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Assignment 6: Huffman Encoding 

Thanks to Owen Astrachan (Duke) and Julie Zelenski.                                                                                          

Updates by Keith Schwarz, Stuart Reges, Marty Stepp, Chris Piech, , Chris Gregg, Marissa Gemma, and Brahm Capoor. 

 

Due: Wednesday, August 9 at 12:00 PM (noon). You may work in pairs for this assignment. 

Assignment Overview and Starter Files 

For this assignment, you will build a file compression algorithm that uses binary trees and 

priority queues. Your program will allow the user to compress and decompress files using the 

standard Huffman algorithm for encoding and decoding. Along the way, you’ll also implement 

your own hash map, which you’ll then put to use in implementing the Huffman encoding. 

 

Huffman encoding is an example of a lossless compression algorithm that works particularly well 

on text but can, in fact, be applied to any type of file. Using Huffman encoding to compress a file 

can reduce the storage it requires by a third, half, or even more, in some situations. You’ll be 

impressed with the compression algorithm, and you’ll be equally impressed that you’re outfitted 

to implement the core of a tool that imitates one you’re already very familiar with. 

 

The starter code for this project is available as a ZIP archive. A demo is available as a JAR. Note 

that the JAR will look for files in the same directory). 

 

Starter Code   Demo Jar 

 

 

You must turn in the following files: 

1. mymap.cpp: code to implement your hash map 

2. mymap.h: header file containing declarations for your map 

3. encoding.cpp: code to perform Huffman encoding and decoding 

4. secretmessage.huf: a message from you to your section leader, which is 

compressed by your algorithm. 

 

We provide you with several other support files, but you should not modify them. For example, 

we provide you with a huffmanmain.cpp that contains the program’s overall text menu 

system; you must implement the functions it calls to perform various file compression/ 

decompression operations. The section on Implementation details below explains where in the 

files to program your solution. 

 

 

Related reading: 

Huffman on Wikipedia 

ASCII Table  

http://web.stanford.edu/class/cs106b/assnFiles/huffman/cs106b-hw6-huffman-starter-files.zip
http://web.stanford.edu/class/cs106b/assnFiles/huffman/cs106b-hw6-huffman-starter-files.zip
http://web.stanford.edu/class/cs106b/assnFiles/huffman/cs106b-hw6-huffman-demo.jar
https://en.wikipedia.org/wiki/Huffman_coding
http://www.rapidtables.com/code/text/ascii-table.htm
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Huffman Encoding  

Huffman encoding is an algorithm devised by David A. Huffman of MIT in 1952 for 

compressing textual data to make a file occupy a smaller number of bytes. Though it is a 

relatively simple compression algorithm, Huffman is powerful enough that variations of it are 

still used today in computer networks, fax machines, modems, HDTV, and other areas. 

Normally textual data is stored in a standard format of 8 bits per character, using an encoding 

called ASCII that maps each character to a binary integer value from 0-255. The idea of Huffman 

encoding is to abandon the rigid 8-bits-per-character requirement, and instead to use binary 

encodings of different lengths for different characters. The advantage of doing this is that if a 

character occurs frequently in the file, such as the very common letter 'e', it could be given a 

shorter encoding (i.e., fewer bits), making the overall file smaller. The tradeoff is that some 

characters may need to use encodings that are longer than 8 bits, but this is reserved for 

characters that occur infrequently, so the extra cost is worth it, on the balance. 

The table below compares ASCII values of various characters to possible Huffman encodings for 

some English text. Frequent characters such as space and 'e' have short encodings, while rarer 

characters (like 'z') have longer ones. 

 

Character ASCII Value ASCII Binary Huffman Binary 

' ' 32 00100000 10 

'a' 97 01100001 0001 

'b' 98 01100010 0111010 

'c' 99 01100011 001100 

'e' 101 01100101 1100 

'z' 122 01111010 00100011010 

 

The steps you’ll take to do perform a Huffman encoding of a given text source file into a 

destination compressed file are: 
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1. count frequencies: Examine a source file’s contents and count the number of occurrences 

of each character, and store them in a map using the MyMap class you’ll write. 

2. build encoding tree: Build a binary tree with a particular structure, where each node 

represents a character and its count of occurrences in the file. A priority queue is used to 

help build the tree along the way. 

3. build encoding map: Traverse the binary tree to discover the binary encodings of each 

character. 

4. encode data: Re-examine the source file’s contents, and for each character, output the 

encoded binary version of that character to the destination file. 

 

Your program’s output format should exactly match example logs of execution here: 

 

Example Run #1 

 

Example Run #2 

 

Example Run #3 

 

Example Run #4 

 

Example Run #5 

 

Example Run #6 

 

Example Run #7 

 

Example Run #8 

 

Encoding a File Step 1: Counting Frequencies  

As an example, suppose we have a file named example.txt whose contents are: ab ab cab. 

In the original file, this text occupies 10 bytes (80 bits) of data, including spaces and a special 

“end-of-file” (EOF) byte. 

 

In Step 1 of Huffman’s algorithm, a count of each character is computed. This frequency table is 

represented as a map: 

{' ':2, 'a':3, 'b':3, 'c':1, EOF:1} 

Note that all characters must be included in the frequency table, including spaces, any 

punctuation, and the EOF marker.   

Below you will find details on implementing the class MyMap, which you must use to store this 

encoding map as a hash map.  

 

http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-1.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-1.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-2.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-2.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-3.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-3.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-4.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-4.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-5.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-5.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-6.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-6.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-7.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-7.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-8.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-8.txt
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Encoding a File Step 2: Building an Encoding Tree  

Step 2 of Huffman’s algorithm builds an encoding tree as follows. First, we place our counts into 

node structs (out of which we will build the binary tree); each node stores a character and a count 

of its occurrences. Then, we put the nodes into a priority queue, which stores them in prioritized 

order, where smaller counts have a higher priority. This means that characters with lower counts 

will come out of the queue sooner, as the figure below shows. (As you will see when you 

implement it, the priority queue is somewhat arbitrary in how it breaks ties, which is why in this 

example 'c' can end up before EOF, while 'a' is before 'b'.) 

 

 

Now, to construct the tree, the algorithm repeatedly removes two nodes from the front of the 

queue (i.e., the two nodes with the smallest frequencies) and joins them into a new node whose 

frequency is their sum. The two nodes are positioned as children of the new node; the first node 

removed becomes the left child, and the second becomes the right. The new node is re-inserted 

into the queue in sorted order (and we can observe that its priority will now be less urgent, since 

its frequency is the sum of its children’s frequencies). This process is repeated until the queue 

contains only one binary tree node with all the others as its children. This will be the root of our 

finished Huffman tree.  

The following diagram illustrates this process Notice that the nodes with low frequencies end up 

far down in the tree, and nodes with high frequencies end up near the root of the tree. As we shall 

see, this structure can be used to create an efficient encoding in the next step. 
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Encoding a File Step 3: Building an Encoding Map  

The Huffman code for each character is derived from your binary tree by thinking of each left 

branch as a bit value of 0 and each right branch as a bit value of 1, as shown in the diagram 

below: 
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The code for each character can be determined by traversing the tree. To reach ' ', we go left 

twice from the root, so the code for ' ' is 00. Similarly, the code for 'c' is 010, the code for EOF is 

011, the code for 'a is 10 and the code for 'b is 11. By traversing the tree, we can produce a map 

from characters to their binary representations. Though the binary representations are integers, 

since they consist of binary digits and can have arbitrary lengths, we will store them as strings. 

For this tree, the encoding map would look like this: 

{' ':"00", 'a':"10", 'b':"11", 'c':"010", EOF:"011"} 
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Encoding a File Step 4: Encoding the Textual Data  

Using the encoding map, we can encode the file’s text into a shorter binary representation. Using 

the preceding encoding map, the text "ab ab cab" would be encoded as: 

1011001011000101011011 

 

The following table details the char-to-binary mapping in more detail. The overall encoded 

contents of the file require 22 bits, or a little under 3 bytes, compared to the original file size of 

10 bytes. 

 

 

 

Since the character encodings have different lengths, often the length of a Huffman-encoded file 

does not come out to an exact multiple of 8 bits. Files are stored as sequences of whole bytes, so 

in cases like this the remaining digits of the last bit are filled with 0s. You do not need to worry 

about implementing this; it is part of the underlying file system. 

 

 

 

It might worry you that the characters are stored without any delimiters between them, since their 

encodings can be different lengths and characters can cross byte boundaries, as with 'a' at the end 

of the second byte. But this will not cause problems in decoding the file, because Huffman 

encodings by definition have a useful prefix property where no character's encoding can ever 

occur as the start of another’s encoding. (If it’s not clear to you how this works, trace through the 

example tree above, or one produced by your own algorithm, to see for yourself.) 
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Decoding a File  

You can use a Huffman tree to decode text that was previously encoded with its binary patterns. 

The decoding algorithm is to read each bit from the file, one at a time, and use this bit to traverse 

the Huffman tree. If the bit is a 0, you move left in the tree. If the bit is 1, you move right. You do 

this until you hit a leaf node. Leaf nodes represent characters, so once you reach a leaf, you 

output that character. For example, suppose we are given the same encoding tree above, and we 

are asked to decode a file containing the following bits: 

1110010001001010011 

 

Using the Huffman tree, we walk from the root until we find characters, then output them and go 

back to the root. 

• We read a 1 (right), then a 1 (right). We reach 'b' and output b. Back to the root. 

1110010001001010011 

• We read a 1 (right), then a 0 (left). We reach 'a' and output a. Back to root. 

1110010001001010011 

• We read a 0 (left), then a 1 (right), then a 0 (left). We reach 'c' and output c.1 
110010001001010011 

• We read a 0 (left), then a 0 (left). We reach ' ' and output a space.   
1110010001001010011 

• We read a 1 (right), then a 0 (left). We reach 'a' and output a.          
1110010001001010011 

• We read a 0 (left), then a 1 (right), then a 0 (left). We reach 'c' and output c.     
1110010001001010011 

• We read a 1 (right), then a 0 (left). We reach 'a' and output a.          
1110010001001010011 

• We read a 0, 1, 1. This is our EOF encoding pattern, so we stop. The overall decoded 

text is “bac aca”. 

Provided Code  

We provide you with a file HuffmanNode.h, which declares some useful support code 

including the HuffmanNode structure, which represents a node in a Huffman encoding tree. 

 

struct HuffmanNode { 

     int character;      // character being represented by this node 

     int count;          // number of occurrences of that character 
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     HuffmanNode* zero;  // 0 (left) subtree (NULL if empty) 

     HuffmanNode* one;   // 1 (right) subtree (NULL if empty) 

     ... }; 

The character field is declared as type int, but you should think of it as a char. (char and int 
types are largely interchangeable in C++, but using int here allows us to sometimes use the 

character type to store values outside the normal range of char, for use as special flags.) The 

character field can take one of three types of values: 

• an actual char value; 

• The constant PSEUDO_EOF (defined in bitstream.h in the Stanford library), which 

represents the pseudo-EOF value. The symbol, denoted by ■, marks the end of the encoding 

and you will need to place it at the end of an encoded stream. 

• the constant NOT_A_CHAR (defined in bitstream.h in the Stanford library), which 

represents something that isn’t actually a character. (This can be stored in branch nodes of 

the Huffman encoding tree that have children, because such nodes do not represent any one 

individual character.) 

Bit Input/Output Streams  
 

In parts of this program you will need to read and write bits to files. In the past we have wanted 

to read input an entire line or word at a time, but in this program it is much better to read one 

single character (byte) at a time. So you should use the following input/output stream functions: 

 

ostream (output stream) member Description 

void put(int byte) writes a single byte (character, 8 bits) to the 

output stream 

istream (input stream) member Description 

int get() reads a single byte (character, 8 bits) from 

input; -1 at EOF 

 

You might also find that you want to read an input stream, then “rewind” it back to the start and 

read it again. To do this on an input stream variable named input, you can use the 

rewindStream function from filelib.h: 
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rewindStream(input);   // tells the stream to seek back to the beginning 

 

To read or write a compressed file, even a whole byte is too much; you will want to read and 

write binary data one single bit at a time, which is not directly supported by the default in/output 

streams. Therefore the Stanford C++ library provides obitstream and ibitstream classes 

with writeBit and readBit members to make it easier. 

 

obitstream (bit output stream) member Description 

void writeBit(int bit) writes a single bit (0 or 1) to the output 

stream 

 

ibitstream (bit input stream) member Description 

int readBit() reads a single bit (0 or 1) from input; -

1 at end of file 

 

When reading from an bit input stream (ibitstream), you can detect the end of the file by 

either looking for a readBit result of -1, or by calling the fail() member function on the 

input stream after trying to read from it, which will return true if the last readBit call was 

unsuccessful due to reaching the end of the file. (You can read the documentation for these bit 

stream classes here: https://stanford.edu/~stepp/cppdoc/bitstream.html.) 

Note that the bit in/output streams also provide the same members as the original ostream and 

istream classes from the C++ standard library, such as getline, <<, >>, etc. But you usually 

don't want to use them, because they operate on an entire byte (8 bits) at a time, or more, whereas 

you want to process these streams one bit at a time. 

  

https://stanford.edu/~stepp/cppdoc/bitstream.html
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Implementation Details: MyMap 

Relevant files: mymap.cpp, mymap.h 

 

In the first part of this assignment, you will be implementing a data structure MyMap that behaves 

identically to a HashMap with keys and values of type int. In later parts of this assignment, you 

will be using this data structure to represent a frequency table of the characters in files you wish 

to compress.  

 

The class exports the following required public methods, which you will need to implement: 

 

 

Name Description Runtime 

MyMap() 
Constructor for your map O(1) 

~MyMap() 
Destructor for your map. Clears all 

heap-allocated memory. 

O(1) 

void put(int key, int value) 
Associates key with value in your 

map, replacing existing values if need 

be. 

O(1) 

int get(int key) 
Returns the value associated with key in 

your map. Throws a string exception if 

the key is not in the map.  

O(1) 

bool containsKey(int key) 
Returns a boolean indicating whether or 

not keyis a key in your map. 
O(1) 

Vector<int> keys() 
Returns a Vector of all the keys in your 

map. 

O(N) 

 

Note that these methods represent the methods required for one possible implementation of 

Huffman Compression: you are free to implement other public methods for use in your 

assignment, but the methods detailed above must be implemented. As a general guide, refer to the 

Stanford HashMap documentation for other methods you might want to implement. 

 

In addition, the class exports the sanityCheck() method, which has been written for you:  

 

https://stanford.edu/~stepp/cppdoc/HashMap-class.html
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void sanityCheck() 
Tests your map to ensure that the previously 

mentioned public methods behave as expected. 

 

Note that the sanityCheck() method is not comprehensive - depending on the specifics of 

your implementation, you are allowed and encouraged to modify the method to better suit you. 

sanityCheck() will not be graded, but is a useful way to check whether your map behaves as 

intended. 

 

Development strategy and hints 

● Your MyMap must be implemented using an array of buckets into which key-value pairs 

are hashed. Each bucket in the array must be the head of a linked list of key-value pairs. 

You are provided with the following struct to help you with this: 

 

struct key_val_pair { 

 int key; 

 int value; 

 key_val_pair* next; 

 } 

 

● In order to create an array of buckets, we provide you with the following private method: 

 

bucketArray createBucketArray(int nBuckets); 
Returns an array of 
key_val_pair* with size 

nBuckets. All elements are 

set to nullptr initially. 

 

 

Note that the bucketArray type is simply a typedef (synonym) for the type 

key_val_pair**, that is, pointers to pointers to key_val_pairs. While this certainly 

looks grisly, we simply use key_val_pair** to refer to an array of key_val_pair*s, 

just as we use int* to refer to an array of type int.  For the purposes of this assignment, 

you need not worry about any of this - you can simply work with the bucketArray type 

as below: 

 

bucketArray buckets = createBucketArray(8); 

key_val_pair* head = buckets[4]; //access element in array 

Buckets[3] = new key_val_pair; //set an element in the array 
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● We provide a private method int hashFunction(), which you may use when hashing 

key-value pairs into your map.  

● For full credit, ensure that the public methods you implement have the specified runtime. 
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Implementation Details: encoding.cpp 

For the second part of this assignment, you will write the functions described below in the file 

encoding.cpp. This will allow you to encode and decode data using the Huffman algorithm. 

Our provided main client program will allow you to test each function one at a time before 

moving on to the next. The following functions are required, but note that you can add more 

functions as helpers if you like, particularly to help you implement any recursive algorithms. Any 

members that traverse a binary tree from top to bottom should implement that traversal 

recursively whenever practical. 

 

Name Description 

MyMap buildFrequencyTable(istream& 
input) 

This is Step 1 of the encoding process. In this 

function you read input from a given istream 

(which could be a file on disk, a string buffer, 

etc.). You should count and return a mapping 

from each character (represented as int here) 

to the number of times that character appears 

in the file. You should also add a single 

occurrence of the fake character PSEUDO_EOF 

into your map. You may assume that the input 

file exists and can be read, though the file 

might be empty. An empty file would cause 

you to return a map containing only the 1 

occurrence of PSEUDO_EOF. 

HuffmanNode* 
buildEncodingTree(MyMap &freqTable) 

This is Step 2 of the encoding process. In this 

function you will accept a frequency table (like 

the one you built in buildFrequencyTable) 

and use it to create a Huffman encoding tree 

based on those frequencies. Return a pointer to 

the node representing the root of the tree. 

You may assume that the frequency table is 

valid: that it does not contain any keys other 

than char values, PSEUDO_EOF, and 

NOT_A_CHAR; that all counts are positive 

integers; and that it contains at least one 

key/value pairing. 

When building the encoding tree, you will 

need to use a priority queue to keep track of 

which nodes to process next. Use the 

PriorityQueue collection provided by the 

Stanford libraries, defined in library header 

pqueue.h. This allows each element to be 

enqueued along with an associated priority. 
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The dequeue function always returns the 

element with the minimum priority number.  

Map<int, string> 
buildEncodingMap(HuffmanNode* 
encodingTree) 

This is Step 3 of the encoding process. In this 

function will you accept a pointer to the root 

node of a Huffman tree (like the one you built 

in buildEncodingTree) and use it to create 

and return a Huffman encoding map based on 

the tree's structure. Each key in the map is a 

character, and each value is the binary 

encoding for that character represented as a 

string. For example, if the character 'a' has 

binary value 10 and 'b' has 11, the map should 

store the key/value pairs 'a':"10" and 'b':"11". If 

the encoding tree is NULL, return an empty 

map. 

void encodeData(istream& input, 
const Map<int, string> 
&encodingMap, obitstream& output) 

This is Step 4 of the encoding process. In this 

function you will read one character at a time 

from a given input file, and use the provided 

encoding map to encode each character to 

binary, then write the character's encoded 

binary bits to the given bit output bit stream. 

After writing the file's contents, you should 

write a single occurrence of the binary 

encoding for PSEUDO_EOF into the output so 

that you'll be able to identify the end of the 

data when decompressing the file later. You 

may assume that the parameters are valid: that 

the encoding map is valid and contains all 

needed data, that the input stream is readable, 

and that the output stream is writable. The 

streams are already opened and ready to be 

read/written; you do not need to prompt the 

user or open/close the files yourself. 

void decodeData(ibitstream& input, 
HuffmanNode* encodingTree, ostream& 
output) 

This is the “decoding a file” process described 

previously. In this function you should do the 

opposite of encodeData; you read bits from 

the given input file one at a time, and 

recursively walk through the specified 

decoding tree to write the original 

uncompressed contents of that file to the given 

output stream. The streams are already opened 

and you do not need to prompt the user or 

open/close the files yourself. 
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To manually verify that your implementations of encodeData and decodeData are working 

correctly, use our provided test code to compress strings of your choice into a sequence of 0s and 

1s. The next few paragraphs describe a header that you will add to compressed files, but in 

encodeData and decodeData, you should not write or read this header from the file. Instead, 

just use the encoding tree you’re given. Worry about headers only in compress/decompress. 

The functions above implement Huffman’s algorithm, but they have one big flaw. The decoding 

function requires the encoding tree to be passed in as a parameter. Without the encoding tree, you 

don’t know the mappings from bit patterns to characters, so you can't successfully decode the 

file. 

We will work around this by writing the encodings into the compressed file, as a header. The idea 

is that when opening our compressed file later, the first several bytes will store our encoding 

information, and then those bytes are immediately followed by the binary bits that we 

compressed earlier. It’s actually easier to store the character frequency table, the map from Step 1 

of the encoding process, and we can generate the encoding tree from that. For our ab ab cab 
example, the frequency table stores the following (the keys are shown by their ASCII integer 

values, such as 32 for ' ' and 97 for 'a', because that is the way the map would look if you printed 

it out): 

{32:2, 97:3, 98:3, 99:1, 256:1} 

We don't have to write the encoding header bit-by-bit; just write out normal ASCII characters for 

our encodings. We could come up with various ways to format the encoding text, but this would 

require us to carefully write code to write/read the encoding text. There's a simpler way. You 

already have a Map of character frequency counts from Step 1 of encoding. In C++, collections 

like Maps can easily be read and written to/from streams using << and >> operators. We have 

provided overriden versions of these operators for the MyMap class, so all you need to do for your 

header is write your map into the bit output stream first before you start writing bits into the 

compressed file, and read that same map back in first when you decompress it later. The overall 

file is now 34 bytes: 31 for the header and 3 for the binary compressed data. Here's an attempt at 

a diagram: 

 

 

 

Looking at this new rendition of the compressed file, you may be thinking, “The file isn’t 

compressed at all; it actually got larger than it was before! It went up from 9 bytes (“ab ab 
cab”) to 34!” That's true for this contrived example. But for a larger file, the cost of the header is 

not so bad relative to the overall file size. There are more compact ways of storing the header, 
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too, but they add too much challenge to this assignment, which is meant to practice trees and data 

structures and problem solving more than it is meant to produce a truly tight compression. 

The last step is to glue all of your code together, along with code to read and write the encoding 

table to the file: 

 

Name Description 

void compress(istream& 
input, obitstream& output) 

This is the overall compression function; in this function 

you should compress the given input file into the given 

output file. You will take as parameters an input file that 

should be encoded and an output bit stream to which the 

compressed bits of that input file should be written. You 

should read the input file one character at a time, 

building an encoding of its contents, and write a 

compressed version of that input file, including a header, 

to the specified output file. This function should be built 

on top of the other encoding functions and should call 

them as needed. You may assume that the streams are 

both valid and readable/writeable, but the input file 

might be empty. The streams are already opened and 

ready to be read/written; you do not need to prompt the 

user or open/close the files yourself. 

void decompress(ibitstream& 
input, ostream& output) 

This function should do the opposite of compress; it 

should read the bits from the given input file one at a 

time, including your header packed inside the start of the 

file, to write the original contents of that file to the file 

specified by the output parameter. You may assume that 

the streams are valid and read/writeable, but the input file 

might be empty. The streams are already open and ready 

to be used; you do not need to prompt the user or 

open/close files. 

void freeTree(HuffmanNode* 
node) 

This function should free the memory associated with the 

tree whose root node is represented by the given pointer. 

You must free the root node and all nodes in its subtrees. 

There should be no effect if the tree passed is NULL. If 

your compress or decompress function creates a 

Huffman tree, that function should also free the tree. 
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Creative Input File (secretmessage.huf)  

Along with your program, turn in a file secretmessage.huf that stores a compressed message 

from you to your section leader. Create the file by compressing a text file with your compress 

function. The message can be anything (appropriate) you choose. Your SL will decompress your 

message with your program and read it while grading. 

Development Strategy and Hints  

• When writing the bit patterns to the compressed file, note that you do not write the ASCII 

characters '0' and '1' (that wouldn’t do much for compression!), instead the bits in the 

compressed form are written one-by-one using the readBit and writeBit member 

functions on the bitstream objects. Similarly, when you are trying to read bits from a 

compressed file, don't use >> or byte-based methods like get or getline; use readBit. 

The bits that are returned from readBit will be either 0 or 1, but not '0' or '1'. 

• Work step-by-step. Get each part of the encoding program working before starting on the 

next one. You can test each function individually using our provided client program, even if 

others are blank or incomplete. 

• Start out with small test files (two characters, ten characters, one sentence) to practice on 

before you start trying to compress large books of text. What sort of files do you expect 

Huffman to be particularly effective at compressing? On what sort of files will it less 

effective? Are there files that grow instead of shrink when Huffman encoded? Consider 

creating sample files to test out your theories. 

• Your implementation should be robust enough to compress any kind of file: text, binary, 

image, or even one it has previously compressed. Your program probably won't be able to 

further squish an already compressed file (and in fact, it can get larger because of header 

overhead) but it should be possible to compress multiple iterations, decompress the same 

number of iterations, and return to the original file. 

• Your program only has to decompress valid files compressed by your program. You do not 

need to take special precautions to protect against user error such as trying to decompress a 

file that isn't in the proper compressed format. 

• See the input/output streams section for how to “rewind” a stream to the beginning if 

necessary. 

• The operations that read and write bits are somewhat inefficient and working on a large file 

(100K and more) will take some time. Don’t be concerned if the reading/writing phase is 

slow for very large files. 

• Note that Qt Creator puts the compressed binary files created by your code in your "build" 

folder. They won't show up in the normal res resource folder of your project. 

• Your code should have no memory leaks. Free the memory associated with any new objects 

you allocate internally. The Huffman nodes you will allocate when building encoding trees 

are passed back to the caller, so it is that caller's responsibility to call your freeTree 

function to clean up the memory. 
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Possible Extra Features  

Though your solution to this assignment must match all of the specifications mentioned 

previously, you are allowed and encouraged to add extra features to your program if you’d like to 

go beyond the basic assignment. Here are some ideas for extra features that you could add to your 

program. 

1. Make the encoding table more efficient: Our implementation of the encoding table at 

the start of each file is not at all efficient, and for small files can take up a lot of space. 

Try to see if you can find a better way of encoding the data. If you’re feeling up for a 

challenge, try looking up succinct data structures and see if you can write out the 

encoding tree using one bit per node and one byte per character! 

2. Add support for encryption in addition to encoding: Without knowledge of the 

encoding table, it’s impossible to decode compressed files. Update the encoding table 

code so that it prompts for a password or uses some other technique to make it hard for 

Bad People to decompress the data. 

3. Implement a more advanced compression algorithm: Huffman encoding is a good 

compression algorithm, but there are much better alternatives in many cases. Try 

researching and implementing a more advanced algorithm, like LZW, in addition to 

Huffman coding. 

4. Gracefully handle bad input files: The normal version of the program doesn’t work very 

well if you feed it bogus input, such as a file that wasn’t created by your own algorithm. 

Make your code more robust by making it able to detect whether a file is valid or invalid 

and react accordingly. One possible way of doing this would be to insert special bits/bytes 

near the start of the file that indicate a header flag or check-sum. You can test to see 

whether these bit patterns are present, and if not, you know the file is bogus. 

5. Implement rehashing for your MyMap class. By default, you are not required to 

implement rehashing in your map. However, you might choose to do this if the load factor 

in your map exceeds a particular threshold. 

6. Other: If you have your own creative idea for an extra feature, ask your SL and/or the 

instructor about it. 

Indicating that you have done extra features: 

If you complete any extra features, then in the comment heading on the top of your program, 

please list all extra features that you worked on and where in the code they can be found (what 

functions, lines, etc. so that the grader can easily identify them). 

Submitting a program with extra features: 

Since we use automated testing for part of our grading process, it is important that you submit a 

program that conforms to the preceding spec, even if you want to do extra features. If your 

feature(s) cause your program to change the output that it produces in such a way that it no longer 

matches the expected sample output test cases provided, you should submit two versions of your 

program file: a first one named life.cpp without any extra features added (or with all necessary 

features disabled or commented out), and a second one named life-extra.cpp with the extra 

features enabled. Please distinguish them in by explaining which is which in the comment header. 
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Our submission system saves every submission you make, so if you make more than one we will 

be able to view all of them; your previously submitted files will not be lost or overwritten. 
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