
 1

Assignment 6: Huffman Encoding

Thanks to Owen Astrachan (Duke) and Julie Zelenski.

Updates by Keith Schwarz, Stuart Reges, Marty Stepp, Chris Piech, , Chris Gregg, Marissa Gemma, and Brahm Capoor.

Due: Wednesday, August 9 at 12:00 PM (noon). You may work in pairs for this assignment.

Assignment Overview and Starter Files

For this assignment, you will build a file compression algorithm that uses binary trees and

priority queues. Your program will allow the user to compress and decompress files using the

standard Huffman algorithm for encoding and decoding. Along the way, you’ll also implement

your own hash map, which you’ll then put to use in implementing the Huffman encoding.

Huffman encoding is an example of a lossless compression algorithm that works particularly well

on text but can, in fact, be applied to any type of file. Using Huffman encoding to compress a file

can reduce the storage it requires by a third, half, or even more, in some situations. You’ll be

impressed with the compression algorithm, and you’ll be equally impressed that you’re outfitted

to implement the core of a tool that imitates one you’re already very familiar with.

The starter code for this project is available as a ZIP archive. A demo is available as a JAR. Note

that the JAR will look for files in the same directory).

Starter Code Demo Jar

You must turn in the following files:

1. mymap.cpp: code to implement your hash map

2. mymap.h: header file containing declarations for your map

3. encoding.cpp: code to perform Huffman encoding and decoding

4. secretmessage.huf: a message from you to your section leader, which is

compressed by your algorithm.

We provide you with several other support files, but you should not modify them. For example,

we provide you with a huffmanmain.cpp that contains the program’s overall text menu

system; you must implement the functions it calls to perform various file compression/

decompression operations. The section on Implementation details below explains where in the

files to program your solution.

Related reading:

Huffman on Wikipedia

ASCII Table

http://web.stanford.edu/class/cs106b/assnFiles/huffman/cs106b-hw6-huffman-starter-files.zip
http://web.stanford.edu/class/cs106b/assnFiles/huffman/cs106b-hw6-huffman-starter-files.zip
http://web.stanford.edu/class/cs106b/assnFiles/huffman/cs106b-hw6-huffman-demo.jar
https://en.wikipedia.org/wiki/Huffman_coding
http://www.rapidtables.com/code/text/ascii-table.htm

 2

Huffman Encoding

Huffman encoding is an algorithm devised by David A. Huffman of MIT in 1952 for

compressing textual data to make a file occupy a smaller number of bytes. Though it is a

relatively simple compression algorithm, Huffman is powerful enough that variations of it are

still used today in computer networks, fax machines, modems, HDTV, and other areas.

Normally textual data is stored in a standard format of 8 bits per character, using an encoding

called ASCII that maps each character to a binary integer value from 0-255. The idea of Huffman

encoding is to abandon the rigid 8-bits-per-character requirement, and instead to use binary

encodings of different lengths for different characters. The advantage of doing this is that if a

character occurs frequently in the file, such as the very common letter 'e', it could be given a

shorter encoding (i.e., fewer bits), making the overall file smaller. The tradeoff is that some

characters may need to use encodings that are longer than 8 bits, but this is reserved for

characters that occur infrequently, so the extra cost is worth it, on the balance.

The table below compares ASCII values of various characters to possible Huffman encodings for

some English text. Frequent characters such as space and 'e' have short encodings, while rarer

characters (like 'z') have longer ones.

Character ASCII Value ASCII Binary Huffman Binary

' ' 32 00100000 10

'a' 97 01100001 0001

'b' 98 01100010 0111010

'c' 99 01100011 001100

'e' 101 01100101 1100

'z' 122 01111010 00100011010

The steps you’ll take to do perform a Huffman encoding of a given text source file into a

destination compressed file are:

 3

1. count frequencies: Examine a source file’s contents and count the number of occurrences

of each character, and store them in a map using the MyMap class you’ll write.

2. build encoding tree: Build a binary tree with a particular structure, where each node

represents a character and its count of occurrences in the file. A priority queue is used to

help build the tree along the way.

3. build encoding map: Traverse the binary tree to discover the binary encodings of each

character.

4. encode data: Re-examine the source file’s contents, and for each character, output the

encoded binary version of that character to the destination file.

Your program’s output format should exactly match example logs of execution here:

Example Run #1

Example Run #2

Example Run #3

Example Run #4

Example Run #5

Example Run #6

Example Run #7

Example Run #8

Encoding a File Step 1: Counting Frequencies

As an example, suppose we have a file named example.txt whose contents are: ab ab cab.

In the original file, this text occupies 10 bytes (80 bits) of data, including spaces and a special

“end-of-file” (EOF) byte.

In Step 1 of Huffman’s algorithm, a count of each character is computed. This frequency table is

represented as a map:

{' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

Note that all characters must be included in the frequency table, including spaces, any

punctuation, and the EOF marker.

Below you will find details on implementing the class MyMap, which you must use to store this

encoding map as a hash map.

http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-1.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-1.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-2.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-2.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-3.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-3.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-4.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-4.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-5.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-5.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-6.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-6.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-7.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-7.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-8.txt
http://web.stanford.edu/class/cs106b/assnFiles/huffman/output/expected-output-8.txt

 4

Encoding a File Step 2: Building an Encoding Tree

Step 2 of Huffman’s algorithm builds an encoding tree as follows. First, we place our counts into

node structs (out of which we will build the binary tree); each node stores a character and a count

of its occurrences. Then, we put the nodes into a priority queue, which stores them in prioritized

order, where smaller counts have a higher priority. This means that characters with lower counts

will come out of the queue sooner, as the figure below shows. (As you will see when you

implement it, the priority queue is somewhat arbitrary in how it breaks ties, which is why in this

example 'c' can end up before EOF, while 'a' is before 'b'.)

Now, to construct the tree, the algorithm repeatedly removes two nodes from the front of the

queue (i.e., the two nodes with the smallest frequencies) and joins them into a new node whose

frequency is their sum. The two nodes are positioned as children of the new node; the first node

removed becomes the left child, and the second becomes the right. The new node is re-inserted

into the queue in sorted order (and we can observe that its priority will now be less urgent, since

its frequency is the sum of its children’s frequencies). This process is repeated until the queue

contains only one binary tree node with all the others as its children. This will be the root of our

finished Huffman tree.

The following diagram illustrates this process Notice that the nodes with low frequencies end up

far down in the tree, and nodes with high frequencies end up near the root of the tree. As we shall

see, this structure can be used to create an efficient encoding in the next step.

 5

Encoding a File Step 3: Building an Encoding Map

The Huffman code for each character is derived from your binary tree by thinking of each left

branch as a bit value of 0 and each right branch as a bit value of 1, as shown in the diagram

below:

 6

The code for each character can be determined by traversing the tree. To reach ' ', we go left

twice from the root, so the code for ' ' is 00. Similarly, the code for 'c' is 010, the code for EOF is

011, the code for 'a is 10 and the code for 'b is 11. By traversing the tree, we can produce a map

from characters to their binary representations. Though the binary representations are integers,

since they consist of binary digits and can have arbitrary lengths, we will store them as strings.

For this tree, the encoding map would look like this:

{' ':"00", 'a':"10", 'b':"11", 'c':"010", EOF:"011"}

 7

Encoding a File Step 4: Encoding the Textual Data

Using the encoding map, we can encode the file’s text into a shorter binary representation. Using

the preceding encoding map, the text "ab ab cab" would be encoded as:

1011001011000101011011

The following table details the char-to-binary mapping in more detail. The overall encoded

contents of the file require 22 bits, or a little under 3 bytes, compared to the original file size of

10 bytes.

Since the character encodings have different lengths, often the length of a Huffman-encoded file

does not come out to an exact multiple of 8 bits. Files are stored as sequences of whole bytes, so

in cases like this the remaining digits of the last bit are filled with 0s. You do not need to worry

about implementing this; it is part of the underlying file system.

It might worry you that the characters are stored without any delimiters between them, since their

encodings can be different lengths and characters can cross byte boundaries, as with 'a' at the end

of the second byte. But this will not cause problems in decoding the file, because Huffman

encodings by definition have a useful prefix property where no character's encoding can ever

occur as the start of another’s encoding. (If it’s not clear to you how this works, trace through the

example tree above, or one produced by your own algorithm, to see for yourself.)

 8

Decoding a File

You can use a Huffman tree to decode text that was previously encoded with its binary patterns.

The decoding algorithm is to read each bit from the file, one at a time, and use this bit to traverse

the Huffman tree. If the bit is a 0, you move left in the tree. If the bit is 1, you move right. You do

this until you hit a leaf node. Leaf nodes represent characters, so once you reach a leaf, you

output that character. For example, suppose we are given the same encoding tree above, and we

are asked to decode a file containing the following bits:

1110010001001010011

Using the Huffman tree, we walk from the root until we find characters, then output them and go

back to the root.

• We read a 1 (right), then a 1 (right). We reach 'b' and output b. Back to the root.

1110010001001010011

• We read a 1 (right), then a 0 (left). We reach 'a' and output a. Back to root.

1110010001001010011

• We read a 0 (left), then a 1 (right), then a 0 (left). We reach 'c' and output c.1
110010001001010011

• We read a 0 (left), then a 0 (left). We reach ' ' and output a space.
1110010001001010011

• We read a 1 (right), then a 0 (left). We reach 'a' and output a.
1110010001001010011

• We read a 0 (left), then a 1 (right), then a 0 (left). We reach 'c' and output c.
1110010001001010011

• We read a 1 (right), then a 0 (left). We reach 'a' and output a.
1110010001001010011

• We read a 0, 1, 1. This is our EOF encoding pattern, so we stop. The overall decoded

text is “bac aca”.

Provided Code

We provide you with a file HuffmanNode.h, which declares some useful support code

including the HuffmanNode structure, which represents a node in a Huffman encoding tree.

struct HuffmanNode {

 int character; // character being represented by this node

 int count; // number of occurrences of that character

 9

 HuffmanNode* zero; // 0 (left) subtree (NULL if empty)

 HuffmanNode* one; // 1 (right) subtree (NULL if empty)

 ... };

The character field is declared as type int, but you should think of it as a char. (char and int
types are largely interchangeable in C++, but using int here allows us to sometimes use the

character type to store values outside the normal range of char, for use as special flags.) The

character field can take one of three types of values:

• an actual char value;

• The constant PSEUDO_EOF (defined in bitstream.h in the Stanford library), which

represents the pseudo-EOF value. The symbol, denoted by ■, marks the end of the encoding

and you will need to place it at the end of an encoded stream.

• the constant NOT_A_CHAR (defined in bitstream.h in the Stanford library), which

represents something that isn’t actually a character. (This can be stored in branch nodes of

the Huffman encoding tree that have children, because such nodes do not represent any one

individual character.)

Bit Input/Output Streams

In parts of this program you will need to read and write bits to files. In the past we have wanted

to read input an entire line or word at a time, but in this program it is much better to read one

single character (byte) at a time. So you should use the following input/output stream functions:

ostream (output stream) member Description

void put(int byte) writes a single byte (character, 8 bits) to the

output stream

istream (input stream) member Description

int get() reads a single byte (character, 8 bits) from

input; -1 at EOF

You might also find that you want to read an input stream, then “rewind” it back to the start and

read it again. To do this on an input stream variable named input, you can use the

rewindStream function from filelib.h:

 10

rewindStream(input); // tells the stream to seek back to the beginning

To read or write a compressed file, even a whole byte is too much; you will want to read and

write binary data one single bit at a time, which is not directly supported by the default in/output

streams. Therefore the Stanford C++ library provides obitstream and ibitstream classes

with writeBit and readBit members to make it easier.

obitstream (bit output stream) member Description

void writeBit(int bit) writes a single bit (0 or 1) to the output

stream

ibitstream (bit input stream) member Description

int readBit() reads a single bit (0 or 1) from input; -

1 at end of file

When reading from an bit input stream (ibitstream), you can detect the end of the file by

either looking for a readBit result of -1, or by calling the fail() member function on the

input stream after trying to read from it, which will return true if the last readBit call was

unsuccessful due to reaching the end of the file. (You can read the documentation for these bit

stream classes here: https://stanford.edu/~stepp/cppdoc/bitstream.html.)

Note that the bit in/output streams also provide the same members as the original ostream and

istream classes from the C++ standard library, such as getline, <<, >>, etc. But you usually

don't want to use them, because they operate on an entire byte (8 bits) at a time, or more, whereas

you want to process these streams one bit at a time.

https://stanford.edu/~stepp/cppdoc/bitstream.html

 11

Implementation Details: MyMap

Relevant files: mymap.cpp, mymap.h

In the first part of this assignment, you will be implementing a data structure MyMap that behaves

identically to a HashMap with keys and values of type int. In later parts of this assignment, you

will be using this data structure to represent a frequency table of the characters in files you wish

to compress.

The class exports the following required public methods, which you will need to implement:

Name Description Runtime

MyMap()
Constructor for your map O(1)

~MyMap()
Destructor for your map. Clears all

heap-allocated memory.

O(1)

void put(int key, int value)
Associates key with value in your

map, replacing existing values if need

be.

O(1)

int get(int key)
Returns the value associated with key in

your map. Throws a string exception if

the key is not in the map.

O(1)

bool containsKey(int key)
Returns a boolean indicating whether or

not keyis a key in your map.
O(1)

Vector<int> keys()
Returns a Vector of all the keys in your

map.

O(N)

Note that these methods represent the methods required for one possible implementation of

Huffman Compression: you are free to implement other public methods for use in your

assignment, but the methods detailed above must be implemented. As a general guide, refer to the

Stanford HashMap documentation for other methods you might want to implement.

In addition, the class exports the sanityCheck() method, which has been written for you:

https://stanford.edu/~stepp/cppdoc/HashMap-class.html

 12

void sanityCheck()
Tests your map to ensure that the previously

mentioned public methods behave as expected.

Note that the sanityCheck() method is not comprehensive - depending on the specifics of

your implementation, you are allowed and encouraged to modify the method to better suit you.

sanityCheck() will not be graded, but is a useful way to check whether your map behaves as

intended.

Development strategy and hints

● Your MyMap must be implemented using an array of buckets into which key-value pairs

are hashed. Each bucket in the array must be the head of a linked list of key-value pairs.

You are provided with the following struct to help you with this:

struct key_val_pair {

 int key;

 int value;

 key_val_pair* next;

 }

● In order to create an array of buckets, we provide you with the following private method:

bucketArray createBucketArray(int nBuckets);
Returns an array of
key_val_pair* with size

nBuckets. All elements are

set to nullptr initially.

Note that the bucketArray type is simply a typedef (synonym) for the type

key_val_pair**, that is, pointers to pointers to key_val_pairs. While this certainly

looks grisly, we simply use key_val_pair** to refer to an array of key_val_pair*s,

just as we use int* to refer to an array of type int. For the purposes of this assignment,

you need not worry about any of this - you can simply work with the bucketArray type

as below:

bucketArray buckets = createBucketArray(8);

key_val_pair* head = buckets[4]; //access element in array

Buckets[3] = new key_val_pair; //set an element in the array

 13

● We provide a private method int hashFunction(), which you may use when hashing

key-value pairs into your map.

● For full credit, ensure that the public methods you implement have the specified runtime.

 14

Implementation Details: encoding.cpp

For the second part of this assignment, you will write the functions described below in the file

encoding.cpp. This will allow you to encode and decode data using the Huffman algorithm.

Our provided main client program will allow you to test each function one at a time before

moving on to the next. The following functions are required, but note that you can add more

functions as helpers if you like, particularly to help you implement any recursive algorithms. Any

members that traverse a binary tree from top to bottom should implement that traversal

recursively whenever practical.

Name Description

MyMap buildFrequencyTable(istream&
input)

This is Step 1 of the encoding process. In this

function you read input from a given istream

(which could be a file on disk, a string buffer,

etc.). You should count and return a mapping

from each character (represented as int here)

to the number of times that character appears

in the file. You should also add a single

occurrence of the fake character PSEUDO_EOF

into your map. You may assume that the input

file exists and can be read, though the file

might be empty. An empty file would cause

you to return a map containing only the 1

occurrence of PSEUDO_EOF.

HuffmanNode*
buildEncodingTree(MyMap &freqTable)

This is Step 2 of the encoding process. In this

function you will accept a frequency table (like

the one you built in buildFrequencyTable)

and use it to create a Huffman encoding tree

based on those frequencies. Return a pointer to

the node representing the root of the tree.

You may assume that the frequency table is

valid: that it does not contain any keys other

than char values, PSEUDO_EOF, and

NOT_A_CHAR; that all counts are positive

integers; and that it contains at least one

key/value pairing.

When building the encoding tree, you will

need to use a priority queue to keep track of

which nodes to process next. Use the

PriorityQueue collection provided by the

Stanford libraries, defined in library header

pqueue.h. This allows each element to be

enqueued along with an associated priority.

 15

The dequeue function always returns the

element with the minimum priority number.

Map<int, string>
buildEncodingMap(HuffmanNode*
encodingTree)

This is Step 3 of the encoding process. In this

function will you accept a pointer to the root

node of a Huffman tree (like the one you built

in buildEncodingTree) and use it to create

and return a Huffman encoding map based on

the tree's structure. Each key in the map is a

character, and each value is the binary

encoding for that character represented as a

string. For example, if the character 'a' has

binary value 10 and 'b' has 11, the map should

store the key/value pairs 'a':"10" and 'b':"11". If

the encoding tree is NULL, return an empty

map.

void encodeData(istream& input,
const Map<int, string>
&encodingMap, obitstream& output)

This is Step 4 of the encoding process. In this

function you will read one character at a time

from a given input file, and use the provided

encoding map to encode each character to

binary, then write the character's encoded

binary bits to the given bit output bit stream.

After writing the file's contents, you should

write a single occurrence of the binary

encoding for PSEUDO_EOF into the output so

that you'll be able to identify the end of the

data when decompressing the file later. You

may assume that the parameters are valid: that

the encoding map is valid and contains all

needed data, that the input stream is readable,

and that the output stream is writable. The

streams are already opened and ready to be

read/written; you do not need to prompt the

user or open/close the files yourself.

void decodeData(ibitstream& input,
HuffmanNode* encodingTree, ostream&
output)

This is the “decoding a file” process described

previously. In this function you should do the

opposite of encodeData; you read bits from

the given input file one at a time, and

recursively walk through the specified

decoding tree to write the original

uncompressed contents of that file to the given

output stream. The streams are already opened

and you do not need to prompt the user or

open/close the files yourself.

 16

To manually verify that your implementations of encodeData and decodeData are working

correctly, use our provided test code to compress strings of your choice into a sequence of 0s and

1s. The next few paragraphs describe a header that you will add to compressed files, but in

encodeData and decodeData, you should not write or read this header from the file. Instead,

just use the encoding tree you’re given. Worry about headers only in compress/decompress.

The functions above implement Huffman’s algorithm, but they have one big flaw. The decoding

function requires the encoding tree to be passed in as a parameter. Without the encoding tree, you

don’t know the mappings from bit patterns to characters, so you can't successfully decode the

file.

We will work around this by writing the encodings into the compressed file, as a header. The idea

is that when opening our compressed file later, the first several bytes will store our encoding

information, and then those bytes are immediately followed by the binary bits that we

compressed earlier. It’s actually easier to store the character frequency table, the map from Step 1

of the encoding process, and we can generate the encoding tree from that. For our ab ab cab
example, the frequency table stores the following (the keys are shown by their ASCII integer

values, such as 32 for ' ' and 97 for 'a', because that is the way the map would look if you printed

it out):

{32:2, 97:3, 98:3, 99:1, 256:1}

We don't have to write the encoding header bit-by-bit; just write out normal ASCII characters for

our encodings. We could come up with various ways to format the encoding text, but this would

require us to carefully write code to write/read the encoding text. There's a simpler way. You

already have a Map of character frequency counts from Step 1 of encoding. In C++, collections

like Maps can easily be read and written to/from streams using << and >> operators. We have

provided overriden versions of these operators for the MyMap class, so all you need to do for your

header is write your map into the bit output stream first before you start writing bits into the

compressed file, and read that same map back in first when you decompress it later. The overall

file is now 34 bytes: 31 for the header and 3 for the binary compressed data. Here's an attempt at

a diagram:

Looking at this new rendition of the compressed file, you may be thinking, “The file isn’t

compressed at all; it actually got larger than it was before! It went up from 9 bytes (“ab ab
cab”) to 34!” That's true for this contrived example. But for a larger file, the cost of the header is

not so bad relative to the overall file size. There are more compact ways of storing the header,

 17

too, but they add too much challenge to this assignment, which is meant to practice trees and data

structures and problem solving more than it is meant to produce a truly tight compression.

The last step is to glue all of your code together, along with code to read and write the encoding

table to the file:

Name Description

void compress(istream&
input, obitstream& output)

This is the overall compression function; in this function

you should compress the given input file into the given

output file. You will take as parameters an input file that

should be encoded and an output bit stream to which the

compressed bits of that input file should be written. You

should read the input file one character at a time,

building an encoding of its contents, and write a

compressed version of that input file, including a header,

to the specified output file. This function should be built

on top of the other encoding functions and should call

them as needed. You may assume that the streams are

both valid and readable/writeable, but the input file

might be empty. The streams are already opened and

ready to be read/written; you do not need to prompt the

user or open/close the files yourself.

void decompress(ibitstream&
input, ostream& output)

This function should do the opposite of compress; it

should read the bits from the given input file one at a

time, including your header packed inside the start of the

file, to write the original contents of that file to the file

specified by the output parameter. You may assume that

the streams are valid and read/writeable, but the input file

might be empty. The streams are already open and ready

to be used; you do not need to prompt the user or

open/close files.

void freeTree(HuffmanNode*
node)

This function should free the memory associated with the

tree whose root node is represented by the given pointer.

You must free the root node and all nodes in its subtrees.

There should be no effect if the tree passed is NULL. If

your compress or decompress function creates a

Huffman tree, that function should also free the tree.

 18

Creative Input File (secretmessage.huf)

Along with your program, turn in a file secretmessage.huf that stores a compressed message

from you to your section leader. Create the file by compressing a text file with your compress

function. The message can be anything (appropriate) you choose. Your SL will decompress your

message with your program and read it while grading.

Development Strategy and Hints

• When writing the bit patterns to the compressed file, note that you do not write the ASCII

characters '0' and '1' (that wouldn’t do much for compression!), instead the bits in the

compressed form are written one-by-one using the readBit and writeBit member

functions on the bitstream objects. Similarly, when you are trying to read bits from a

compressed file, don't use >> or byte-based methods like get or getline; use readBit.

The bits that are returned from readBit will be either 0 or 1, but not '0' or '1'.

• Work step-by-step. Get each part of the encoding program working before starting on the

next one. You can test each function individually using our provided client program, even if

others are blank or incomplete.

• Start out with small test files (two characters, ten characters, one sentence) to practice on

before you start trying to compress large books of text. What sort of files do you expect

Huffman to be particularly effective at compressing? On what sort of files will it less

effective? Are there files that grow instead of shrink when Huffman encoded? Consider

creating sample files to test out your theories.

• Your implementation should be robust enough to compress any kind of file: text, binary,

image, or even one it has previously compressed. Your program probably won't be able to

further squish an already compressed file (and in fact, it can get larger because of header

overhead) but it should be possible to compress multiple iterations, decompress the same

number of iterations, and return to the original file.

• Your program only has to decompress valid files compressed by your program. You do not

need to take special precautions to protect against user error such as trying to decompress a

file that isn't in the proper compressed format.

• See the input/output streams section for how to “rewind” a stream to the beginning if

necessary.

• The operations that read and write bits are somewhat inefficient and working on a large file

(100K and more) will take some time. Don’t be concerned if the reading/writing phase is

slow for very large files.

• Note that Qt Creator puts the compressed binary files created by your code in your "build"

folder. They won't show up in the normal res resource folder of your project.

• Your code should have no memory leaks. Free the memory associated with any new objects

you allocate internally. The Huffman nodes you will allocate when building encoding trees

are passed back to the caller, so it is that caller's responsibility to call your freeTree

function to clean up the memory.

 19

Possible Extra Features

Though your solution to this assignment must match all of the specifications mentioned

previously, you are allowed and encouraged to add extra features to your program if you’d like to

go beyond the basic assignment. Here are some ideas for extra features that you could add to your

program.

1. Make the encoding table more efficient: Our implementation of the encoding table at

the start of each file is not at all efficient, and for small files can take up a lot of space.

Try to see if you can find a better way of encoding the data. If you’re feeling up for a

challenge, try looking up succinct data structures and see if you can write out the

encoding tree using one bit per node and one byte per character!

2. Add support for encryption in addition to encoding: Without knowledge of the

encoding table, it’s impossible to decode compressed files. Update the encoding table

code so that it prompts for a password or uses some other technique to make it hard for

Bad People to decompress the data.

3. Implement a more advanced compression algorithm: Huffman encoding is a good

compression algorithm, but there are much better alternatives in many cases. Try

researching and implementing a more advanced algorithm, like LZW, in addition to

Huffman coding.

4. Gracefully handle bad input files: The normal version of the program doesn’t work very

well if you feed it bogus input, such as a file that wasn’t created by your own algorithm.

Make your code more robust by making it able to detect whether a file is valid or invalid

and react accordingly. One possible way of doing this would be to insert special bits/bytes

near the start of the file that indicate a header flag or check-sum. You can test to see

whether these bit patterns are present, and if not, you know the file is bogus.

5. Implement rehashing for your MyMap class. By default, you are not required to

implement rehashing in your map. However, you might choose to do this if the load factor

in your map exceeds a particular threshold.

6. Other: If you have your own creative idea for an extra feature, ask your SL and/or the

instructor about it.

Indicating that you have done extra features:

If you complete any extra features, then in the comment heading on the top of your program,

please list all extra features that you worked on and where in the code they can be found (what

functions, lines, etc. so that the grader can easily identify them).

Submitting a program with extra features:

Since we use automated testing for part of our grading process, it is important that you submit a

program that conforms to the preceding spec, even if you want to do extra features. If your

feature(s) cause your program to change the output that it produces in such a way that it no longer

matches the expected sample output test cases provided, you should submit two versions of your

program file: a first one named life.cpp without any extra features added (or with all necessary

features disabled or commented out), and a second one named life-extra.cpp with the extra

features enabled. Please distinguish them in by explaining which is which in the comment header.

 20

Our submission system saves every submission you make, so if you make more than one we will

be able to view all of them; your previously submitted files will not be lost or overwritten.

	Assignment 6: Huffman Encoding
	Due: Wednesday, August 9 at 12:00 PM (noon). You may work in pairs for this assignment.
	Assignment Overview and Starter Files
	Huffman Encoding
	Encoding a File Step 1: Counting Frequencies
	Encoding a File Step 2: Building an Encoding Tree
	Encoding a File Step 3: Building an Encoding Map
	Encoding a File Step 4: Encoding the Textual Data
	Using the encoding map, we can encode the file’s text into a shorter binary representation. Using the preceding encoding map, the text "ab ab cab" would be encoded as:
	Decoding a File
	You can use a Huffman tree to decode text that was previously encoded with its binary patterns. The decoding algorithm is to read each bit from the file, one at a time, and use this bit to traverse the Huffman tree. If the bit is a 0, you move left in...
	Provided Code
	We provide you with a file HuffmanNode.h, which declares some useful support code including the HuffmanNode structure, which represents a node in a Huffman encoding tree.
	Implementation Details: MyMap
	Creative Input File (secretmessage.huf)
	Development Strategy and Hints
	Possible Extra Features
	Indicating that you have done extra features:
	Submitting a program with extra features:

