Association Analysis

UE 141 Spring 2013

Jing Gao
SUNY Buffalo

Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

$T I D$	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$$
\begin{aligned}
& \{\text { Diaper }\} \rightarrow\{\text { Beer }\}, \\
& \{\text { Milk, Bread }\} \rightarrow\{\text { Eggs,Coke }\}, \\
& \{\text { Beer, Bread }\} \rightarrow\{\text { Milk }\},
\end{aligned}
$$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

- Itemset
- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread,Diaper $\})=2$
- Support
- Fraction of transactions that contain an itemset
- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold

TID Items

1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

- Association Rule
- An implication expression of the form $X \rightarrow$ Y, where X and Y are itemsets
- Example: \{Milk, Diaper\} \rightarrow \{Beer\}
- Rule Evaluation Metrics

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

- Support (s)
- Fraction of transactions that contain both X and Y

Example:

\{Milk, Diaper $\} \Rightarrow$ Beer

- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

$$
\begin{aligned}
& s=\frac{\sigma(\text { Milk, Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
& c=\frac{\sigma(\text { Milk, Diaper,Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
\end{aligned}
$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

\{Milk,Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67)
\{Milk,Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)
\{Diaper,Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67)
\{Beer\} \rightarrow \{Milk,Diaper\} (s=0.4, c=0.67)
\{Diaper\} \rightarrow \{Milk,Beer\} (s=0.4, c=0.5)
\{Milk\} \rightarrow \{Diaper,Beer\} (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Transactions

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

List of
Candidates

- Match each transaction against every candidate

妩

Reducing Number of Candidates

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

TF3

Illustrating Apriori Principle

Found to be Infrequent

The Apriori Algorithm—An Example

			C_{2}	Itemset	sup		C_{2}	Itemset
L_{2}	Itemset	sup		\{A, B\}	1		can	\{A, B
	$\{\mathrm{A}, \mathrm{C}\}$	2		\{A, C $\}$	2			$\{\mathrm{A}, \mathrm{C}\}$
	\{B, C \}	2		$\{A, E\}$ $\{B, C\}$	1			$\{\mathrm{A}, \mathrm{E}\}$
	\{B, E\}	3		\{B, E\}	3			\{B, C $\}$
	\{C, E \}	2		\{C, E\}	2			\{B, E\}
$\left.C_{3} \begin{array}{c} \\ \cline { 2 - 3 } \\ \cline { 2 - 3 } \\ \cline { 2 - 3 } \end{array} \text { Itemset } \mathrm{C}, \mathrm{E}\right\}$								\{C, E\}
			$3^{\text {rd }}$ scan			Itemset	sup	
			$\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$	2				

Mining Association Rules from Record Data

How to apply association analysis formulation to record data?

Session Id	Country	Session Length $(\mathbf{s e c})$	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	IE	No
2	China	811	10	Female	Chrome	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	IE	Yes
5	Australia	123	9	Male	Mozilla	No
\ldots						

Example of Association Rule:
$\{$ Number of Pages $\in[5,10) \wedge($ Browser=Mozilla $)\} \rightarrow\{$ Buy $=$ No $\}$

Handling Categorical Attributes

- Transform categorical attribute into binary variables
- Introduce a new "item" for each distinct attribute-value pair
- Example: replace Browser Type attribute with
- Browser Type = Internet Explorer
- Browser Type = Mozilla
- Browser Type = Chrome

Handling Categorical Attributes

- Potential Issues
- What if attribute has many possible values
- Example: attribute country has more than 200 possible values
- Many of the attribute values may have very low support
- Potential solution: Aggregate the low-support attribute values
- What if distribution of attribute values is highly skewed
- Example: 95% of the visitors have Buy = No
- Most of the items will be associated with (Buy=No) item
- Potential solution: drop the highly frequent items

Handling Continuous Attributes

- Different kinds of rules:
- Age $\in[21,35) \wedge$ Salary $\in[70 k, 120 k) \rightarrow$ Buy
- Salary $\in[70 k, 120 k) \wedge$ Buy \rightarrow Age: $\mu=28, \sigma=4$
- Different methods:
- Discretization-based
- Statistics-based

Question

- Will association analysis help Wal-mart?
- Start with the "beer and diaper" story
- Discuss possible benefits and challenges in using association analysis for supermarkets

