0j

!
y 0i dF (y

0, y)

since they are nonnegative and their sum is bounded by βB

Evidently, solutions to Ti f = f are solutions to
f (y) = gi (y) + β

R
f (y 0)dF (y 0, y)
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Characterize the price function �one asset

The crucial issues are the information content of the current state y
(that is, the way F (y 0, y) varies with y) and the degree of "risk
aversion" (the curvature of U)

Suppose, as �rst case, that fytg is a sequence of independent random
variables: F (y 0, y) = φ(y 0)

Then g(y) is the constant

ḡ = β
Z
y 0U 0(y 0)dφ(y 0) = βE

�
yU 0(y)

�
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ḡ = β
Z
y 0U 0(y 0)dφ(y 0) = βE

�
yU 0(y)

�

Zhe Li (SUFE) Asset Prices 43 / 53



Characterize the price function �one asset

Calculating f from

(Tf )(y) = ḡ + β
Z
f (y 0)dφ(y 0)

(T 2f )(y) = ḡ + β

�
ḡ + β

Z
f (y 0)dφ(y 0)

�

We get

f (y) =
ḡ

1� β
, f 0(y) = 0
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Characterize the price function �one asset

Di¤erentiating

p(y) =
f (y)
U 0 (y)

gives

p0(y) = �βE [yU 0(y)]U 00(y)

(1� β) [U 0(y)]2
= p(y)

�U 00(y)
U 0(y)

> 0
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Characterize the price function �one asset

Rearranging
yp0(y)
p(y)

=
�yU 00(y)
U 0(y)

This is the elasticity of price with respect to income is equal to the
Arrow-Pratt measure of relative risk aversion

In a period of high transitory income, then, agents attempt to
distribute part of the windfall over future periods (marginal utility
decreases), via securities purchases. This attempt is frustrated (since
storage is precluded) by an increase in asset prices
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Autocorrelated production disturbances

Restrict the stochastic di¤erence equation governing yt to have its
root between zero and one

yt+1 = ρyt + εt+1 ρ 2 (0, 1)

Assume that F is di¤erentiable, and that its derivatives F1 and F2
satisfy

0 < �F2 < F1
CDF F (y 0, y) = Pr fyt+1 � y 0jyt = yg
F1 > 0
F2 < 0 : the higher the yt , the more likely the higher yt+1
Use the change of variable u = F (y 0, y), and invert to get
y 0 = G (u, y), G2 = ∂y 0/∂y
By substitution we take into account that y a¤ects y 0,
u = F (G (u, y), y), completely di¤erentiation gives

F1G2 + F2 = 0, G2 = �F2/F1
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Lemma 1

Lemma
Let F satisfy 0 < �F2 < F1, and let h(y) have a derivative bounded
between 0 and h0M > 0. Then

0 � d
dy

Z
h(y 0)dF (y 0, y) � h0M

Proof.
d
dy

R 1
0 h(y

0)dF (y 0, y) = d
dy

R 1
0 h(G (u, y))du =

R 1
0 h

0(G )G2(u, y)du, the
result follows.
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Bounds

(Tf )(y) = g(y) + β
Z
f (y 0)dF (y 0, y)

d
dy
(Tf )(y) = g 0(y) + β

d
dy

Z
f (y 0)dF (y 0, y)

g 0(y) = β
d
dy

Z
U 0(y 0)y 0dF (y 0, y)

Let f (y) be the solution to f (y) = g(y) + β
R
f (y 0)dF (y 0, y)

Bounds on the derivative of U 0(y)y , or

U 00(y)y + U 0(y) = U 0
�
1�

�
�yU 00(y )
U 0(y )

��
Take 0 and ā as lower and upper bounds on U 00(y)y + U 0(y), then
apply Lemma 1

0 � g 0(y) � βā
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U 00(y)y + U 0(y) = U 0
�
1�

�
�yU 00(y )
U 0(y )

��
Take 0 and ā as lower and upper bounds on U 00(y)y + U 0(y), then
apply Lemma 1

0 � g 0(y) � βā
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Bounds

f 0(y) = g 0(y) + β
d
dy

Z
f (y 0)dF (y 0, y)

= g 0(y) + β
Z
f 0(y 0)G2(u, y)dF (y 0, y)

= g 0(y) + β
Z �

g 0(y 0) + β
d
dy 0

Z
f (y 00)dF (y 00, y 0)

�
G2(u, y)dF (y 0, y)

= g 0(y) + β
Z
g 0(y 0)G2(u, y)dF (y 0, y) + ...

� 0
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Bounds

f 0(y) = g 0(y) + β
d
dy

Z
f (y 0)dF (y 0, y)

= g 0(y) + β
Z
f 0(y 0)G2(u, y)dF (y 0, y)

� g 0(y) + β
Z
f 0(y 0)dF (y 0, y) given G2 =

�F2
F1

< 1

� g 0(y) + β
Z �

g 0(y 0) + β
d
dy 0

Z
f (y 00)dF (y 00, y 0)

�
dF (y 0, y)

� g 0(y) + β
Z
g 0(y 0)dF (y 0, y) + β2

Z Z
g 0(y 00)dF (y 00, y 0)dF (y 0, y) + ...

� ā+ βā+ β2ā+ ...

� βā
1� β
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The elasticity of the equilibrium price function

p(y) =
f (y)
U 0(y)

p0(y) =
U 0(y)f 0(y)� f (y)U 00(y)

[U 0(y)]2

yp0(y)
p(y)

=
yf 0(y)
f (y)

� yU 00(y)
U 0(y)

income e¤ect (+)

"information

e¤ect"

sign of f 0(y)

f (y) information about future dividends
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The elasticity of the equilibrium price function

yp0(y)
p(y)

=
yf 0(y)
f (y)

� yU 00(y)
U 0(y)

Depends on our knowledge of the curvature of U
It shows how to translate such knowledge into knowledge about asset
prices

Relative risk aversion less than 1, f 0 (y) > 0, so that the information
e¤ect is positive
Thus, new optimistic information on future dividends leads to
increased asset prices
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