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Abstract

In this paper we develop models for stock returns when stock prices are subject
to stochastic mispricing errors. We show that expected rates of return depend not
only on the fundamental risk that is captured by a standard asset pricing model, but
also on the type and degree of asset mispricing, even when the mispricing is zero on
average. Empirically, the mispricing induced return bias, proxied either by Kalman
filter estimates or by volatility and variance ratio of residual returns, are shown to be
significantly associated with realized risk adjusted returns.



“Does the joint hypothesis problem make empirical work on asset pricing models uninteresting?”

E.F. Fama (1991, p 1576)

1 Introduction

As Eugene Fama points out, tests of classical asset pricing models such as the CAPM,

CCAPM, or ICAPM implicitly rely on an assumption of market efficiency which permits the

substitution of realized returns for expected returns. However, there is increasing evidence

that common stocks are mispriced relative to these models,1 although the reasons for the

pricing discrepancies remain in dispute. For example, de Bondt and Thaler (1985, 1987)

find long run reversals of prior stock price changes which they interpret as corrections of

prior over-reactions to news, while Jegadeesh and Titman (1993) among others find positive

autocorrelation of individual stock returns at the 6-12 month horizon, which is consistent

with the slow adjustment to firm specific news documented in a large number of studies.

Jegadeesh and Titman (1995) also find evidence that stock prices tend to over-react to firm

specific information. Lee and Swaminathan (2000) find that low (high) trading volume

stocks tend to be under- (over-) valued by the market. Pastor and Stambaugh (2003),

Acharya and Pedersen (2005) and Sadka (2006) show stock returns are affected by (or at

least covary with) the state of stock market liquidity, while Amihud (2002) shows that

unanticipated increases in market illiquidity reduce the level of stock prices. Lee et al.

(1991) and Swaminathan (1996) (more circumspectly) argue that stock prices are affected

by the state of ‘sentiment’.

In this paper we show that, for securities which are subject to stochastic mispricing

relative to a given asset pricing model, it is likely that either their prices will fail to be

unconditionally rational or their returns will fail to be unconditionally rational, or both.

By unconditionally rational prices we mean prices whose unconditional expectations are

consistent with the fundamental asset pricing model, and by unconditionally rational returns

we mean returns whose unconditional expectations are consistent with the fundamental
1French and Roll (1986) suggest that on average 4 to 12% of the daily return variance of common stock

returns is due to mispricing.
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asset pricing model. Thus a stock that on average trades at 100% of its fundamental value,

but whose price fluctuates about the fundamental value, will have a return that is biased

up relative to that predicted by the model that determines the fundamental value. This

‘mispricing return bias’ is the focus of this paper.

The basic intuition of our analysis follows immediately from Jensen’s Inequality: price

is a non-linear function of expected return, so that if one variable is subject to random

error then the expectation of the other variable will be biased.2 It is of course possible that

neither prices nor expected returns are unconditionally rational. The bias in the expected

returns due to mispricing is shown to depend on the volatility and first order autocorrelation

of the mispricing. Unfortunately, the mispricing is not directly observable, and we must use

proxies for the mispricing return bias. Our empirical tests reveal that portfolios formed on

the basis of proxies for the mispricing return bias have significantly different returns after

adjusting for risk using standard models.

The analysis in this paper has implications for studies that find significant relations

between stock returns and variables that may be proxies for the mispricing related return

bias we consider. Thus, measures of the cost of transacting such as the bid ask spread or

Kyle’s λ are likely to be positively associated with the magnitude of pricing errors since

transactions costs impede arbitrage. This suggests that a part of the approximately 7%

return differential between high and low liquidity portfolios documented in several studies3

may be attributable to this mispricing return bias. Similarly, we show that the sensitivity of

stock returns to variables that have common effects on stock prices, such as market liquidity

or sentiment, is related to the mispricing return bias, so that a part of the the annual return

premium of around 7.5% between high and low liquidity beta portfolios reported by Pastor

and Stambaugh (2003) is likely to be attributable at least in part to the mispricing return

bias. We also show that it is possible to generate a return premium of the type that Hou

and Moskowitz (2005) have found to be associated with slow adjustment to (market-wide)

information in a model in which prices are unconditionally rational but adjust slowly to

new information and are subject to ‘liquidity shocks’, since these stocks will be subject to
2This is analogous to the point made by Cox et al. (1981) that expected holding period returns on bonds

of all maturities cannot be equal for all holding periods, except under certainty.
3For an extensive survey of the research on liquidity and asset pricing see Amihud et al. (2005).
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the mispricing return bias.

This paper follows an early literature on the implications of security mispricing for

measuring rates of return, including Blume and Stambaugh (1983), and Roll (1983), who

are concerned with the effects of daily auto-correlations and the bid-ask bounce on measured

rates of return.4 More recently Liu and Strong (2006) analyze the effects of portfolio

rebalancing assumptions on reported returns.

The remainder of the paper is organized as follows. Section 2 presents a simple one period

example which shows that, in the presence of random security mispricing, unconditionally

rational prices are inconsistent with unconditionally rational returns. Section 3 analyzes the

return bias introduced by random mispricing in a general intertemporal context. Section

4 presents examples of mispricing structures and uses them to analyze the return premia

that have been found to be associated with transactions cost type variables, with systematic

liquidity risk, and with slow adjustment to information. Section 5 presents empirical results

relating returns to proxies for the mispricing return bias, and Section 6 concludes.

2 A Simple Example

Consider an asset whose payoff at the end of one period is X̃, and denote its fundamental

price by P ∗. Then

P ∗ =
E[X̃]
1 + r∗

(1)

where r∗ is the equilibrium expected rate of return on the security according to some given

pricing model. Let P ≡ P ∗Z̃ denote the market price of the security, where Z̃ is a random

variable which is independent of the payoff X̃. Then the mispricing of the security relative

to the given model is written as P ∗(Z̃ − 1). If Z̃ has mean unity then we say that the price

is unconditionally rational. Let R̃ denote the realized rate of return on the security. Then:

1 + R̃ =
X̃

P
=

X̃

P ∗Z̃
=

X̃(1 + r∗)
E[X̃]Z̃

(2)

Taking expectations, we have:

E[1 + R̃] = (1 + r∗)E
1
Z̃
6= 1 + r∗ (3)

4See also Canina et al (1998).
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Thus the unconditional expected return on the security is not equal to the equilibrium

expected return, r∗, so long as the price is unconditionally rational so that E[Z̃] = 1.

Conversely, if the returns are unconditionally rational so that E[R̃] = r∗, then E[Z̃] cannot

have mean unity so long as Z̃ has a strictly positive variance, and unconditionally rational

prices imply that returns fail to be unconditionally rational.

3 General Structure

Now consider an arbitrary multi-period setting in which the security pays a dividend of

D̃t at the end of period t and denote the market (fundamental) price at the beginning of

the period by Pt(P ∗
t ), where Pt ≡ P ∗

t Zt. We shall assume throughout that market prices

are strictly positive and impose the further weak restriction that z ≡ lnZ, the log of the

‘market pricing multiple’, Z, is a stationary random variable.

Then we can write 1 + Rt the (gross) market rate of return on the security in period t

as

1 + Rt ≡
P ∗

t+1Zt+1 + Dt

P ∗
t Zt

=
P ∗

t+1

P ∗
t

Zt+1

Zt
+

Dt

P ∗
t Zt

(4)

≡ (1 + R∗g
t )(1 +

∆Zt

Zt
) + δ∗t (1/Zt) (5)

where ∆Zt ≡ Zt+1 − Zt, R∗g ≡ (P ∗
t+1 − P ∗

t )/P ∗
t is the ‘capital gain return’ based on the

fundamental price, and δ∗t ≡ Dt/P ∗
t is the dividend yield based on the fundamental price.

Note that the return based on the fundamental price, R∗
t is equal to R∗g

t + δ∗t .

Then the market return is related to the fundamental return by:

Rt = R∗
t + R∗g

t

∆Zt

Zt
+

∆Zt

Zt
− δ∗t (1− 1/Zt) (6)

Assume for simplicity that the mispricing variable Z̃t is independent of the (fundamental)

dividend yield δt. Then, taking expectations in (6), the expected market return is related

to the expected fundamental rate of return by:

E[Rt] = E[R∗
t ] + E [R∗g

t ] E

»
∆Zt

Zt

–
+ cov

„
R∗g

t ,
∆Zt

Zt

«
+ E

»
∆Zt

Zt

–
− E [δ∗t ] E [1− 1/Zt] (7)
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The second and fifth terms in (6) are likely to be small since they involve products of returns

or yields with the mispricing variable.5 Therefore we shall ignore them in what follows, and

write the relation between the expected market return and the expected fundamental return

as:

E[Rt] ≈ E[R∗
t ] + E

[
∆Zt

Zt

]
+ cov

(
R∗g

t ,
∆Zt

Zt

)
(8)

≡ E[R∗
t ] + B1 + B2 (9)

where B1 ≡ E
[

∆Zt
Zt

]
, B2 ≡ cov

(
R∗g

t , ∆Zt
Zt

)
, and B ≡ B1 + B2 denotes the bias in the

expected return caused by mispricing.

If B2 > 0, we shall say that the mispricing is associated with over-reaction since the

pricing error tends to increase when fundamentals improve and to decrease when they

deteriorate.

If B2 < 0, we shall say that the mispricing is associated with slow adjustment since

an increase (decrease) in the fundamental price is accompanied on average by a smaller

proportional change in the market price.

If B2 = 0, we shall say that the mispricing is unrelated to fundamentals.

Note that we can write ∆Z/Z = e∆z − 1, where z ≡ lnZ. Then it follows from the

convexity of the exponential function and the assumed stationarity of z that E[∆Z/Z] > 0,

and we have the following conditions on the sign of the bias, B, caused by mispricing:

Lemma 1 If the mispricing is associated with over-reaction or is unrelated to news, then
the bias is strictly positive.

If the bias is associated with slow adjustment, then the sign of the bias is indeterminate.

In practice we shall find that B2 is likely to be very small when the mispricing is due

to slow adjustment, so that the mispricing return bias will be due mainly to B1, and there

is therefore a presumption that the total bias will be positive. Note that when we neglect
5Consider the magnitude of the bias associated with the dividend yield under the rational unconditional

pricing assumption that E[Z] = 1. Then 1 − E[1/Z] ≈ −σ2
Z , where σZ is the standard deviation of

the stationary distribution of Z. Suppose that the standard deviation of the mispricing is 0.3 so that
σ2

Z = 0.09. This would imply an annual dividend yield related bias of the order of 0.2% for a stock with a
2% (fundamental) dividend yield.
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the dividend yield term the magnitude of the return bias is independent of E[Z] so that

mispricing will give rise to a return bias whether or not prices are unconditionally rational.

Consider now the determinants of the bias element B1. Assume that the unconditional

distribution of ∆z ≡ lnZt+1 − lnZt is normal with parameters (µ∆z, σ∆z). Since z is a

stationary random variable, µ∆z = 0 and

B1 = e
1
2
σ2
∆z − 1

Now we can always write:

∆z ≡ zt − zt−1 = (ρz
1 − 1)zt−1 + ηt

where ρz
1 is the first order autocorrelation of z, and ηt is a zero mean normally distributed

error term that is independent of zt−1. Then:

B1 = e(1−ρz
1)σ2

z − 1. (10)

where σ2
z is the unconditional variance of z. Thus the mispricing return bias is decreasing

in the first order autocorrelation of z; ceteris paribus, mispricing that is rapidly eliminated

or even reversed will lead to a higher bias in expected returns. The bias is also increasing

in the unconditional variance of the mispricing.

4 Three Models of Mispricing

Although there is a well developed theory of rational security pricing, there exists no canon-

ical model of security mispricing. Therefore, in order to assess the effect of mispricing on

measured security returns, we shall consider in turn three models of mispricing that have

been analyzed in the literature and use them to analyze the mispricing return biases that

may be associated with high transactions costs, with liquidity betas and with slow ad-

justment to information. The first model, which was developed by Poterba and Summers

(1988), assumes that mispricing is independent of fundamentals, and follows a simple AR1

process. The second model assumes that mispricing is due to slow adjustment of market

prices to new information. In this model, innovations in mispricing are correlated with

fundamentals. In the third model, mispricing is associated with a market wide ‘mispricing

factor’.
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4.1 The Poterba-Summers Model

Poterba and Summers (1988) assume that the logarithm of the market price, pt, is related

to the logarithm of the fundamental price, p∗t , by

pt = p∗t + zt (11)

where the logarithm of the fundamental price, p∗t follows a random walk:

p∗t = p∗t−1 + εt (12)

and the logarithm of mispricing, zt, follows an AR(1) process:

zt = φ1zt−1 + ηt (13)

and εt and ηt are independent i.i.d. normal random variables with mean zero and variances,

σ2
ε and σ2

η, respectively.

Then, using equation (10) and noting that φ1 = ρz
1, B1 may be written as:

B1 = e(1−φ1)σ2
z − 1 (14)

Provided that the mispricing is unrelated to news so that the innovations in mispricing,

η, are uncorrelated with the innovations in the fundamental price, ε, B2 is zero. Poterba and

Summers assume that the innovations are uncorrelated. They set φ1 = 0.98 for monthly

data on the market portfolio, which implies that innovations in mispricing have a half life

of 2.9 years. Their calibrations yield values of σz for the market portfolio ranging from 0.1

to 0.38. These parameter values imply values of B1 ≈ (1 − φ1)σ2
z ranging from 0.02% to

0.28% per month, or 0.24% to 3.47% per year. We shall show in Section 5 that φ1 and

σz, and therefore the mispricing return bias B1, differ across securities in predictable ways

associated with size and other firm characteristics. The resulting mispricing return biases

will create systematic patterns in the cross-section of deviations of average returns from

equilibrium expected returns, r∗. For example, if for illiquid securities φ1 is 0.90 per month

so that 10% of mispricing tends to eliminated each month, and σz equals 0.20, then the

annualized mispricing return bias for illiquid securities will appear to be 4.8% per year. If

the most liquid securities have no mispricing so that for them σz = 0, then their return
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bias will be zero and the cross-sectional reward for illiquidity will appear to be 4.8%. If φ1

for the illiquid securities is only 0.8, then with the same values of the other parameters the

annualized cross-sectional return premium for illiquidity will appear to be 9.6%.

Thus, if illiquidity is associated with greater mispricing, the mispricing return bias may

explain part of the very high risk-adjusted return differentials between portfolios chosen on

the basis of their liquidity characteristics that researchers have documented in recent years.

These return differentials seem to be too high to be explained by the costs of transaction

alone. For example, the estimates of Brennan and Subrahmanyam (1996, Table 4) imply

that the annualized return differential between the highest and lowest liquidity quintiles

of NYSE stocks is 6.6% when (il)liquidity is measured by Kyle’s (1985) λ, while Amihud

and Mendelson (1986, fn. 19) report an annual risk adjusted return differential of 7% be-

tween the extremes of 7 NYSE portfolios formed on the basis of the bid-ask spread. Liu

(2006) finds an annual risk-adjusted return differential of over 9% between the extremes of

10 NYSE/AMEX portfolios formed on the basis of the number of days on which no trade

takes place, and argues that a systematic liquidity risk factor constructed from this measure

of (il)liquidity explains size, book-to-market, cash flow-to-price and divididend yield return

anomalies. These high return differentials associated with illiquidity are surprising because

theoretical analyses of portfolio strategies under transaction costs by Constantinides (1986)

and Vayonnos (1998) suggest that while proportional transactions costs affect trading fre-

quency they have only small effects on prices.6

It is likely that illiquidity is associated with mispricing. Pontiff (1996), Gemmill and

Thomas (2002), and Kumar and Lee (2006) for example show that other costs of arbitrage

(primarily residual risk) are associated with mispricing. Chordia et al (2006) find that

post earnings announcement drift is concentrated in highly illiquid securities. Hong et al.

(2000) find that momentum strategies work particularly well for firms that are followed by

a small number of analysts for their size, while Brennan and Subrahmanyam (1998) find

that analyst following is positively related to liquidity and Brennan et al (1993) find that

analyst coverage is positively related to the speed of adjustment of prices to market wide

information. Thus firms whose costs of trading are high are likely to be especially prone to
6See also Lo et al (2001) and Huang (2003).
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mispricing, both because such firms are typically followed by few if any investment analysts,

and because the costs of trading deter those who would attempt to profit from temporary

mispricing.7 If illiquidity is associated with mispricing in general, then our analysis suggest

that the mispricing return bias will be highest for illiquid firms that are costly to trade; this

may explain part of the very high returns associated with illiquidity.

Other explanations that have been offered for the high return premium for illiquidity

include Novy-Marx (2004) who argues that illiquidity is likely to be associated with high

expected returns, not because the expected returns are a reward for bearing illiquidity,

but because both high returns and illiquidity are likely to be caused by risk factors that

may be omitted from the standard asset pricing models. Similarly, Johnson (2006) shows

that expected returns and liquidity could covary without liquidity causing expected returns,

because they are jointly determined in equilibrium.

4.2 A Model of Slow Adjustment to Information

The possibility that stock prices adjust slowly to new information has been recognized

at least since Dimson (1979), and there is an extensive literature starting with Ball and

Brown (1968) documenting slow adjustment to earnings news.8 Brennan et al (1993) show

that stocks that adjust slowly to market wide information tend to be smaller and to be

followed by fewer analysts, and Hou and Moskowitz (2005) show that the most delayed

firms command a large returns premium that is not explained by risk, size, or liquidity.

Jackson and Johnson (2006) show that momentum can be attributed to slow adjustment

to news about future earnings. Slow adjustment to new information implies mispricing and

therefore a mispricing return bias. This may help to explain the slow adjustment return

premium of Hou and Moskowitz (2005).

In order to assess the magnitude of the bias in returns that is caused by slow adjustment
7However, Sadka and Scherbina (2004) find evidence of the systematic overpricing of firms with a high

dispersion of analyst forecasts (presumably due to the Miller (1977) effect) and argue that this is also
associated with high costs of transacting.

8See Bernard (1993) for a more recent survey of the evidence.
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to new information, we shall use the following model of stock prices:

P ∗
t+1 = P ∗

t [1 + Rf + β(Rm −Rf ) + εt+1] (15)

Pt+1 = κP ∗
t+1 + (1− κ)Pt (16)

Equation (15) in which Rm, and Rf are the market return and risk free rate and ε is a

mean zero error term, implies that the fundamental price, P ∗, satisfies the CAPM. Equation

(16) implies that the market price, P , adjusts slowly to the fundamental price so long as

κ < 1.9

Market and fundamental prices and returns were simulated 5000 times for 200 months

from equations (15) and (16) using randomly selected sequential monthly market returns

and risk free rates from the CRSP file for the period January 1926 to December 2003, and

normally distributed idiosyncratic error terms ε with annualized volatilities of 15% and 30%.

zt ≡ ln(Pt/P ∗
t ), the log mispricing factor was calculated for each month and the elements

of the mispricing return bias were calculated using equation (9). The results, which are

reported in Panel A of Table 1, suggest that slow adjustment alone is not sufficient to

generate a significant bias in returns. For example, even with σε = 0.30, a value of κ as

low as 0.70 generates an average value of σz of only 0.03 and a total annual bias, B, of the

order of 1%. But for these parameter values the average autocorrelation of monthly stock

returns, ρR
1 , is 0.35 which is much too high to be consistent with the data. Higher values

of the bias can be generated with lower values of the adjustment coefficient, κ, but only at

the cost of even more implausibly high values of the return autocorrelation.

However, if we add additional proportional iid noise, ξt, to the market price so that

equation (16) becomes:

Pt+1 = κP ∗
t+1 + (1− κ)Pt + Ptξt (17)

then it is possible to generate a bias in realized returns which is similar to the return

premium for slow adjustment found by Hou and Moskowitz (2005) with reasonable values

of the return autocorrelation.
9Amihud and Mendelson (1987) use a similar partial adjustment model.
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Panel B shows results for σξ > 0. Now it is easy to generate an annualized bias, B,

of the order of 2.5-4.3% while keeping the autocorrelation of returns, ρR
1 , in a range of

+
− 0.05. Most of the bias is due to the element B1 ≡ E[dZ/Z], and B2 is close to zero in all

cases, despite the fact that slow adjustment implies that the innovation in Z is negatively

correlated with the innovation in the rational price, P ∗.

The table also reports the average coefficients, α and β, from regressions of the simulated

stock excess returns on the market excess returns. The average values of α tend to be close

to the estimates of the total bias, B.

Panel C of the table shows that when κ = 1 so that there is no slow adjustment, the

mispricing return bias remains, but now the return autocorrelation is an implausible -0.22.

Thus it is the combination of slow adjustment with the market price noise that enables us to

generate a significant mispricing return bias while maintaining the first order autocorrelation

of returns at plausible levels. Hou and Moskowitz (2005) report an annualized risk adjusted

return spread between high and low delay decile portfolios of the order of 16% per annum

and most of this is due to the exceptionally high risk adjusted returns on the high delay

portfolio as the mispricing return bias hypothesis would predict. We do not suggest that

the mispricing return bias accounts for all of the apparent slow adjustment premium and we

have not attempted to obtain parameters that would generate the whole observed premium

while preserving plausible autocorrelations for stock returns.

4.3 A Model of Systematic Mispricing

To this point we have considered only idiosyncratic mispricing, and have not considered

situations in which there are pervasive factors that cause mispricing relative to a given

rational pricing model.

Suppose that market prices at time t, Pit(i = 1, · · · , n) are related to the fundamental

prices P ∗
it by:

Pit = P ∗
itZi ≡ P ∗

i eγizmt (18)

where zmt is a market wide state variable, and γi is the sensitivity of asset i’s mispricing to

the market wide state variable.
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Then, neglecting dividend payments, we have:

1 + Rit =
Pi,t+1

Pit
=

P ∗
i,t+1

P ∗
it

eγizm,t+1

eγizm,t
(19)

= (1 + R∗
it)e

γi∆zm ≈ (1 + R∗
it)[1 + γi∆zm +

1
2
(γi∆zm)2] (20)

where R∗
it is the rate of return based on the fundamental price. Taking expectations in (20)

under the assumption of joint normality:

E[Rit] ≈ E[R∗
it] + E[R∗

it]E[γi∆zm +
1
2
(γi∆zm)2] + E[γi∆zm +

1
2
(γi∆zm)2] + cov (R∗

it, γi∆zm)(21)

Assuming stationary mispricing, E[∆zm] = 0. Then, neglecting the second term in (21),

the expected market return is related to the fundamental return by:

E[Rit] ≈ E[R∗
it] +

1
2
γ2

i E[(∆zm)2] + γicov (R∗
it,∆zm) (22)

Thus, it is natural to define the return bias associated with systematic mispricing for

stock i as Bi, where:

Bi =
1
2
γ2

i E[(∆zm)2] + γiρi,∆zmσiσ∆zm ≡ B1,i + B2,i (23)

In equation (23), ρi,∆zm is the correlation between the fundamental return and the inno-

vation in the state variable, zmt, while γi measures the sensitivity of the mispricing to the

state variable. If we think of zm as being a variable such as market liquidity (rather than

illiquidity) or (positive) sentiment, then it is natural to think of the correlation between

the fundamental return and the innovation in the state variable, ρi,∆zm , as being positive.10

We shall refer to state variables for which ρi,zm > 0,∀i, as positively correlated with funda-

mentals. Similarly, we expect mispricing to be positively associated with market liquidity

or sentiment, so that γi > 0. Then we have the following result:

Lemma 2 Systematic Mispricing For state variables that are positively correlated with
fundamentals, the return bias created by systematic mispricing is an increasing function of
γi, for γi > 0.

10Amihud (2002) shows that market returns are negatively associated with innovations in illiquidity and
positively associated with the level of illiquidity, and Pastor and Stambaugh (2003) report that the average
correlation between market returns and innovations in their measure of liquidity is 0.36. The correlation is
0.52 in negative return months and only 0.03 in positive return months.
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The return bias can also be written in terms of the first order autocorrelation and

volatility of z as

B1,i = (1− ρz
1)γ

2
i σ2

z (24)

B2,i = γiρi,∆zmσi

√
2(1− ρz

1)σz (25)

The evidence of Chordia, Roll and Subrahmanyam (2000) shows that there is common

variation in liquidity across stocks. Pastor and Stambaugh (2003) show that the common

variation in (il)liquidity is related to common variation in stock prices as equation (18)

implies. They also find a surprisingly high return premium associated with systematic

illiquidity risk, which is the covariance of a security’s price change or return with changes in

the level of market (il)liquidity and corresponds to our variable γi: they report a 7.5% risk

adjusted return differential between stocks with high and low exposures to aggregate market

liquidity, while Acharya and Pedersen (2005) calculate the difference between the expected

returns of the least and most liquid of 25 portfolios at 4.6% per year. Sadka (2006) finds an

annualized risk-adjusted return spread of 6.12% between high and low liquidity beta decile

portfolios where liquidity is measured by an empirical version of the Kyle’s λ.11Downing et

al. (2006) report that the average return on illiquid municipal bonds exceeds that on liquid

bonds by 11.5% annually after adjusting for market, default and interest rate risks. Chacko

(2006) reports a risk-adjusted reward to liquidity beta for corporate bonds of around 3%

per month.

There is also evidence that high illiquidity forecasts high market returns. For example,

Jones (2002) finds that the market return is increasing in the bid-ask spread of the previous

year and decreasing in the share turnover of the previous year, and Amihud (2002) also

reports that illiquidity predicts future market returns. Consistent with the finding that

expected returns are increasing in illiquidity, Chordia et al.(2001), Amihud (2002), Jones

(2002), and Pastor and Stambaugh (2003) find a positive contemporaneous relation between

market returns and changes in market liquidity. This is consistent with market liquidity

being a state variable which determines the level of stock prices relative to some normal
11Both Pastor and Stambaugh and Sadka argue that systematic liquidity risk can explain a significant

fraction of the momentum effect, and Sadka finds that it also explains a significant fraction of the the
‘post-earnings announcement drift’ phenomenon.
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level that would prevail under normal liquidity conditions; when liquidity is poor prices are

low and expected returns are high and conversely for good liquidity. This time variation

in market prices relative to ‘normal’ prices is likely to induce a return premium associated

with the sensitivity to the state variable controlling the pricing fluctuations that is due to

the mispricing return bias. Thus, our analysis can potentially account for the risk premium

associated with systematic liquidity risk.

Table 2 reports calculations of the components of the return bias for selected parameter

combinations of ρz
1, γi, ρi,∆zm and σi = 0.30. In this table σz is set equal to unity without loss

of generality. Then γi, the sensitivity to the market wide state variable, is the unconditional

standard deviation of mispricing, so that γi = 0.01 implies a 1% standard deviation of the

mispricing variable for firm i. Note first that, in contrast to the results obtained with

slow adjustment of prices where the bias component B2 was close to zero, it can now be

significant if innovations in the state variable (liquidity) are correlated with rational returns,

and may even exceed B1 if the correlation is sufficiently high.

There is considerable variation in the time series properties of the aggregate liquidity

measures that have been reported in the literature. Using monthly data, Pastor and Stam-

baugh (2003) report that their measure has a first order autocorrelation of 0.22, Acharya

and Pedersen (2005) report a value of 0.87, and the first order autocorrelation of the Sadka

(2006) liquidity measure is 0.71.12 Amihud (2002) reports a value of 0.87 for annual data.

Panel A shows that if aggregate liquidity is primarily a high frequency phenomenon, as

suggested by the Pastor and Stambaugh (2003) estimate of the first order autocorrelation

then, even if liquidity has only a modest effect on stock prices, it can cause a fairly large

return bias. For example, a stock whose liquidity related mispricing has a standard deviation

(γi) of 5% will have an annualized return bias of 3.96% if the correlation of its rational

return with innovations in liquidity is 0.25. For the higher Sadka ( Acharya and Pedersen)

value of ρz
1 used in Panel B(C) which implies greater persistence in liquidity, the return

bias is significantly lower for a given combination of mispricing volatility and ρi∆zm . The

annualized bias drops to 1.86%(1.05%) for γi = 5% and ρi,∆zm = 0.25. However, if liquidity
12Private communication. This is the autocorrelation of the variable component of liquidity. The au-

tocorrelation of the fixed component of liquidity is 0.97. Sadka finds that sensitivity only to the variable
component of liquidity is priced.
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is a relatively persistent variable then higher values of γi are more plausible, and some

liquidity sensitive stocks (e.g. γi = 0.1) may have return biases of the order of 4-7%. Panel

D shows that if aggregate liquidity is highly persistent as suggested by Amihud (2002), then

the return bias due to mispricing is likely to be fairly small. For example, if the standard

deviation of liquidity related mispricing is 10% and the correlation between innovations in

liquidity and the market return is as high as 0.5, then the annual return bias is only 0.89%,

and this is the maximum bias for the range of parameter values considered.

The increasing monotonic relation between γi the systematic liquidity risk of a security

i and its return bias is consistent with the findings of Pastor and Stambaugh, Acharya and

Pedersen. Moreover it seems likely that γi and ρi∆zm will be positively related: stocks whose

prices are highly sensitive to liquidity (high γi) will also be those whose overpricing tends

to increase when the rational return is high (high ρi∆zm) since liquidity is positively related

to market returns. This positive association between γi and ρi∆zm will tend to increase

the apparent liquidity risk premium as measured by the slope of a simple regression of the

return bias on the systematic liquidity risk γi. However, a complication in applying this

analysis to the prior empirical findings is that both Pastor and Stambaugh and Acharya

and Petersen report negative values for the liquidity betas of a substantial fraction of their

portfolios and the mononotonicity of the mispricing return bias can only be guaranteed for

positive γi.13 It is possible that the negative liquidity betas are an artefact of including in

the multiple regression in which they are estimated the returns on the Fama-French (FF)

portfolios HML and SMB which themselves have exposure to the liquidity state variable.

5 Empirical Analysis

In this section we present evidence that risk adjusted returns are related to proxies for the

mispricing return bias. We focus on the bias element B1 ≈ (1−ρz
1)σ

2
z , and assume that B2 is

zero, because B2 6= 0 implies non-zero correlation between the innovations in mispricing and

fundamental returns, which causes identification problems in our Kalman filter estimation of

B1; this is discussed in Watson (1986), and Harvey (1989). We use two approaches to proxy
13Indeed, since we have argued that B2,i is likely to be small, the return bias is likely to be decreasing in

γi for negative values of γi.
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for B1. First, we use a Kalman filter to estimate the bias, assuming that the mispricing

follows a simple AR1 process. The AR1 assumption is restrictive, and does not allow for

positive short term autocorrelation in returns: as a result, our estimation algorithm did

not converge for a significant number of stocks.14 Therefore our second approach uses the

volatility and variance ratio of residual returns to proxy for mispricing. The variance ratio,

which is approximately a linear combination of sample autocorrelations (Cochrane, 1988),

does not require us impose any structure on the mispricing process.

5.1 Data

The primary data that we use are the monthly returns on all stocks registered on the

NYSE, AMEX and NASDAQ from January 1962 to December 2004, which are taken from

CRSP. We include only common shares, and exclude preferred stocks, ADR’s, REIT’s,

etc. To alleviate the potential influence of ‘stale prices’, we include only observations with

positive trading volume and with valid month-end closing prices. We also filter out penny

stocks. We use as factors in the fundamental asset pricing model monthly returns on the 3

Fama-French factors, and the momentum factor of Carhart (1997); these, together with 1-

month Tbill returns, are taken from Ken French’s website.15 In order to construct predicted

mispricing return bias estimates, we use data on book values from COMPUSTAT, and on

prices, market capitalization and turnover from CRSP. Finally, in some of our regressions

we use data on analyst following and the dispersion of analysts’ forecasts of earnings 1 to 2

quarters ahead, which are taken from IBES.

5.2 AR1 Estimates of Mispricing

In order to identify mispricing, the ‘fundamental return’, R∗, was assumed to follow an

ex-post version of the Fama-French 3-factor model (FF3):

R∗
i,t −RF,t = αi + bi(RM,t −RF,t) + ciSMBt + diHMLt + εi,t (26)

14We also developed an estimate of the bias based on an AR2 process for the mispricing. See Khil and Lee
(2002). The empirical results for this model are qualitatively similar to those for the AR1 process. However,
they are less significant, which is probably due to the difficulty of identifying the parameters of the more
complex model.

15http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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where R∗
i,t is the fundamental return on stock i in month t, RF,t is the riskless interest rate,

and RM,t, SMBt,HMLt are the Fama-French factors. Then the market return, Ri,t is given

by:

Ri,t −RF,t = αi + bi(RM,t −RF,t) + ciSMBt + diHMLt + ei,t (27)

where ei,t = zi,t − zi,t−1 + εi,t, and zi,t is (approximately) the log of the mispricing factor at

time t.

The log of the mispricing was assumed to follow the AR(1) process in Equation (13).

Then, following Khil and Lee (2002), a Kalman filter was used to estimate the logarithm

of the mispricing factor, zt, and the parameters of the mispricing process, φ1 and ση, from

the FF3 residual returns, ei,t. The observation equation for the Kalman filter is:

et = zt − zt−1 + εt (28)

and the transition equation is zt = φ1zt−1 + ηt. Given the estimates from the Kalman

filter, the estimated mispricing return bias is:

B̂1 ≈ (1− φ̂1)σ̂2
z =

σ̂2
η

1 + φ̂1

(29)

Details of the Kalman filter algorithm are given in the Appendix.

The parameters of the mispricing process and the mispricing return bias, B̂1, were

estimated in January of each year from 1967 to 2004 for all stocks with at least 36 monthly

returns using the FF3 residual returns estimated over the previous 60 months as available.

Panel A of Table 3 reports the results of regressing the Kalman filter estimates of

the first order autocorrelation, φ1, the variance of the mispricing variable, σ2
z , and the

resulting bias, B1, on firm characteristics that may be expected to influence mispricing.

The characteristics that we consider are firm size, book-to-market ratio, share price, share

turnover, the logarithm of the number of analysts following the firm, and the dispersion of

the analyst earnings forecasts for the next 1 to 2 quarters. Only firms that are followed by

at least two analysts are included in the regressions.

Firm size is positively associated with the persistence, and negatively associated with

the variance, of mispricing, so that the net effect of firm size on the return bias is negative.
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Book-to-market ratio is negatively associated with the variance of misprcing, and therefore

with the return bias. As a result, small growth firms tend to have more variable mispricing

and therefore a higher mispricing return bias. A higher stock price reduces the persistence

of mispricing (insignificantly), and reduces the volatility of mispricing; the net effect is that

higher stock prices reduce the mispricing return bias.16 The main effect of turnover is to

increase variance of the mispricing, and therefore the return bias.17 We had expected the

number of analysts following a stock to reduce the persistence and variability of mispricing,

and the dispersion of analysts forecast to increase the variability of mispricing. While the

signs of the coefficients on the number of analysts are consistent with these expectations,

they are not significant, and the net effect of the number of analysts on the return bias

is insignificant. On the other hand, the dispersion of analysts’ forecast is significantly

associated with variability of the mispricing and therefore with the return bias, and the

direction of the effect is consistent with prior intuition.

In order to assess the relation between our estimates of the mispricing return bias and

risk-adjusted returns, stocks were assigned in January of each year from 1967 to 2004 to

one of ten equal size portfolios according to the current mispricing return bias estimate,

B̂1, after winsorizing by excluding stocks whose bias estimates fell into the top decile18. An

equal investment was assumed to made in each stock in the portfolios at the beginning of

the year and no rebalancing was assumed within the year.19 The first portfolio allocation

occurs at the end of December 1966, and the last at the end of of December 2003. The

post-ranking returns were then linked across time, yielding a time series of returns for each

decile from January 1967 to December 2004. On average, there are over 180 stocks within

each portfolio, and at no time is the number of stocks in any portfolio less than 98. Stocks
16Kumar and Lee(2006) report that the returns on small firms, lower priced firms, firms with lower

institutional ownership, and value firms, have higher loadings on a measure of retail investor sentiment
(which induces transient mispricing).

17To address the issue of inter-dealer trading in OTC markets, we multiply the NASDAQ volume by 0.6,
following Atkins and Dyl (1997).

18The results were similar without winsorization.
19Since mispricing is most likely to found among small stocks, we use an equal weighting scheme to

compensate for the over-representation of large, liquid, and closely followed stocks that are less likely to be
subject to mispricing. Acharya and Pedersen (2005), Amihud (2002), and Chordia et al. (2000) adopt a
similar strategy in their studies of liquidity and asset pricing. Liu and Strong (2006) show that monthly
rebalancing can lead to significant biases in average returns, especially for small, low price, value and loser
stocks.
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for which Kalman Filter did not converge were assigned to Portfolio ‘NCV ′. The 10-1

spread corresponds to a zero-investment portfolio that is long in the high bias portfolio and

short in the low bias portfolio.

Panel A of Table 4 reports the characteristics of the portfolios. Betas of the portfolios

were obtained by regressing excess returns on the portfolios on the three FF factors and

the momentum factor of Carhart (1997). The high bias portfolios tend to have higher

loadings on the market and on SMB, and lower loadings on HML. Mispricing return bias

is strongly related to firm size as we found in Table 3, which is also consistent with the

pattern of loadings on SMB: the relation is almost perfectly monotonic and the firms in

the high bias portfolio are less than 1/10th of the size of firms in the low bias portfolio. The

lower loadings of high bias portfolios on HML are also consistent with the finding in Table

3 that return bias is higher for growth firms. The size composition of decile portfolios is

consistent with the relation between firm size and return bias reported in Table 3. There is

no relation between the loadings on MOM and bias. The average firm in Portfolio NCV

has characteristics that are close to the average of all firms, except for βHML, which is close

to that of the high bias portfolio.

The average estimated AR1 coefficient, φ1, varies almost monotonically from 0.07 for

the low bias portfolio to 0.26 for the high bias one. The average volatility of mispricing,

σz, is monotonic, ranging from 1.26% for the low bias portfolio to 10.93% for the high bias

portfolio. Finally, the estimated volatility of the fundamental return, σε, is monotonically

increasing across portfolios, so that the firms with the most (fundamental) idiosyncratic risk

tend to be those most subject to mispricing. The estimated annualized mispricing return

bias runs from 14 bp to over 7%. Note that expression (29) implies that the estimated

bias is non-negative. For the first six portfolios the bias estimates are moderate, reaching

1.76% for portfolio 6. However, they increase rapidly for the last four portfolios, more than

doubling between portfolios 8 and 10.

The excess returns on the decile portfolios were regressed in turn on the excess market

returns, on the 3-factor FF model, and on the Carhart 4-factor model. The intercepts from

these regressions provide estimates for risk-adjusted returns, which are reported in Panel B.

There is a clear tendency for the risk-adjusted returns to increase in the bias estimates for
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all three risk adjustment benchmarks. The correlation between the return bias estimates

and both the FF3 and the FF4 adjusted returns is 0.95. The spread in FF3 adjusted return

between the high and low bias portfolios is 4.44% per year, and is statistically significant.

The power of our test is limited by the errors in the Kalman filter estimates of the return

bias. Therefore, following Pastor and Stambaugh (2003), we also constructed portfolios

based on predicted values of the mispricing return bias. The original Kalman filter estimates

were projected onto a set of firm characteristics, which explained more than 70% of the

variation in the bias estimates. The predicted biases used for portfolio formation at the end

of year t were calculated using parameters estimated by ordinary least squares on all data

up to that date, so that there is no look-ahead bias in the portfolio formation procedure.

The results of using the predicted return bias as a sorting variable were quite similar to

those reported in Table 4. The new portfolio formation procedure reduced the spread in the

estimated return bias from 7.21% per year to 4.27% but, consistent with the more efficient

portfolio formation method, the realized risk adjusted return spread rose from 4.44% per

year to 8.20%.

Thus there is strong evidence that commonly used measures of excess return at the

monthly frequency are significantly affected by the mispricing return bias that we have

identified. As a robustness check we shall examine whether other proxies for the mispricing

return bias are also associated with excess risk-adjusted returns.

5.3 Variance Ratio and Volatility of Residual Returns

Equation (10) shows that the return bias, B1, is increasing in the volatility of mispricing

σz, and decreasing in the first order autocorrelation ρz
1. Unfortunately, as we have seen,

the mispricing variable, z, is not directly observable and therefore these parameters can be

inferred only by making strong assumptions about the stochastic process of the mispricing

variable. These assumptions are unlikely to be satisfied in practice. Therefore, as a robust-

ness check, in this section we adopt a more informal approach to proxying for the mispricing

return bias.

Define the k-month variance ratio for (FF3) residual returns by V R(k) ≡
(
var(ek)/k

)
/var(e1),
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where ek is the cumulative residual return over k months. First, we observe that in the

absence of mispricing, the FF3 residuals will be serially independent, so that V R(k) = 1.

To the extent that there is transient mispricing, the variance ratio will be less than 1, and

the stronger is the mean reversion in mispricing, the lower will the ratio. This suggests

using the variance ratio of residual returns as a proxy for ρz
1. The volatility of residual

returns, σe, depends on both the idiosyncratic volatility of the fundamental returns (σε)

and the variability of mispricing (σz). Therefore we can think of residual return volatility

(σe) as a noisy signal of the volatility of mispricing (σz). Hence we expect the mispricing

return bias to decrease in the variance ratio and to increase in residual return volatility.

Our analysis is based on the 24-month variance ratio.20 The results in Panel B of Table

3 provide support for these conjectures. The variance ratio is negatively associated with the

persistence of the mispricing that is estimated using the AR1 Kalman filter, while residual

return volatility is positively associated with the estimated variability of mispricing, and

both variables are highly significant in explaining the estimated mispricing bias. Since it is

likely that the AR1 model is misspecified, it is possible that the variance ratio and residual

return volatility will be better proxies for the unobservable true mispricing return bias.

10 portfolios were formed each year based on the 24-month residual variance ratio esti-

mated over the previous 60 months, V R(24). Only stocks with at least 36 monthly returns

within the past 5 years were considered. The variance of the one month residual returns

was estimated using the previous 5 years’ FF3 residuals. The variance of the sum of 24

months’ residuals, var(e24), was estimated as the average of the squared sum of residuals

over each 24-month period in the previous 5 years. Thus, the residuals over months 1-24

were summed and squared, similarly with the residuals for months 2-25,..,37-60, and the

average of these was taken as the estimate of the 24-month variance. Securities were then

assigned to one of 10 portfolios according to the variance ratio estimate.

The characteristics of the portfolios are reported in Table 5. The estimates of the vari-

ance ratios for individual stocks are very noisy, so that the sample selection bias involved

in sorting on this variable causes the spread of portfolio average variance ratio estimates to

be very wide, ranging from 0.12 to 2.04 as compared with the value of unity implied by the
20Results obtained using 12 and 36 month variance ratios were similar.
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iid assumption. Nevertheless, it is striking that for 8 out of the 10 portfolios the estimate

of V R(24) is less than unity; this, together with the fact that the average residual autocor-

relation is negative for 9 portfolios, suggests a widespread tendency for residual returns to

reverse themselves, which is consistent with transient mispricing. There is relatively little

difference in the average residual variances of the stocks in the portfolios except for Portfolio

1 whose residual variance is about 33% higher than that of the other portfolios. Firm size

tends to decrease with the variance ratio, but the relation is not as marked as it was for the

previous two portfolio formation methods. As conjectured, the (FF3) risk adjusted returns

are decreasing in the variance ratio, with a correlation of -0.89. The spread in risk-adjusted

returns between the high and low VR portfolios is similar to that reported in Table 4 for

portfolios formed on AR1 return bias estimates. However, the t-statistic on the spread in

the (FF3) risk adjusted returns is now 3.91, instead of 2.29.

In order to determine whether risk adjusted returns decrease in variance ratio, holding

constant the residual variance, 25 portfolios were formed each year. First the stocks were

sorted into quintiles based on the estimated variance of the residual returns. Then within

each variance quintile the stocks were further sorted into quintiles based on V R(24).21 The

time series of returns on the resulting 25 portfolios were calculated as in the previous case

assuming equal investments in each stock and annual rebalancing. Risk-adjusted returns

were then calculated as before and the results are reported in Table 6. We focus on the

results for returns that are adjusted for risk using the 3 and 4 factor models, which are

quite similar.

The relation between risk adjusted returns and the variance ratio depends strongly on

the residual variance. As the residual variance increases, the relation becomes stronger

and is highly significant for the two highest residual variance quintiles. The spread in the

risk adjusted returns for the highest residual variance quintile is 9.12% per year with a t-

statistic of 4.51. When a ‘σ2
e -neutral’ portfolio is formed for each VR category by averaging

the returns across the five σ2
e quintiles, the spread between the (FF3) risk adjusted return

on the low and high VR portfolios is 3.36% per year with t−statistic of 4.44.

In order to explore the effect of the residual variance holding constant the variance
21Similar results were obtained when sorting simultaneously on these two variables.
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ratio, the portfolios were reformed by sorting first on the variance ratio and then on the

residual variance. The results are reported in Table 7. Only for the lower VR quintiles

is there any evidence that residual variance is associated with risk adjusted returns after

controlling for VR. For the lowest VR quintile the (FF3) risk adjusted return increases

monotonically in the residual variance, and the spread between the risk-adjusted returns

on the high and low σ2
e portfolios is 9.32% per year which is significant at 1% level.22 Note

that we should not expect a relation between risk-adjusted returns and residual variance for

the high variance ratio quintile portfolios since these portfolios are unlikely to be subject

to significant mispricing.

Finally, we repeat the analysis, sorting first on firm size and then on the variance ratio.

The results are reported in Table 8. For all but the 2nd size quintile, the spread in risk

adjusted returns between low and high VR portfolios is positive and significant. For the

large firm quintile, the spread is less than 3% per year and for the small one, the spread

is over 5% per year, which is consistent with the greater mispricing volatility among small

firms. For all levels of the variance ratio the risk-adjusted return in highest on small firms

by a wide margin. This is consistent with the volatility of mispricing being largest for small

firms.

6 Conclusion

In this paper we have shown that when market prices differ from fundamental prices because

of stochastic pricing errors, a bias in average returns is created due to Jensen’s inequality.

The bias has two components. The first component is decreasing in the persistence of the

pricing errors and increasing in their volatility, while the second is equal to the covariance of

the fundamental return with the innovation in the proportional mispricing. Three specific

models of the pricing error were considered. The first assumes that the (log of) relative

mispricing follows an AR(1) process that is uncorrelated with fundamentals. It is shown

that if the volatility of the mispricing is 20% and 10% of the mispricing is eliminated each
22Spiegel and Wang (2005) report that at the monthly frequency expected returns are increasing in the

level of conditional idiosyncratic risk measured relative to the FF 3-factor model, while Ang et al. (2006a,b)
find that at the daily frequency the relation is reversed in the US and most foreign markets. Neither study
considers the variance ratio.
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month, then the annualized return bias is of the order of 5% per year. It was argued that, to

the extent that measures of individual stock illiquidity proxy for mispricing, it is likely that

a significant portion of the very high return premium for illiquidity that has been estimated

in previous studies may be due to the mispricing return bias.

The second model assumes that market prices respond slowly to innovations in the

fundamentals that determine the equilibrium price. Simulations show that when this is

the only departure from market efficiency the mispricing return bias is likely to be small.

However, if some additional noise is introduced into the market price then it is possible to

generate a mispricing return bias of the order of 4.5% per year while preserving a plausibly

small first order autocorrelation in returns. Thus the mispricing return bias has the potential

to explain a significant portion of the return premium associated with slow price adjustment

to new information that has been identified by Hou and Moskowitz (2005).

The third model of mispricing assumes that mispricing for individual securities responds

to a common market-wide factor such as liquidity. In this model the mispricing return bias

in increasing in the responsiveness of mispricing to this factor, which corresponds to the

‘liquidity beta’ estimated in previous studies. It is shown that, depending on the persistence

of liquidity, the mispricing return bias could account for a significant portion of the return

premium that has been found to be associated with liquidity betas.

In order to estimate the mispricing return bias for individual securities we assume an

AR(1) process for the (log of) relative mispricing, and apply a Kalman filter to the residuals

from the Fama-French 3 factor model assuming that mispricing is unrelated to fundamentals.

The estimated variability of mispricing is found to be negatively related to firm size, B/M

ratio, stock price, and number of analysts following the firm; it is positively related to share

turnover and the dispersion of analysts’ earnings forecasts. The persistence of mispricing is

positively related to firm size and (insignificantly) to B/M ratio, turnover and dispersion of

analysts’ forecasts. Persistence is negatively related to share price and number of analysts

following. Consequently, under the (strong) assumption that mispricing is independent of

fundamentals, the mispricing return bias is negatively related to firm size, B/M ratio, share

price and (insignificantly) analyst following. It is positively related to share turnover and

the dispersion of analysts’ forecasts.

24



When 10 portfolios are formed on the basis of the estimated mispricing return bias,

the FF3 risk adjusted returns have a correlation of 0.95 with the estimated mispricing

return bias, and the spread in the risk adjusted returns between the highest and lowest bias

portfolios is 4.44% per year with t-statistic of 2.29. We also constructed portfolios based

on predicted values of the sorting parameter (bias), where the predictions were obtained

by projecting the Kalman filter estimates onto firm characteristics. As expected, with

the more efficient sorting procedures the portfolios display a wider range in risk-adjusted

returns. Thus there is significant evidence that risk adjusted returns are affected by the

mispricing return bias that we have analyzed.

As a robustness check, we also form portfolios based on the 24-month variance ratios

from the Fama-French 3-factor model. Consistent with our hypothesis, we find that risk-

adjusted returns are significantly higher on low variance ratio portfolios, and when we sort

first on residual return volatility and then on variance ratio we find that the effect is more

pronounced for the high residual volatility groups of portfolios. This is consistent with the

hypothesis that the variance ratio of residual returns is a good proxy for the first order

autocorrelation of mispricing and that the volatility of residual returns is a proxy for the

volatility of mispricing. However, when we form portfolios first on the variance ratio and

then on residual volatility, we find only weak evidence, for the low variance ratio quintile

portfolios, that risk-adjusted returns increase with residual volatility, holding contant the

variance ratio.

Our results suggest caution for researchers who attempt to measure the effects on risk-

adjusted returns of variables such as liquidity which may be good proxies for mispricing, and

of variables such as liquidity betas which measure the amplitude of price fluctuations about

fundamental value. Such variables are likely to proxy for the mispricing return bias. Finally,

we observe that the mispricing return bias is primarily a ‘high frequency’ phenomenon. It

is present in monthly returns but is likely to be attenuated in quarterly or annual returns.
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Appendix

A. Kalman Filter Algorithm for an AR1 z process

Assume that the logarithm of the mispricing component, zt, follows a AR1 process, the

transition equation can then be denoted as

αt = Ttαt−1 + wt with wt ∼ N(0, Qt) (A1)

where αt = [zt], Tt = [φ1], wt = [ηt],Qt =
[
σ2

η

]
.

The observation equation is based on the FF3 risk adjusted returns,et, t = 1, 2, ...T , and

is given

et = µ + s′tαt + εt (A2)

with st =
[

1
−1

]
, and εt ∼ N(0, σ2

ε )

At the end of each year from 1967 to 2003, for each stock, a Kalman filter is fitted to

the FF3 adjusted returns over the past 60 months, following a 2-stage iteration process.

The first stage is the prediction stage. At time t− 1, the optimal predictor, αt|t−1, and the

associated covariance, Pt|t−1, are given by

αt|t−1 = Ttαt−1|t−1 (A3)

Pt|t−1 = TtPt|t−1T
′
t + Qt (A4)

The second stage is the updating stage. When et becomes observable at time t, we

can calculate the prediction errors given by the predicted parameter in the first stage,

vt = er−et|t−1 = s′t(αt−αt|t−1)+εt, with mean of 0, and variance of s′Pt|t−1st +σ2
ε . Define,

ft ≡ s′tPt|t−1st + σ2
ε , the parameters then are updated as follows:

αt|t = αt|t−1 + Pt|t−1st(et − s′tαt|t−1)f
−1
t (A5)

Pt|t = Pt|t−1 − Pt|t−1sts
′
tPt|t−1f

−1
t (A6)

and Pt|t−1stf
−1
t is also known as ”Kalman Gain”. The log likelihood function of the obser-

vations (e1, e2, ... et) can be calculated as

L = −T

2
log(2π)− 1

2

T∑
t=1

log(ft)−
1
2

T∑
t−1

v2
t

ft
(A7)
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Following Campbell (1989), initial guesses of α0 and P0 are set to zero and σ2
η

1−φ2
1
, respec-

tively. We maximize the above log likelihood function to get the final parameter estimates.

Based on the estimated parameters, the bias is calculated by

B̂1 = e(1−φ̂1)σ̂2
z − 1 = e

σ̂2
η

1+φ̂1 − 1 (A8)

.

B. Simplified Kalman Filter for Portfolio Construction

In Appendix A, Kalman filter estimation iterates over the parameters φ1, σ2
η, and σ2

ε . To

reduce the number of estimated parameters, we resort to the following moments conditions

in FF3 risk adjusted stock returns, et. The first order autocorrelation condition of this

residual stock returns ρe
1 states

ρe
1 ≡ ρet,et−1 =

(2ρz
1 − ρz

2 − ρz
0)σ

2
z

σ2
e

(B1)

and the variance for this residual return is denoted as σ2
e .

Recall

σz
2 =

ση
2

1 + φ1
(B2)

Combine this with the Yule-Walker condition for the autocorrelations in z:

ρz
1 = φ1 (B3)

ρz
2 = φ2

1 (B4)

...

Plug all these into the ρe
1 equation, and we get:

ρe
1σ

2
e =

(φ1 − 1)σ2
η

φ1 + 1
(B5)

hence, σ2
η can be expressed as a function of φ1, while ρe

1 and σ2
e are measured with the

sample moments:

σ2
η =

ρe
1σ

2
e(φ1 + 1)
φ1 − 1

(B6)
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Furthmore, recall et = zt − zt−1 + εt, hence, we have

σ2
e = σ2

∆z + σ2
ε (B7)

= 2(1− φ1)σ2
z + σ2

ε (B8)

=
2σ2

η

1 + φ1
+ σ2

ε (B9)

Therefore, σ2
ε can also be expressed as a function of φ1:

σ2
ε = σ2

e

(
1− 2ρe

1

φ1 − 1

)
(B10)

By now, the free parameter set is reduced to just φ1 for the Kalman filter estimation.

This substantially reduces the estimation time.
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Table 1:Simulation Estimates of Mispricing Return Bias in a Model with Slow Adjustment of Prices
and Random Shocks to Market Prices.
Market prices Pt adjust slowly to fundamental prices P ∗

t which themselves follow an ex-post form of the CAPM:

P ∗
t+1 = P ∗

t

ˆ
1 + Rf + β(Rmt − Rft) + εt+1

˜
Pt+1 = κP ∗

t+1 + (1 − κ)Pt + Ptξt+1

Market returns, Rmt, and risk free interest rates, Rft, are randomly chosen samples of 200 consecutive months of
CRSP market and risk free returns from the period January 1926 to December 2003. εt+1 and ξt+1 are simulated
normal variates. The table reports average values from 5000 simulations for a stock with β = 1. The volatilities σε, σξ,

and σR, which are in per cent per year, are annualized by multiplying by
√

12. ρR
1 is the first order autocorrelation

of the simulated stock return: Rt+1 ≡ Pt+1/Pt−1. σz and ρz
1 are the estimated standard deviation and first order

autocorrelation of the mispricing variable, z ≡ ln(P/P ∗). B, B1 and B2, which are in per cent per year, are the
annualized estimates of the mispricing return bias and its components calculated from the expressions in equation
(9). α, which is annualized and in per cent per year, and β are the estimated coefficients from the regression of the
simulated stock excess returns on the market excess return.

Simulation Parameters Simulated Return Properties

κ σε σξ σR ρR
1 σz ρz

1 B1 B2 B α β

Panel A: σξ = 0.0

0.98 30.00 0.00 36.83 0.07 .00 0.065 0.00 0.00 0.00 0.10 0.98
0.90 30.00 0.00 34.10 0.15 0.01 0.14 0.13 -0.01 0.12 -0.15 0.91
0.80 30.00 0.00 31.06 0.25 0.02 0.24 0.50 -0.02 0.48 -0.19 0.83
0.70 30.00 0.00 28.10 0.35 0.03 0.34 1.09 -0.01 1.08 -0.22 0.74

0.98 15.00 0.00 26.20 0.12 0.01 0.12 0.26 0.00 0.26 0.05 0.98
0.95 15.00 0.00 25.60 0.15 0.00 0.15 0.08 0.00 0.08 0.08 0.96
0.90 15.00 0.00 24.40 0.20 0.01 0.19 0.07 0.00 0.07 0.39 0.92
0.80 15.00 0.00 22.30 0.30 0.02 0.29 0.23 -0.00 0.23 0.93 0.83
0.70 15.00 0.00 20.20 0.39 0.02 0.38 0.51 -0.01 0.50 1.58 0.74

Panel B: σξ > 0.0

0.98 15.00 0.15 34.10 -0.13 0.04 0.01 2.33 0.00 2.33 2.29 0.98
0.95 15.00 0.15 33.30 -0.11 0.04 0.04 2.72 0.00 2.71 2.39 0.96
0.90 15.00 0.15 32.10 -0.07 0.04 0.09 2.75 -0.01 2.74 2.51 0.91
0.80 15.00 0.15 29.90 -0.02 0.05 0.20 2.74 -0.02 2.72 2.82 0.83
0.70 15.00 0.15 27.80 0.04 0.05 0.31 2.82 -0.02 2.80 3.28 0.74

0.70 17.00 0.20 33.00 -0.05 0.06 0.30 4.25 -0.02 4.23 4.72 0.74
0.65 17.00 0.20 31.90 -0.03 0.07 0.35 4.62 -0.03 4.59 4.77 0.69

Panel C: κ = 1,σξ > 0.0

1.00 17.00 0.20 40.26 -0.22 0.06 -.0.01 4.04 0.00 4.04 4.06 1.00
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Table 3: Determinants of the Mispricing Return Bias
The coefficients are the time series averages of the coefficients from cross-sectional regressions of security mispricing
return bias estimates on firm characteristics. t−statistics are computed using standard errors computed from the time
series of the coefficients and take account of heteroscedasticity and autocorrelation using a Newey-West adjustment
with 4 lags.

φ̂1, σ̂2
z and B̂1 are estimated from the residuals from Fama-French 3-factor regressions using a Kalman filter and

assuming an AR1 process for mispricing. Only firms with at least 2 analysts are included in the regressions. Size
is the market value of equity at the end of the year. B/M is the book-to-market ratio calculated from the year end
market value and the most recent book equity that is available at least two quarters before the year end. Price is the
share price at the end of the year. Turnover is the ratio of the average number of shares traded per month to the
number of shares outstanding during the last quarter of the year. NASDAQ turnover is multiplied by 0.6. #Analysts
is the number of investment analysts following the firm at the end of the year. DISP is the dispersion of the analysts’
earnings forecasts for the next 1-2 quarters. V R(24) and σ2

e are the 24-month variance ratio and variance of residual
returns from a Fama-French 3-factor regressions over the previous 60 months.

φ̂1(%) σ̂2
z B̂1

coeff t-stat coeff t-stat coeff t-stat

Panel A:1976-2003
Const 10.09 6.36 99.93 4.19 6.32 4.88

log(Size) 1.13 2.87 -10.14 -3.62 -0.65 -3.97

B/M 0.28 0.46 -6.51 -2.67 -0.41 -3.37

Price -0.02 -1.10 -0.18 -2.49 -0.01 -6.06

Turnover 0.04 0.74 2.83 5.84 0.12 6.73

log(#Analysts) -0.81 -1.62 -1.28 -0.65 -0.04 -0.47

DISP 2.11 1.35 14.40 3.25 0.52 2.08

AdjR2 (%) 0.17 4.49 16.20

Panel B:1966-2003
Const 17.09 23.95 7.27 1.01 1.13 3.71

VR(24) -4.50 -12.62 -7.95 -0.98 -1.34 -6.30

σ2
e 0.00 0.22 0.37 15.84 0.02 17.63

AdjR2 (%) 0.38 19.08 58.76
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Table 4: Properties of Equally-Weighted Decile Portfolios formed Each Year from January 1967 to
December 2004 on Kalman Filter Estimates of the Mispricing Return Bias
Mispricing Return Bias, which is winsorized at 90% level and annualized and in per cent, is equal to (1 − φ1)σ2

z ,
where φ1 and σz are the first order autocorrelation and volatility of mispricing which are estimated from Fama-French
3-factor residuals using a Kalman filter and assuming an AR(1) process for mispricing. The β′s are the loadings of the
portfolio returns on the 3 Fama-French and the Carhart Momentum factors. Size is the time series mean portfolio size
in billion $. σz and σε, the volatility of the (log) mispricing variable (z) and the monthly volatility of the fundamental
return (ε), are quoted in per cent. Panel B reports raw returns and the intercepts (α) from regressions of excess
returns on the market excess returns (CAPM), the 3 Fama-French factors (FF3), and the 3 Fama-French factors plus
the Carhart Momentum factor (FF4). The returns and α′s are in per cent per month, and the t-statistics are adjusted
for autocorrelation and heteroscedasticity. Stocks for which the Kalman filter fail to converge are included in Portfolio
NCV.

Port Port Spread Port
Low Bias 2 3 4 5 6 7 8 9 High Bias 10 − 1 NCV

Panel A: Portfolio Characteristics
βmkt 0.89 0.92 0.94 0.99 0.99 1.01 1.03 1.05 1.05 1.05 0.16 1.01
t-statistic 36.78 41.25 41.03 47.91 46.91 42.22 43.60 39.90 36.86 32.47 4.07 57.70

βSMB 0.42 0.43 0.47 0.56 0.67 0.77 0.88 1.01 1.21 1.42 1.00 0.86
t-statistic 15.08 9.14 10.56 16.60 14.04 17.32 19.21 20.76 25.13 24.44 14.80 29.18

βHML 0.44 0.45 0.44 0.44 0.38 0.39 0.36 0.35 0.31 0.23 -0.21 0.22
t-statistic 11.19 9.20 9.81 10.56 8.58 8.37 7.72 5.63 5.50 2.99 -2.13 7.14

βMOM -0.02 -0.03 -0.05 -0.02 -0.02 -0.02 -0.04 -0.06 -0.06 -0.05 -0.02 -0.06
t-statistic -0.79 -0.76 -1.38 -0.63 -0.67 -0.67 -1.18 -1.49 -1.20 -0.77 -0.34 -1.46

Size 2.33 2.08 1.90 1.34 1.02 0.88 0.55 0.36 0.24 0.15 0.99

φ1 0.07 0.03 0.05 0.08 0.12 0.14 0.16 0.20 0.22 0.26

σz 1.26 2.12 2.81 3.41 4.09 4.85 5.66 6.72 8.26 10.93

σε 7.33 7.39 7.41 7.74 8.14 8.36 9.02 9.61 10.29 11.45

Mispricing Return
Bias (% p.a.) 0.14 0.40 0.66 0.96 1.32 1.76 2.34 3.20 4.59 7.35

Number of Stocks
Mean 187 188 188 187 186 185 185 185 185 184
Mininum 103 102 105 101 101 101 98 101 102 103

Port Port Spread Port
Low Bias 2 3 4 5 6 7 8 9 High Bias 10 − 1 NCV

Panel B:Monthly Returns, (%)
Raw Ret 1.32 1.37 1.39 1.34 1.41 1.48 1.62 1.66 1.78 1.94 0.62 1.43
t-statistic 5.95 6.02 5.64 5.23 5.33 5.21 5.26 5.09 4.95 4.86 2.48 4.70

Capm α 0.42 0.46 0.45 0.38 0.43 0.48 0.59 0.61 0.71 0.83 0.41 0.40
t-statistic 3.22 3.58 3.22 2.76 2.99 3.20 3.46 3.37 3.21 3.37 1.95 2.45

FF3 α 0.10 0.13 0.12 0.04 0.10 0.14 0.25 0.25 0.33 0.48 0.37 0.13
t-statistic 1.35 1.98 1.40 0.59 1.45 2.00 3.35 3.06 3.49 3.33 2.29 1.80

FF4 α 0.13 0.16 0.17 0.06 0.13 0.16 0.29 0.31 0.39 0.52 0.40 0.19
t-statistic 1.74 2.65 2.01 0.93 1.81 2.16 3.23 3.45 3.38 3.29 2.38 2.07
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Table 5: Properties of Equally-Weighted Decile Portfolios formed Each Year from January 1967 to
December 2004 on the Variance Ratio of Residual Returns
The 24 month variance ratio is estimated each year from the residuals of the residuals from Fama-French 3-factor
model regressions estimated over the previous 60 months. The portfolio returns run from January 1967 to December
2004.
V R(24) is the average of the 24-month variance ratios which are estimated from Fama-French 3-factor residuals over
the previous 60 months The β′s are the loadings of the portfolio returns on the 3 Fama-French and the Carhart
Momentum factors. Size is the time series mean firm size in billion $. σ2

e and AR1 are the average variance and
first order autocorrelation of the residuals from Fama-French 3-factor regressions over the previous 60 months. σ2

e
is in (per cent)2 per month. Panel B reports raw returns and the intercepts (α) from regressions of excess returns
on the market excess returns (CAPM), the 3 Fama-French factors (FF3), and the 3 Fama-French factors plus the
Carhart Momentum factor (FF4). The returns and α′s are in per cent per month, and the t-statistics are adjusted
for autocorrelation and heteroscedasticity.

High Low Spread
VR 2 3 4 5 6 7 8 9 VR 10 − 1

Panel A: Portfolio Characteristics
βmkt 1.05 1.02 1.02 1.00 0.98 1.01 0.98 1.00 1.00 0.94 -0.12
t-statistic 43.50 45.99 49.79 42.21 44.85 49.06 53.91 45.45 39.36 33.65 -3.41

βSMB 0.99 0.90 0.87 0.90 0.82 0.84 0.84 0.83 0.78 0.95 -0.04
t-statistic 26.10 25.22 22.94 22.06 18.27 32.03 27.82 22.73 16.83 24.85 -0.90

βHML 0.18 0.28 0.31 0.30 0.31 0.35 0.33 0.36 0.35 0.34 0.16
t-statistic 5.07 6.97 8.55 6.82 7.96 9.65 9.59 8.89 7.46 7.14 3.48

βMOM -0.05 -0.08 -0.07 -0.05 -0.06 -0.04 -0.02 0.00 -0.02 0.03 0.08
t-statistic -1.70 -1.74 -1.79 -1.06 -1.79 -0.98 -0.56 -0.15 -0.47 0.74 2.40

Size 0.79 0.86 0.96 1.00 1.06 1.09 1.09 1.04 1.17 1.03

VR(24) 2.04 1.13 0.83 0.65 0.52 0.41 0.33 0.26 0.19 0.12

AR1 0.01 -0.04 -0.06 -0.08 -0.09 -0.11 -0.11 -0.13 -0.14 -0.18

σ2
e 225.25 163.59 153.00 151.95 145.69 140.27 137.75 135.20 134.84 135.48

Number of Stock
Mean 287 287 288 288 289 288 289 289 289 289
Mininum 159 158 161 164 158 160 161 163 159 158

Pane B: Monthly Returns (%)
Raw Ret 1.38 1.42 1.49 1.57 1.56 1.55 1.55 1.61 1.67 1.71 0.32
t-statistic 4.16 4.59 4.88 5.18 5.39 5.33 5.33 5.42 5.68 5.78 3.47

Capm α 0.31 0.39 0.46 0.54 0.56 0.53 0.55 0.61 0.67 0.72 0.41
t-statistic 1.70 2.36 2.82 3.20 3.33 3.38 3.47 3.77 4.19 4.10 4.89

FF3 α 0.04 0.08 0.14 0.23 0.25 0.20 0.23 0.28 0.35 0.38 0.34
t-statistic 0.47 1.03 2.00 2.82 2.90 2.94 3.23 4.01 4.42 4.31 3.91

FF4 α 0.10 0.16 0.21 0.28 0.31 0.24 0.25 0.28 0.36 0.35 0.26
t-statistic 0.97 1.68 2.37 2.71 3.36 2.86 3.09 3.56 4.13 3.79 2.93
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Table 6: Properties of Equally-Weighted 5 by 5 Portfolios Sorted on VAR and Variance Ratios from
January 1967 to December 2004. At the end of each year from 1966 to 2003, stocks are sorted into σ2

e quintile
portfolios, where σ2

e is the variance of the residuals from Fama-French 3-factor model regressions estimated over the
previous 60 months. Within each σ2

e quintile, they are further sorted into 5 variance ratio (VR) portfolios, where VR
is defined as the ratio between the actual and the implied (assuming zero autocorrelation) variances of FF3 residuals
over a 24-month period. The table reports raw returns and the intercepts (α′s) from regressions of excess returns
on the market excess returns (CAPM), the 3 Fama-French factors (FF3), and the 3 Fama-French factors plus the
Carhart Momentum factor (FF4). The returns and α′s are in per cent per month, and the t-statistics are adjusted
for autocorrelation and heteroscedasticity.

Raw Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Lo σ2
e 1.23 1.27 1.23 1.27 1.21 -0.03 6.42 6.80 6.70 6.68 6.09 -0.38

2 1.34 1.33 1.33 1.41 1.43 0.09 5.43 5.36 5.41 5.94 5.86 1.26
3 1.41 1.41 1.52 1.50 1.61 0.20 4.75 4.78 5.25 5.02 5.40 2.54
4 1.57 1.65 1.73 1.65 1.86 0.29 4.14 4.37 4.82 4.48 5.07 3.04
Hi σ2

e 1.52 1.62 2.09 2.06 2.30 0.78 3.39 3.53 4.58 4.31 4.78 4.95
σ2

e neutral 1.42 1.46 1.60 1.59 1.70 0.28 4.74 4.88 5.45 5.30 5.60 4.84

CAPM Adj. Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Lo σ2
e 0.41 0.45 0.41 0.43 0.36 -0.05 3.07 3.54 3.45 3.60 2.81 -0.65

2 0.40 0.40 0.40 0.48 0.50 0.10 2.70 2.80 2.80 3.58 3.59 1.36
3 0.39 0.39 0.52 0.50 0.61 0.22 2.37 2.48 2.96 2.76 3.48 2.87
4 0.45 0.53 0.63 0.56 0.79 0.34 2.04 2.42 2.95 2.59 3.45 3.64
Hi σ2

e 0.32 0.43 0.92 0.88 1.16 0.84 1.18 1.50 2.90 2.69 3.43 5.52
σ2

e neutral 0.39 0.44 0.58 0.57 0.69 0.30 2.47 2.80 3.54 3.51 4.04 5.31

FF3 Adj. Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Lo σ2
e 0.12 0.15 0.13 0.16 0.07 -0.05 1.24 1.73 1.59 1.92 0.82 -0.64

2 0.07 0.07 0.04 0.16 0.13 0.06 0.75 0.72 0.44 1.83 1.56 0.81
3 0.07 0.02 0.13 0.13 0.23 0.16 0.90 0.24 1.55 1.35 2.90 2.06
4 0.08 0.18 0.34 0.21 0.44 0.36 0.72 1.88 3.33 1.83 3.77 3.67
Hi σ2

e 0.05 0.12 0.60 0.54 0.82 0.76 0.30 0.67 2.90 2.36 3.41 4.51
σ2

e neutral 0.09 0.12 0.26 0.25 0.37 0.28 1.21 1.92 3.81 3.81 4.56 4.44

FF3+MOM Adj. Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Lo σ2
e 0.16 0.18 0.14 0.17 0.10 -0.06 1.94 2.27 2.02 2.32 1.19 -0.75

2 0.11 0.13 0.09 0.19 0.20 0.09 1.34 1.53 1.09 2.58 2.57 1.12
3 0.13 0.10 0.20 0.20 0.24 0.11 1.40 1.21 2.25 2.23 2.76 1.32
4 0.12 0.23 0.38 0.23 0.48 0.36 0.94 1.84 3.15 1.74 3.35 3.72
Hi σ2

e 0.24 0.34 0.71 0.61 0.84 0.60 1.20 1.44 2.78 2.29 3.33 3.83
σ2

e neutral 0.14 0.19 0.31 0.27 0.37 0.23 1.73 2.30 3.67 3.34 4.22 4.28
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Table 7: Properties of Equally-Weighted 5 by 5 Portfolios Sorted on Variance Ratios and σ2
e from

January 1967 to December 2004. At the end of each year from 1966 to 2003, stocks are sorted into variance
ratio (VR) quintile portfolios, where VR is defined as the ratio between the actual and the implied (assuming zero
autocorrelation) variances of the residuals from Fama-French 3-factor model regressions over a 24 month period
estimated over the previous 60 months. Within each VR quintile, they are further sorted into 5 σ2

e portfolios, where
σ2

e is the variance of FF3 residuals estimated over the previous 60 months. The table reports raw returns and the
intercepts (α′s) from regressions of excess returns on the market excess returns (CAPM), the 3 Fama-French factors
(FF3), and the 3 Fama-French factors plus the Carhart Momentum factor (FF4). The returns and α′s are in per cent
per month, and the t-statistics are adjusted for autocorrelation and heteroscedasticity.

Raw Returns (%) t-statistic

Lo Hi Spread Lo Hi Spread
σ2

e 2 3 4 σ2
e (5-1) σ2

e 2 3 4 σ2
e (5-1)

Hi VR 1.22 1.29 1.55 1.49 1.43 0.21 5.98 4.91 4.68 3.80 3.08 0.59
2 1.29 1.33 1.47 1.71 1.84 0.55 6.91 5.35 4.85 4.50 4.02 1.49
3 1.22 1.29 1.48 1.61 2.06 0.84 6.63 5.30 5.33 4.55 4.57 2.23
4 1.26 1.41 1.56 1.64 2.01 0.76 6.79 5.87 5.33 4.62 4.34 1.93
Lo VR 1.21 1.40 1.59 1.77 2.34 1.13 6.21 6.03 5.69 4.96 4.90 2.79
VR Neutral 1.24 1.34 1.53 1.65 1.94 0.70 6.63 5.56 5.27 4.55 4.27 1.91

CAPM Adj. Returns (%) t-statistic

Lo Hi Spread Lo Hi Spread
σ2

e 2 3 4 σ2
e (5-1) σ2

e 2 3 4 σ2
e (5-1)

Hi VR 0.37 0.33 0.49 0.34 0.22 -0.15 2.75 2.18 2.49 1.53 0.78 -0.49
2 0.47 0.40 0.44 0.58 0.67 0.20 3.71 2.69 2.75 2.59 2.21 0.66
3 0.40 0.36 0.49 0.52 0.90 0.50 3.25 2.65 2.87 2.48 2.87 1.53
4 0.43 0.49 0.56 0.57 0.84 0.42 3.58 3.54 3.16 2.77 2.78 1.26
Lo VR 0.38 0.48 0.62 0.72 1.20 0.82 2.90 3.55 3.89 3.19 3.56 2.32
VR Neutral 0.41 0.41 0.52 0.55 0.77 0.36 3.39 3.05 3.22 2.64 2.60 1.18

FF3 Adj. Returns (%) t-statistic

Lo Hi Spread Lo Hi Spread
σ2

e 2 3 4 σ2
e (5-1) σ2

e 2 3 4 σ2
e (5-1)

Hi VR 0.09 0.00 0.18 0.04 -0.05 -0.14 0.89 0.04 1.95 0.36 -0.25 -0.66
2 0.17 0.07 0.08 0.23 0.35 0.18 1.96 0.74 1.09 2.11 1.72 0.78
3 0.11 0.01 0.10 0.19 0.58 0.47 1.32 0.08 1.09 1.92 2.78 1.96
4 0.14 0.16 0.18 0.23 0.49 0.35 1.71 1.74 1.83 2.35 2.42 1.42
Lo VR 0.08 0.15 0.21 0.34 0.86 0.78 0.94 1.69 2.46 2.94 3.62 2.87
VR Neutral 0.12 0.08 0.16 0.21 0.45 0.33 1.49 0.97 2.40 2.46 2.46 1.54

FF3+MOM Adj. Returns (%) t-statistic

Lo Hi Spread Lo Hi Spread
σ2

e 2 3 4 σ2
e (5-1) σ2

e 2 3 4 σ2
e (5-1)

Hi VR 0.13 0.05 0.20 0.09 0.21 0.08 1.51 0.57 1.82 0.70 0.98 0.37
2 0.22 0.11 0.18 0.29 0.51 0.29 2.87 1.41 1.96 2.08 1.96 1.09
3 0.12 0.07 0.17 0.26 0.71 0.60 1.50 0.89 1.83 2.32 2.69 2.07
4 0.17 0.18 0.25 0.27 0.53 0.36 2.28 2.38 2.76 2.11 2.38 1.43
Lo VR 0.10 0.21 0.23 0.35 0.88 0.78 1.16 2.53 2.63 2.59 3.51 2.87
VR Neutral 0.14 0.12 0.21 0.25 0.57 0.43 2.13 1.84 2.87 2.30 2.55 1.77
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Table 8: Properties of Equally-Weighted 5 by 5 Portfolios Sorted on Size and Variance Ratios from
January 1967 to December 2004 At the end of each year from 1966 to 2003, stocks are sorted into Size quintile
portfolios according to the market value of equity. Within each size quintile, they are further sorted into 5 variance ratio
(VR) portfolios, where VR is defined as the ratio between the actual and the implied (assuming zero autocorrelation)
variances of the residuals from Fama-French 3-factor model regressions over a 24 month period estimated over the
previous 60 months. The table reports raw returns and the intercepts (α′s) from regressions of excess returns on the
market excess returns (CAPM), the 3 Fama-French factors (FF3), and the 3 Fama-French factors plus the Carhart
Momentum factor (FF4). The returns and α′s are in per cent per month, and the t-statistics are adjusted for
autocorrelation and heteroscedasticity.

Raw Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Small 1.87 2.13 2.18 2.17 2.27 0.40 4.67 5.37 5.51 5.42 5.62 3.74
2 1.44 1.50 1.50 1.56 1.52 0.08 4.13 4.36 4.67 4.73 4.89 0.76
3 1.17 1.26 1.33 1.38 1.47 0.31 3.55 4.18 4.66 4.84 5.23 2.84
4 1.07 1.16 1.20 1.24 1.34 0.27 3.83 4.32 4.72 5.12 5.43 2.34
Large 0.90 1.07 1.00 1.13 1.13 0.23 3.76 4.86 4.66 5.33 5.29 2.35
Size Neutral 1.40 1.53 1.56 1.60 1.67 0.28 4.40 5.08 5.37 5.46 5.71 4.34

CAPM Adjusted Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Small 0.83 1.11 1.15 1.14 1.26 0.43 3.05 3.93 4.02 4.13 4.31 4.18
2 0.34 0.44 0.46 0.52 0.50 0.16 1.65 2.11 2.28 2.55 2.68 1.63
3 0.06 0.20 0.29 0.37 0.46 0.40 0.38 1.31 1.88 2.42 2.99 4.20
4 0.01 0.15 0.21 0.25 0.37 0.36 0.07 1.35 1.81 2.34 3.16 3.33
Large -0.11 0.10 0.04 0.17 0.18 0.29 -1.71 1.56 0.61 2.78 2.31 3.02
Size Neutral 0.34 0.51 0.55 0.60 0.68 0.34 2.04 3.14 3.38 3.75 4.12 5.87

FF3 Adjusted Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Small 0.30 0.56 0.60 0.60 0.75 0.45 1.92 3.51 3.58 3.81 4.48 4.12
2 -0.02 0.03 0.07 0.11 0.09 0.11 -0.21 0.34 0.72 1.33 1.26 1.08
3 -0.20 -0.12 -0.02 0.04 0.13 0.32 -2.39 -1.58 -0.27 0.55 1.82 3.44
4 -0.16 -0.08 -0.07 0.03 0.12 0.28 -2.23 -1.02 -0.95 0.42 1.34 2.34
Large -0.17 0.02 -0.04 0.07 0.06 0.23 -2.76 0.33 -0.72 1.47 0.98 2.45
Size Neutral 0.05 0.19 0.22 0.27 0.36 0.31 0.64 2.77 3.25 4.15 4.66 4.94

FF3+MOM Adjusted Returns (%) t-statistic

Hi Lo Spread Hi Lo Spread
VR 2 3 4 VR (5-1) VR 2 3 4 VR (5-1)

Small 0.43 0.70 0.71 0.65 0.78 0.34 2.50 3.50 3.69 3.80 4.28 3.24
2 0.02 0.03 0.12 0.13 0.10 0.08 0.19 0.26 1.28 1.41 1.28 0.72
3 -0.15 -0.06 0.01 0.04 0.14 0.29 -1.87 -0.75 0.07 0.52 1.77 3.12
4 -0.10 0.01 -0.03 0.07 0.09 0.20 -1.32 0.11 -0.40 1.01 1.10 1.73
Large -0.11 0.04 0.00 0.10 0.10 0.21 -1.96 0.58 -0.06 1.94 1.55 2.28
Size Neutral 0.11 0.24 0.28 0.29 0.35 0.24 1.31 2.61 3.39 3.90 4.19 4.11
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