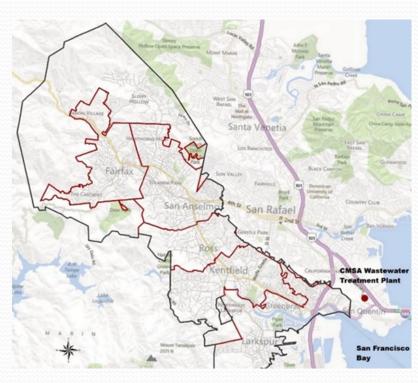

Dynamic Asset Management Using CMMS

Katherine Hayden, P.E.

Assistant Engineer

Stephen Miksis

Maintenance Superintendent


Ross Valley Sanitary District

Presentation Topics

- Defining the Problem
- Levels of Service
- CMMS
- CIP and Asset Management
- O&M Optimization
- O&M and CIP Integration

Defining the Problem

- 1899 District with 200 Miles of Pipe
 - Most of pipe beyond its design life, wear and tear
- System Characteristics
 - Small diameter
 - High risk trunk lines
 - Valley
 - Access
 - Shallow pipe
 - I&I

Defining the Problem

Deferred Maintenance

- Staffing and funding
- Reactive with limited documentation

Asset Inventory Data

- Unknowns and inaccuracies
- Inherited infrastructure

Condition Data/Projects

- CCTV data limited pre-2008
- Project definition based on field crews

Capital Program to 2012

- 15% of system replaced by 2012
- 2006 master plan pending project backlog

Levels of Service

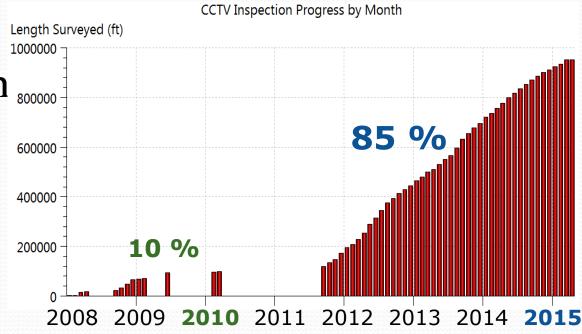
- Capital and O&M Approach
 - 2006 Master Plan
 - Redefinition 2010-Present
- Infrastructure Asset Management Plan (IAMP) in 2013
 - CDO regulatory requirements
 - District-defined
- Level of Service (LOS) Goals
 - Preserve health and the environment
 - Provide excellent customer service
 - Provide and sustain a reliable system
 - Assure cost-effective system management

CMMS – Managing the Problem

Who? What? When? Where? Why? How?

- Collect, use and manage data
- Prioritize capital/maintenance
- Define projects
- Optimize resources
- Track successes
- Add value

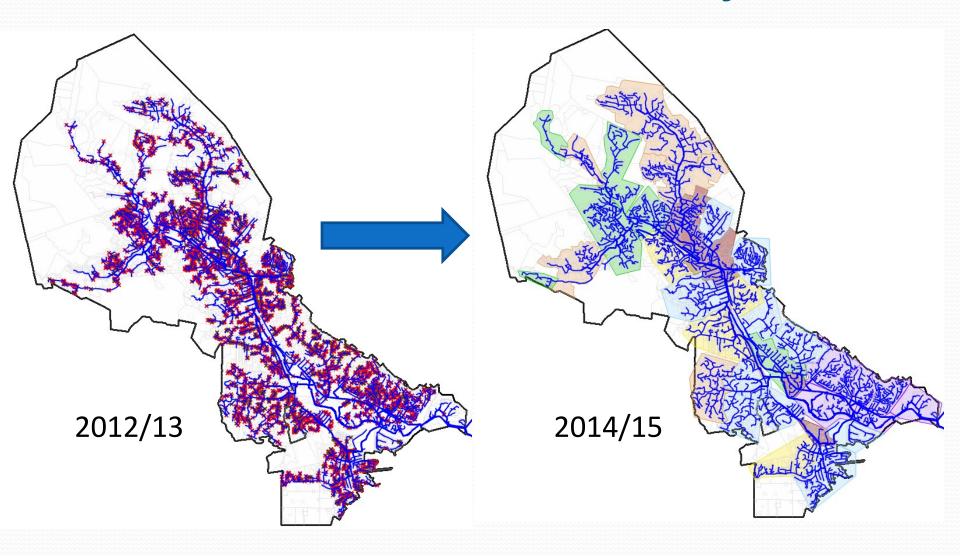
CMMS – System


Software

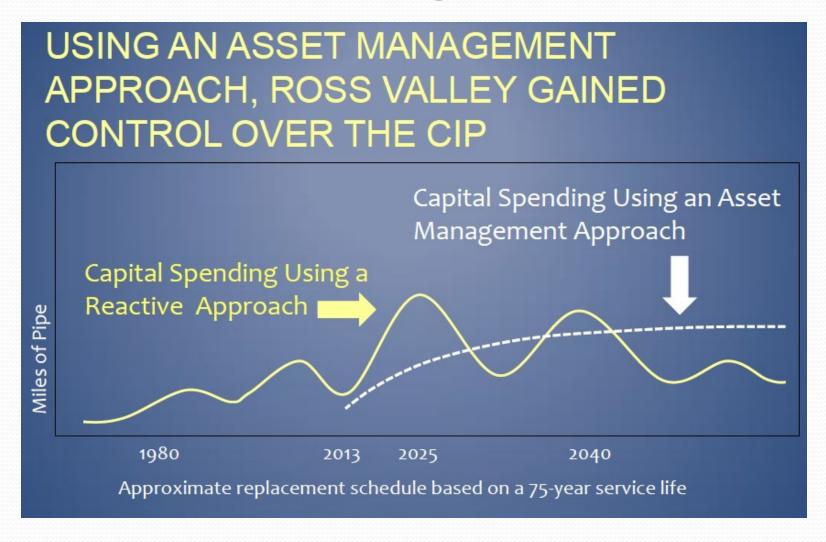
- InfoNet[™] (2012)
- Work orders
- Asset management

Data Collection

- Paper to electronic
- CCTV system-wide
- Cleaning data
- Update mapping & inventory



CMMS – Condition Data


- PACP Grade 4 & 5 Structural Defects
 - 1,700 pipes of which 1,400 average of two **severe** G5s
- O&M Condition Data
- Incident Documentation
- Cleaning QA/QC

Defect	Defect Description	Distance	Percentage
Code	_	Affected (ft)	Surveyed
RBC	Roots Ball Connection	673	3
RBJ	Roots Ball Joint	1,805	5
RBL	Roots Ball Lateral	207	1
RFB	Roots Fine Barrel	110	0
RFC	Roots Fine Connection	266	1
RFJ	Roots Fine Joint	<mark>206,572</mark>	47
RFL	Roots Fine Lateral	167	1
RMB	Roots Medium Barrel	112	0
RMC	Roots Medium	515	2
	Connection		
RMJ	Roots Medium Joint	8,437	12
RML	Roots Medium Lateral	148	1

CIP – Data to Prioritized Projects

CIP – Asset Management

IAMP – Risk Model

SMARTool

Likelihood of Failure (from InfoNet CMMS)

Consequence of Failure (GIS Data)

- Material (Techite)
- Structural Condition
- O&M Condition
- Located in Bay Mud
- Located in Landslide
 Zone
- Capacity/SSOs
- Maintenance Needs

- Near Waterway
- Near School, Park
- Crosses Major Roadway
- Serves Large Area

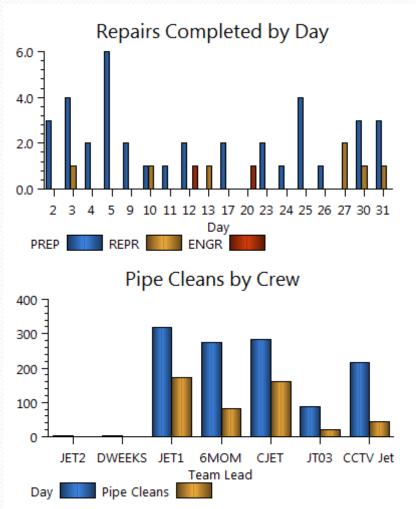
CIP – IAMP to Rehabilitation Projects

- Risk prioritization
- Grouped by location
- Various construction methods
- Resource optimization
- Built-in project flexibility

CIP – Gravity Sewer Projects

Dynamic

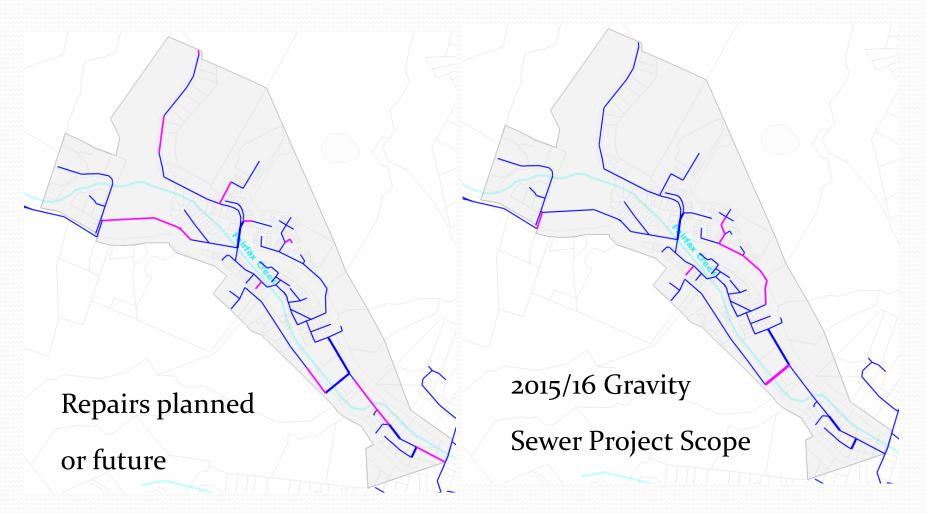
- New condition data and risk model updates
- Plan and manage District repairs
- Repairs connected to pre- and post-CCTV
- O&M factors and priorities
- 3 to 5 year rehabilitation or monitoring
- \$14M \$22M rolling capital plan through 2022


• 2014/15 Gravity Sewer Project

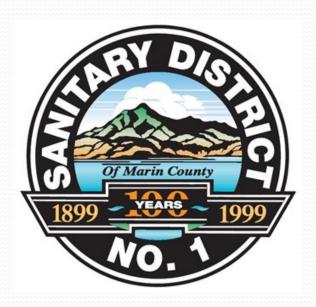
- 2 rehab areas and 2 capacity projects
- 185 District repairs completed in advance
- 4 miles of rehabilitation/replacement plus restoration
- 40 pipes that are currently 6 month maintenance
- Re-prioritized a pipeline due to SSOs and O&M schedule

Not possible without CMMS

O&M - Optimization


- Data Driven Decisions
- Schedule and Track
- Effective Tools and Technologies
- Maximize Resources
- Performance Metrics
- CIP Projects factors

O&M and CIP Integration Downtown Fairfax Example


O&M and CIP Integration Downtown Fairfax Example

O&M and CIP Integration

- Resource Optimization
 - District resources work ahead of capital projects
 - Localized liner repairs support or restore pipe
 - Significant cost savings allow us to fulfill objectives
- CMMS
 - Data to SMARTool for risk
 - Capital projects scoping
 - Tracking and reporting
 - Confirm and reevaluate O&M post-rehabilitation
- CMMS Data Showing Progress and Results
- Pump/Lift Stations and Force Mains Same Principles
 - PS 12 Bon Air and PS 13 Greenbrae
 - Force main ARVs and cathodic protection

Work In Progress

