
Machine Learning in Biostatistics & Health Policy

Sherri Rose

Associate Professor
Department of Health Care Policy

Harvard Medical School

rose@hcp.med.harvard.edu

drsherrirose.com

July 20, 2016



PLoS Medicine  |  www.plosmedicine.org 0696

Essay

Open access, freely available online

August 2005  |  Volume 2  |  Issue 8  |  e124

Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 

The Essay section contains opinion pieces on topics 
of broad interest to a general medical audience. 

Why Most Published Research Findings 
Are False 
John P. A. Ioannidis

Citation: Ioannidis JPA (2005) Why most published 
research fi ndings are false. PLoS Med 2(8): e124.

Copyright: © 2005 John P. A. Ioannidis. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 
work is properly cited. 

Abbreviation: PPV, positive predictive value

John P. A. Ioannidis is in the Department of Hygiene 
and Epidemiology, University of Ioannina School of 
Medicine, Ioannina, Greece, and Institute for Clinical 
Research and Health Policy Studies, Department of 
Medicine, Tufts-New England Medical Center, Tufts 
University School of Medicine, Boston, Massachusetts, 
United States of America. E-mail: jioannid@cc.uoi.gr

Competing Interests: The author has declared that 
no competing interests exist.

DOI: 10.1371/journal.pmed.0020124

Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.
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Electronic Health Databases

The increasing availability of electronic health records offers a new
resource to public health researchers.

General usefulness of this type of data to answer targeted scientific
research questions is an open question.

Need novel statistical methods that have desirable statistical properties
while remaining computationally feasible.



Machine Learning: Big Picture

Machine learning aims to

I “smooth” over the data

I make fewer assumptions



Machine Learning: Options

I Recent health studies have employed newer algorithms.
(any mapping from data to a predictor)

I Researchers are then left with questions, e.g.,
I “When should I use random forest instead of standard regression

techniques?”
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Machine Learning: Ensembles

I Ensembling methods allow implementation of multiple algorithms.

I Do not need to decide beforehand which single technique to use; can
use several by incorporating cross-validation.
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Machine Learning: Ensembles

Super Learner: Build a collection of algorithms consisting of all weighted
averages of the algorithms.

One of these weighted averages might perform better than one of the
algorithms alone.
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Applications in Health Insurance

1 Risk adjustment in plan payment

2 Effect estimation for variable importance of medical conditions

DATA

I Truven MarketScan database,
up to 51 million enrollees per
year. Variables: age, sex, region,
procedures, expenditures, etc.

I Enrollment and claims from private health plans and employers.



Risk Adjustment in Plan Payment

Over 50 million people in the United States currently enrolled in an
insurance program that uses risk adjustment.

I Redistributes funds
based on health

I Encourages
competition based on
efficiency & quality

I Huge financial
implications

xerox.com



Risk Adjustment in Plan Payment = Frozen

E [Y | W ] = α0 + α1W

Potentially $$$ oversight, where it
attempts to control for the impact of
consumers choosing health plans.

wpb.org



Risk Adjustment in Plan Payment: Results

1 Super Learner had best performance.
2 Top 5 algorithms with reduced set of variables retained 92% of

the relative efficiency of their full versions (86 variables).
I age category 21-34
I all five inpatient diagnoses categories

I heart disease
I cancer
I diabetes
I mental health
I other inpatient diagnoses

I metastatic cancer
I stem cell transplantation/complication
I multiple sclerosis
I end stage renal disease



Medical Condition Variable Importance
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This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.
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Medical Condition Variable Importance: Results

First investigation of the impact of medical conditions on health spending
as a variable importance question using double robust estimators.

Five most expensive medical conditions were

1 multiple sclerosis

2 congestive heart failure

3 lung, brain, and other severe cancers

4 major depression and bipolar disorders

5 chronic hepatitis.

I Differing results compared to parametric regression.

I What does this mean for incentives for prevention and care?



Causal Questions

Subject 1
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Subject 3

Subject 2 Subject 2

Subject 1

Subject 3

IDEAL EXPERIMENT REAL-WORLD STUDY

EXPOSED UNEXPOSED EXPOSED UNEXPOSED



Comparative Effectiveness

HatfieldBlausen.com staff. ”Blausen gallery 2014”



Hospital Profiling



Targeted Learning Methods

van der Laan & Rose, Targeted Learning: Causal Inference for
Observational and Experimental Data. New York: Springer, 2011.

targetedlearningbook.com



Health Policy Data Science Lab

healthpolicydatascience.org


