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At the beginning of her career Sherri Rose discusses big data and stands amazed at its potential.
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Electronic Health Databases

The increasing availability of electronic health records offers a new
resource to public health researchers.

General usefulness of this type of data to answer targeted scientific
research questions is an open question.

Need novel statistical methods that have desirable statistical properties
while remaining computationally feasible.



Machine Learning: Big Picture

Machine learning aims to
» “smooth” over the data

» make fewer assumptions

Polley etal. (2011)
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> Recent health studies have employed newer algorithms.
(any mapping from data to a predictor)
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» Recent health studies have employed newer algorithms.
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Machine Learning: Options

» Recent health studies have employed newer algorithms.

> Researchers are then left with questions, e.g.,
> “When should | use random forest instead of standard regression

. ”
techniques?
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Machine Learning: Ensembles

» Ensembling methods allow implementation of multiple algorithms.

» Do not need to decide beforehand which single technique to use; can
use several by incorporating cross-validation.

Learning 5 Training
Set Set

T Validation
v Y Set

1 1 1 1 1 1 1 1 1 -
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 - 3 3
4 4 4 4 4 4 - 4 4 4
5 5 5 5 5 - 5 5 5 5
6 6 6 6 - 6 6 6 6 6
7 7 7 - 7 7 7 7 7 7
8 8 - 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10
Fold1  Fold2  Fold3  Fold4 Fold5 Fold6  Fod7  Fold8  Fold9  Fold 10



Machine Learning: Ensembles

Super Learner: Build a collection of
averages of the algorithms.

algorithms consisting of all weighted

One of these weighted averages might perform better than one of the

algorithms alone.
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Machine Learning: Ensembles
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Applications in Health Insurance

© Risk adjustment in plan payment

@ Effect estimation for variable importance of medical conditions

DATA

» Truven MarketScan database, TRUVEN t More Than Data.

up to 51 million enrollees per HEALTH ANALYTICS Answers.

year. Variables: age, sex, region,
procedures, expenditures, etc.

» Enrollment and claims from private health plans and employers.

MARKETSCAN® RESEARCH




Risk Adjustment in Plan Payment

Over 50 million people in the United States currently enrolled in an
insurance program that uses risk adjustment.

» Redistributes funds
based on health

» Encourages
competition based on
efficiency & quality

» Huge financial
implications

( Health Insurance
Marketplace

Xerox.com



Risk Adjustment in Plan Payment = Frozen

E[Y| W] =apgt+ta W

Potentially $$$ oversight, where it
attempts to control for the impact of
consumers choosing health plans.

wpb.org



Risk Adjustment in Plan Payment: Results

© Super Learner had best performance.

@ Top 5 algorithms with reduced set of variables retained 92% of
the relative efficiency of their full versions (86 variables).
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age category 21-34
all five inpatient diagnoses categories
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heart disease

cancer

diabetes

mental health

other inpatient diagnoses

metastatic cancer

stem cell transplantation/complication
multiple sclerosis

end stage renal disease



Medical Condition Variable Importance
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Medical Condition Variable Importance: Results &
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Medical Condition Variable Importance: Results §

First investigation of the impact of medical conditions on health spending
as a variable importance question using double robust estimators.

Five most expensive medical conditions were
© multiple sclerosis
@ congestive heart failure
© lung, brain, and other severe cancers
@ major depression and bipolar disorders

© chronic hepatitis.

» Differing results compared to parametric regression.

» What does this mean for incentives for prevention and care?



Causal Questions
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Comparative Effectiveness

Stent in Coronary Artery

Stent Catheter
y4 ya

HatfieldBlausen.com staff. " Blausen gallery 2014"




Hospital Profiling
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Targeted Learning Methods

Mark J. van der Laan
Sherri Rose

Targeted Learning

van der Laan & Rose, Targeted Learning: Causal Inference for
Observational and Experimental Data. New York: Springer, 2011.
targetedlearningbook.com



Health Policy Data Science Lab

HEALTH POLICY DATA SCIENCE LAB
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