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Association Rule Mining 
• Given a set of transactions, find rules that will predict the 

occurrence of an item based on the occurrences of other items 
in the transaction 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules 

{Diaper}  {Beer}, 
{Milk, Bread}  {Eggs,Coke}, 
{Beer, Bread}  {Milk}, 

Implication means co-occurrence, 
not causality! 



Definition: Frequent Itemset 

• Itemset 

– A collection of one or more items 

• Example: {Milk, Bread, Diaper} 

– k-itemset 

• An itemset that contains k items 

• Support count () 

– Frequency of occurrence of an itemset 

– E.g.   ({Milk, Bread,Diaper}) = 2  

• Support 

– Fraction of transactions that contain an 
itemset 

– E.g.   s({Milk, Bread, Diaper}) = 2/5 

• Frequent Itemset 

– An itemset whose support is greater than 
or equal to a minsup threshold 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Definition: Association Rule 

Example: 

Beer}Diaper,Milk{ 
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 Association Rule 

– An implication expression of the form X  
Y, where X and Y are itemsets 

– Example: 
   {Milk, Diaper}  {Beer}  

 

 Rule Evaluation Metrics 

– Support (s) 

 Fraction of transactions that contain both 
X and Y 

– Confidence (c) 

 Measures how often items in Y  
appear in transactions that 
contain X 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Association Rule Mining Task 

• Given a set of transactions T, the goal of 
association rule mining is to find all rules having  
– support ≥ minsup threshold 
– confidence ≥ minconf threshold 

 

• Brute-force approach: 
– List all possible association rules 
– Compute the support and confidence for each rule 
– Prune rules that fail the minsup and minconf 

thresholds 
 Computationally prohibitive! 



Mining Association Rules 

Example of Rules: 
 

{Milk,Diaper}  {Beer} (s=0.4, c=0.67) 
{Milk,Beer}  {Diaper} (s=0.4, c=1.0) 
{Diaper,Beer}  {Milk} (s=0.4, c=0.67) 
{Beer}  {Milk,Diaper} (s=0.4, c=0.67)  
{Diaper}  {Milk,Beer} (s=0.4, c=0.5)  
{Milk}  {Diaper,Beer} (s=0.4, c=0.5) 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Observations: 

• All the above rules are binary partitions of the same itemset:  
 {Milk, Diaper, Beer} 

• Rules originating from the same itemset have identical support but 
  can have different confidence 

• Thus, we may decouple the support and confidence requirements 



Mining Association Rules 

• Two-step approach:  
1. Frequent Itemset Generation 

– Generate all itemsets whose support  minsup 

 

2. Rule Generation 
– Generate high confidence rules from each frequent 

itemset, where each rule is a binary partitioning of a 
frequent itemset 

 

• Frequent itemset generation is still 
computationally expensive 

 



Frequent Itemset Generation 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 
2d possible candidate 
itemsets 



Frequent Itemset Generation 

• Brute-force approach:  

– Each itemset in the lattice is a candidate frequent itemset 

– Count the support of each candidate by scanning the 
database 

 

 

 

 

 

 

– Match each transaction against every candidate 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
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Reducing Number of Candidates 

• Apriori principle: 
– If an itemset is frequent, then all of its subsets must also 

be frequent 
 

• Apriori principle holds due to the following property 
of the support measure: 

 

 
– Support of an itemset never exceeds the support of its 

subsets 

– This is known as the anti-monotone property of support 

)()()(:, YsXsYXYX 



Found to be 
Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 
supersets 
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The Apriori Algorithm—An Example  

Database TDB 

1st scan 

C1 

L1 

L2 

C2 C2 

2nd scan 

C3 L3 3rd scan 

Tid Items 

10 A, C, D 

20 B, C, E 

30 A, B, C, E 

40 B, E 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 

Itemset sup 

{A} 2 

{B} 3 

{C} 3 

{E} 3 

Itemset 

{A, B} 

{A, C} 

{A, E} 

{B, C} 

{B, E} 

{C, E} 

Itemset sup 

{A, B} 1 

{A, C} 2 

{A, E} 1 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset sup 

{A, C} 2 

{B, C} 2 

{B, E} 3 

{C, E} 2 

Itemset 

{B, C, E} 

Itemset sup 

{B, C, E} 2 

Supmin = 2 



Mining Association Rules from Record Data 

Session 
Id 

Country Session 
Length 
(sec) 

Number of 
Web Pages 

viewed 
Gender 

Browser 
Type 

Buy 

1 USA 982 8 Male IE No 

2 China 811 10 Female Chrome No 

3 USA 2125 45 Female Mozilla Yes 

4 Germany 596 4 Male IE Yes 

5 Australia 123 9 Male Mozilla No 

… … … … … … … 
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Example of Association Rule: 

       {Number of Pages [5,10)  (Browser=Mozilla)}  {Buy = No} 

How to apply association analysis formulation to record data? 



Handling Categorical Attributes 

• Transform categorical attribute into binary 
variables 

 

• Introduce a new “item” for each distinct 
attribute-value pair 
– Example: replace Browser Type attribute with 

•  Browser Type = Internet Explorer 

•  Browser Type = Mozilla 

•  Browser Type = Chrome 



Handling Categorical Attributes 

• Potential Issues 
– What if attribute has many possible values 

•  Example: attribute country has more than 200 possible 
values 

•  Many of the attribute values may have very low support 
– Potential solution: Aggregate the low-support attribute values 

 

– What if distribution of attribute values is highly 
skewed 
•  Example: 95% of the visitors have Buy = No 

•  Most of the items will be associated with (Buy=No) item 
– Potential solution: drop the highly frequent items 



Handling Continuous Attributes 

• Different kinds of rules: 

– Age[21,35)  Salary[70k,120k)  Buy 

– Salary[70k,120k)  Buy  Age: =28, =4 

 

• Different methods: 

– Discretization-based 

– Statistics-based 



Question 

• Will association analysis help Wal-mart? 
– Start with the “beer and diaper” story 

– Discuss possible benefits and challenges in using 
association analysis for supermarkets 
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