
© 2008 Carnegie Mellon University 1

Presentation Title 1/22/09

© 2008 Carnegie Mellon University

Assurance Cases

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Charles B. Weinstock
December 2008

2
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Overview

Definition and Purpose

The System Assurance Problem

Introduction to Assurance Cases

Hazard Analyses and Assurance Cases

Assurance Case Development

Conclusions

© 2008 Carnegie Mellon University 2

Presentation Title 1/22/09

3
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance

A justified measure of confidence that a system will function as intended in
its environment of use

4
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance

A justified measure of confidence that a system will function as intended in
its environment of use

•  What level of confidence do we have as a result of various assurance
activities?

© 2008 Carnegie Mellon University 3

Presentation Title 1/22/09

5
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance

A justified measure of confidence that a system will function as intended in
its environment of use

•  Why should we have a particular level of confidence?

•  What evidence is there to support this level of confidence?

•  Why do we believe the evidence?

6
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance

A justified measure of confidence that a system will function as intended in
its environment of use

•  Not just the intended environment of use — the actual environment of use

© 2008 Carnegie Mellon University 4

Presentation Title 1/22/09

7
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance

A justified measure of confidence that a system will function as intended in
its environment of use

•  “as intended” by the system’s users as they are actually using it

—  Different usage patterns possible by different sets of users

8
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance

A justified measure of confidence that a system will function as intended in
its environment of use

•  Includes evaluating mitigations of possible causes of critical failures

—  Minimize impact of unusual (or unexpected) operational conditions

—  Minimize impact of vulnerabilities that can be exploited by hostile
entities

© 2008 Carnegie Mellon University 5

Presentation Title 1/22/09

9
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance Cases

A means of increasing well-founded confidence that a system will behave
as intended

•  Augments testing where testing by itself is infeasible or too costly

—  Cannot demonstrate system safety/security/performance solely by
testing

•  Can reduce the number of tests needed to assure a desired system
capability because analysis results can complement testing results

•  Typically used for safety cases (in Europe)

•  Increasing interest in US

—  ISO 15026-2 “Assurance Case” [under development]

—  NRC Report: “Software for Dependable Systems: Sufficient Evidence?”

10
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Purpose of Presentation

Show what Assurance Case technology is and how it can provide

•  Help in leveraging scarce assurance resources

•  Help in producing a reviewable artifact providing

—  Assurance of mission-critical properties

—  Go/No-go criteria at different stages of development

•  Assessment of the impact of changes to a system

•  Development of and support for an engineering culture for software

—  Explicit articulation and verification of assurance claims

—  Focus on evidence and its significance

© 2008 Carnegie Mellon University 6

Presentation Title 1/22/09

11
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Overview

Definition and Purpose

The System Assurance Problem

Introduction to Assurance Cases

Hazard Analyses and Assurance Cases

Assurance Case Development

Conclusions

12
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Recognition of the Assurance Problem

OSD (AT&L) Software Engineering and System Assurance

•  SW test/evaluation lacks rigor and breadth

NDIA Top Software Issues (August 2006)

•  5. Traditional SW verification techniques are costly and ineffective for
dealing with the scale of complexity of modern systems

•  6. There is a failure to assure correct, predictable, safe, secure execution of
complex SW in distributed environments

•  7 (in part). SW assurance issues are not adequately addressed for COTS/
NDI

© 2008 Carnegie Mellon University 7

Presentation Title 1/22/09

13
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NDIA 5: Ineffective SW Verification

Over-reliance on testing rather than robust software verification techniques
applied across the life cycle

Current testing techniques scale poorly

Compliance-based testing is inadequate

14
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NDIA 6: Distributed Systems

Assurance of systems of systems cannot be easily inferred from
component level assurance

Current techniques for specifying, building, demonstrating, and verifying
assured components are inadequate

Exhaustive testing to rule out vulnerabilities is not feasible

© 2008 Carnegie Mellon University 8

Presentation Title 1/22/09

15
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NRC Report on SW Dependability

Software for Dependable Systems: Sufficient Evidence?

•  Experts from industry and academia assessed current practices for
developing and evaluating mission-critical software

•  Goals:

—  Identify the kinds of system properties for which certification is desired

—  Identify how certification is obtained today

—  Address system certification, examining a few different application
domains (e.g., medical devices and aviation systems) and their
approaches to software evaluation and assurance

—  Identify design and development methods, including methods for
establishing evidence of trustworthiness

16
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NRC: Dependability Definition

“Dependability: the ability to deliver service that can justifiably be trusted”

•  Safety

•  Reliability/Availability

•  Security

“Dependability is not a local property of software that can be determined
module by module

•  [It] has to be articulated and evaluated from a systems perspective that
[includes] the context of usage”

© 2008 Carnegie Mellon University 9

Presentation Title 1/22/09

17
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NRC: Testing Alone Is Insufficient

Testing is indispensable BUT
•  “A rigorous development process in which testing and code review are the

only verification techniques [cannot] justify claims of extraordinarily high
levels of dependability”

—  “Rigorous process is essential for preserving the chain of dependability
evidence but is not per se evidence of dependability.”

•  “Execution of even a large set of end-to-end tests, even [with] high levels of
code coverage, in itself says little about the dependability of the system as
a whole.”

•  “Credible claims of dependability are usually impossible or impractically
expensive to demonstrate after design and development [are complete]”

18
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NRC: Analysis Gives Meaning to Testing

“For testing to be a credible component of a [case for dependability], the
relation between testing and properties claimed will need to be explicitly
justified”

•  Well-reasoned argument

•  Formal proofs

•  Static code checkers

•  Known properties of system internals

•  Operational profile

•  Quality of the development staff

© 2008 Carnegie Mellon University 10

Presentation Title 1/22/09

19
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NRC Recommendation

Assurance that a system is dependable requires the construction and
evaluation of a “dependability case”

•  Claims

•  Arguments

•  Evidence

•  Expertise

20
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

SW Impact on System Dependability

Positive

•  Software can sometimes be used to compensate for hardware failures by
switching out hardware that’s failing

•  SW can also detect impending HW failures, signaling the need for
preventive maintenance

•  Neither of these contributions to overall system dependability is related to
detected SW defect rates

Negative

•  SW failure rates for complex systems are usually underestimated

© 2008 Carnegie Mellon University 11

Presentation Title 1/22/09

21
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

SW Failure: Random or Deterministic?

All software failures are deterministic in the sense that they occur every
time certain conditions are met but

•  After egregious software faults have been removed, failure occurrences
become a function of usage patterns and history, neither of which is
deterministic

For complex systems, the software is never perfect

•  A system needs to be designed to recover from (currently unknown) critical
faults whose effects are encountered only rarely

—  Race conditions

—  Memory leaks

—  Dependence on history

—  Accumulation of error

—  Capacity limits

—  Vulnerability exploitation

22
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NRC: Reliability Analysis — SW vs. HW

Feasibility of testing

•  HW: continuity of physical phenomena

—  allows inferences to be drawn from a few sample points (tests)

•  SW: discontinuous

—  Limited SW testing can rarely provide compelling evidence of behavior
under all conditions

Process/product correlation

•  HW statistical process control

—  Product samples give evidence of process quality, which determines
quality of unsampled items

•  SW: process/product quality correlation is generally weak

© 2008 Carnegie Mellon University 12

Presentation Title 1/22/09

23
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Dependability Improvement Programs

[Dependability] growth is the improvement in a [dependability] parameter
over a period of time due to changes in product design or the
manufacturing process. It occurs by surfacing failure modes and
implementing effective corrective actions [AMSAA Reliability Growth
Guide, TR-652]

•  HW reliability improvement activities include the identification of unexpected
failure modes and the identification of stress points that are likely points of
failure

•  For SW, funding is allocated to find and remove code faults, but often there
is no software FMEA followed by design modifications to ensure that even
when critical software components fail, the likelihood of a critical failure is
reduced

Where are the SW Dependability Improvement Programs?

24
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Deficiencies in SW Dependability Approaches

Dependability modeling and analysis is hardly ever done prior to code
development

Work focused on improving the robustness of a design, when done, is
hardly ever considered a part of product improvement activities

More can be done now than simply developing software dependability
goals or making plans about how to use collected defect data to predict
field dependability

© 2008 Carnegie Mellon University 13

Presentation Title 1/22/09

25
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Overview

Definition and Purpose

The System Assurance Problem

Introduction to Assurance Cases

Hazard Analyses and Assurance Cases

Assurance Case Development

Conclusions

26
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

NRC Recommendation

Assurance that a system is dependable requires the construction and
evaluation of a “dependability assurance case”

•  Claims

•  Arguments

•  Evidence

•  Expertise

© 2008 Carnegie Mellon University 14

Presentation Title 1/22/09

27
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance Cases

An assurance case presents an argument that a system is acceptably
safe, secure, reliable, etc. in a given context

•  A system could be physical, a combination of hardware and software, or
procedural (e.g., operating rules)

Experience with assurance cases has mainly been for safety cases

28
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Argument and Evidence

An assurance case requires claims, evidence, and an argument linking
evidence to claims:

•  Evidence

—  Results of observing, analyzing, testing, simulating, and estimating the
properties of a system that provide fundamental information from which
the presence of some system property can be inferred

•  High Level Argument

—  Explanation of how the available evidence can be reasonably
interpreted as indicating acceptable operation, usually by demonstrating
compliance with requirements, sufficient mitigation of hazards,
avoidance of hazards, etc.

© 2008 Carnegie Mellon University 15

Presentation Title 1/22/09

29
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Problems in System Assurance

Size and complexity
•  Increasingly complex systems

Structure/clarity
•  Large amounts of relevant information
•  Little high level structure, so can be hard to understand
•  In many cases, evidence is compelling, but the reader has to work very

hard to extract and confirm the rationale for why it is compelling
•  Argument and Evidence are confused

—  what is assumed; what is empirically observed?
—  where are subjective judgments made?

•  Activities and Argument are confused
—  “What we did” vs. “Why that makes it safe, secure, reliable, etc.”

Consistency
•  Coordinating effort from many sources (design analyses, development

tests, specialty engineering, IV&V efforts)

30
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Approaches to Establish Confidence in Systems

Standards-Based

•  Evaluate developer competence based on conformance to process
standards

Product-Based

•  Claims about product behavior supported by evidence based on product
analysis

•  Evidence linked to claims by argument

•  Beginning to be called an “assurance case” approach

© 2008 Carnegie Mellon University 16

Presentation Title 1/22/09

31
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Standards-Based Assurance Approach

Examples: DO-178B for avionics safety; Common Criteria for security

Development processes are evaluated against a standard

•  Adherence to good development processes is evidence of ability to produce
good products

•  Product X has been developed using good development practices

•  Therefore Product X is sufficiently safe, secure, reliable, etc.

32
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Product-Based Approach

Example: safety case in UK

Developer creates an assurance case with

•  Explicit claims about system behavior

•  Supporting evidence for claims

•  Arguments linking evidence to the claims

The case is evaluated by independent assessors

© 2008 Carnegie Mellon University 17

Presentation Title 1/22/09

33
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

What is an Assurance Case?

A structured demonstration that a system is acceptably safe, secure,
reliable, etc.

•  A comprehensive presentation of evidence linked (by argument) to a
claim

IF THEN Claim1; IF THEN Claim2; IF THEN Claim3;
IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim

Evidence

Evidence

Evidence

Claim2

Claim3
Claim4

Claim1

Claim

34
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Goal Structuring Notation

Goal Structuring Notation (GSN) was developed to help organize and
structure Safety Cases in a readily reviewable form
GSN has been used in Safety Case development for over a decade. A
brief overview of its history is in [Kelly 04]
GSN has been successfully used to document Safety Cases for systems
such as aircraft avionics, rail signaling, air traffic control, and nuclear
reactor shutdown
We have used it to build cases showing that other attributes of interest
(e.g., security) have been met.

[Kelly 04] Tim Kelly, and Rob Weaver. The Goal Structuring Notation — A Safety Argument Notation.
http://www-users.cs.york.ac.uk/~rob/papers/DSN04.pdf

© 2008 Carnegie Mellon University 18

Presentation Title 1/22/09

35
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Goal Structuring Notation

To show how claims are broken down into sub-claims,

and eventually supported by evidence

while making clear the argumentation strategies
adopted,

the rationale for the approach (assumptions, justifications)

and the context in which claims are stated

A/J

C : Timing Constraints Satisfied

Timing constraints for all mission -
(or safety -) critical functions are
satisfied under worst case
execution timing

© 2008 Carnegie Mellon University 19

Presentation Title 1/22/09

Critical functions
Critical functions are those whose
failure would likely cause failure of
an essential function . We here
consider those critical functions
whose failure is caused by a failure
to satisfy timing constraints .

C : Timing Constraints Satisfied

Timing constraints for all mission -
(or safety -) critical functions are
satisfied under worst case
execution timing

Critical functions
Critical functions are those whose
failure would likely cause failure of
an essential function . We here
consider those critical functions
whose failure is caused by a failure
to satisfy timing constraints .

Ctxt : Functions and Timing
Critical functions are defined in
Document XXX , version N
Section Y . Timing constraints and
their relation to critical functions
are defined in document ZZ
version N .

C : Timing Constraints Satisfied

Timing constraints for all mission -
(or safety -) critical functions are
satisfied under worst case
execution timing

© 2008 Carnegie Mellon University 20

Presentation Title 1/22/09

Critical functions
Critical functions are those whose
failure would likely cause failure of
an essential function . We here
consider those critical functions
whose failure is caused by a failure
to satisfy timing constraints .

Ctxt : Functions and Timing
Critical functions are defined in
Document XXX , version N
Section Y . Timing constraints and
their relation to critical functions
are defined in document ZZ
version N .

C : Schedulability Analysis

Schedulability analysis (of the
modeled system) shows that all
critical functions will meet their
timing constraints .

C : Testing

No critical function exceeds
its timing constraint during
testing

S : Analysis and
Timing

Argue by appealing to
analytical and testing
results

defines which functions are allocated

expresses communication

C : Timing Constraints Satisfied

Timing constraints for all mission -
(or safety -) critical functions are
satisfied under worst case
execution timing

Critical functions
Critical functions are those whose
failure would likely cause failure of
an essential function . We here
consider those critical functions
whose failure is caused by a failure
to satisfy timing constraints .

Ctxt : Functions and Timing
Critical functions are defined in
Document XXX , version N
Section Y . Timing constraints and
their relation to critical functions
are defined in document ZZ
version N .

S : Analysis and
Timing

Argue by appealing to
analytical and testing
results

C : Schedulability Analysis

Schedulability analysis (of the
modeled system) shows that all
critical functions will meet their
timing constraints .

C : Testing

No critical function exceeds
its timing constraint during
testing

defines which functions are allocated

expresses communication

C : Timing Constraints Satisfied

Timing constraints for all mission -
(or safety -) critical functions are
satisfied under worst case
execution timing

© 2008 Carnegie Mellon University 21

Presentation Title 1/22/09

41
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Presenting Clear Cases

Basic structure

•  Claim: what we want to show

—  A proposition: either true or false

•  Argument: why we believe the claim is met, based on

•  Evidence: test results, analysis results, etc.

In general, arguments are structured hierarchically

•  Claim, argument, sub-claims, sub-arguments, evidence

•  Easy to show graphically, although can be done in a document or tabular
structure

42
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Potential Assurance Case Benefits

Improves comprehension of existing arguments

Improves discussion and reduces time-to-agreement on what evidence is
needed and what the evidence means

(Having identified argument structure up front) focuses activities towards
the specific end-objectives

Recognition and exploitation of successful (convincing) arguments
becomes possible (assurance case patterns)

Supports monitoring of project progress towards successful certification

© 2008 Carnegie Mellon University 22

Presentation Title 1/22/09

43
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Overview

Definition and Purpose

The System Assurance Problem

Introduction to Assurance Cases

Hazard Analyses and Assurance Cases

Assurance Case Development

Conclusions

44
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

GSN Principles

GSN has methodological rules that help in creating well-structured
assurance cases

Cases can be reviewed against these rules to improve their quality

Cases are also reviewed to determine that the content is sound and
convincing

© 2008 Carnegie Mellon University 23

Presentation Title 1/22/09

45
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

GSN Advantages

Captures the elements most critical for arguing a case (claims, evidence,
argument strategy, assumptions, relation of claims to subclaims and
evidence)

Is reviewable

Can be used at various stages of system development

Gaining increasing interest in the US

•  NRC report

•  DHS workshop

•  ISO draft standard in development

•  Medical devices (FDA interest)

•  Is required by some organizations in EU and UK

46
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

GSN Disadvantages

Lack of familiarity

Lack of examples in non-safety domains

Lack of clarity about costs vs. added value

Concerns about scalability

© 2008 Carnegie Mellon University 24

Presentation Title 1/22/09

47
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

How to Present Assurance Cases

Possible approaches to inclusion of graphic diagrams:

•  In full as Appendix / Annex to document

•  Integrated within body of document

—  Claim structure (1 level), Text, Claim structure, Text …

•  As ‘Executive Summary’ at beginning of document

—  Maximum 2 pages of structure, 2-3 levels of decomposition

•  As separate, stand-alone, Index Document

—  e.g. to explain argument distributed across many safety case
documents

48
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Top Claims

What is the overall objective of the argument?

•  The ‘take-home’ message for the reader

•  Reading the claim structure should convince someone that ...

—  e.g. “System X is Safe”

Things to watch out for

•  Jumping ahead

—  “Interlocks fitted to machinery” rather than
“Risk associated with Hazard X reduced”

—  The fact that risk is reduced is probably of more interest (to the reader)
than how risk has been reduced

© 2008 Carnegie Mellon University 25

Presentation Title 1/22/09

49
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Top Claims

Things to watch out for (cont.)

•  Over-simplification

—  “System X is safe” vs.
“System X is acceptably safe to operate in operating context Y”

The top claim is the seed from which the argument can develop

•  If it doesn’t contain the right concepts (e.g. acceptability) or jumps–ahead
the scope & usefulness of the argument presented can be limited

Not always appropriate to start from 1st principles (depends on audience)

50
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Phrasing

Claims should be phrased as propositions

•  Statements that can be said to be TRUE / FALSE (e.g. “The sky is blue” or
“Pittsburgh is a beautiful city”)

—  NB: not limited to statements that can be objectively proven

•  Statement should be expressed as a single statement (1 sentence) of in the
form:

—  <NOUN-PHRASE><VERB-PHRASE>

—  Noun-Phrase identifies the subject of the claim

—  Verb-Phrase defines a predicate over the subject

© 2008 Carnegie Mellon University 26

Presentation Title 1/22/09

51
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Phrasing

Noun-Phrases

•  Entities or attributes associated with the argument being made

•  For safety arguments, from the following areas:

—  System development – the design method, coding, requirements
activities, etc.

—  System design – physical & functional properties of design

—  System operation and maintenance – procedures, roles, etc.

—  Testing, Safety and Hazard Analyses – e.g. fault trees, test results

•  Example subjects

—  “Module XYZ123”, “Fault Tree for Top Event Y”,
“Testing Activity Z”

52
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Phrasing

Verb-Phrases

•  Predicates over the subjects (qualification)

—  e.g. (over previously listed subjects) “… was developed to Integrity
Level 4 guidelines”, “… shows probability of event Y occurring < A”, “…
achieved 80% coverage of system functions”

Tense

•  Claims should be written in a tense appropriate for the intended time of
reading

—  e.g. for initial certification – past tense for development, present tense
for system attributes, future tense for operation and maintenance

—  “System was written in SPARK-ADA subset”,
“Likelihood of hazard X is 1x10-6”,
“Maintenance will be carried out every Y days”

© 2008 Carnegie Mellon University 27

Presentation Title 1/22/09

53
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Phrasing

Tense (cont.)

•  Claims should be phrased as positive statements of objectives achieved –
not requirements or aspirations

—  “Failure Rate is less than 1x10-6” rather than
“Failure Rate must be less than 1x10-6”

•  Why?

—  For the final argument, it is what the reader wants to know

—  To avoid (necessarily) having to re-phrase the claim structure

—  When developing the structure, a statement of achievement can be
read as a claim to be achieved (i.e. stating a claim as an achievement
doesn’t pose a significant problem early in the lifecycle)

54
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Phrasing

The following are examples of correctly stated claims:

Subject
<Noun-Phrase>

Predicate
<Verb Phrase>

Component X has no critical failure rates

All identified hazards for System Y have been sufficiently mitigated

Non-destructive examination of
weld-site Z

has been performed

Design A employs triple modular redundancy

© 2008 Carnegie Mellon University 28

Presentation Title 1/22/09

55
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Phrasing

The following are examples of incorrectly stated claims:

Claim: Reason:

“Hazard Log for System Y” Noun Phrase — describes an entity
— not a statement

“Fault Tree for Hazard H-1” As above

“Perform Fault Tree Analysis of
Hazard H-1”

Verb Phrase — an action — not a
statement

“How many failure modes does
component X have?” Question — not a statement

Test: can we say claim is TRUE/FALSE?

56
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 1 – Identify Claims: Phrasing

Difficulties in Summarizing Claims:

•  Sometimes, it can be difficult to ‘sum-up’ a claim in a single succinct
statement

—  e.g. a safety requirement that is described in 1/2 page in the standard

•  One approach, is to reference out:

—  e.g. “Requirement 6.3 has been met”

•  However, we would still like to make the claim structure readable, so even
the briefest description helps

—  e.g. “Requirement 6.3 (Defence in Depth) has been met”

© 2008 Carnegie Mellon University 29

Presentation Title 1/22/09

57
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 2 – Define basis for claims: Context

Having presented a claim, make clear (unambiguous) the basis on which
that claim is stated

•  When a claim talks of hazards, components, requirements, fault trees,
acceptability, sufficiency … is it clear what is being referred to?

Claims are rarely objective ‘context-free’ statements (especially when
terms such as tolerable and negligible are used)

The aim is to ensure that both writer and reader have same understanding

For example, it is not helpful to state the claim…
•  “Requirement 6.3 has been met”

… if it is unclear to the reader what “Requirement 6.3” refers to

58
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 3 – Identify strategy

Next step is to work out how to substantiate the stated claim

•  “What reasons are there for saying the claim is TRUE?”

•  “What statements would convince the reader that the claim is TRUE?”

Aiming for statements that are easier to support than the larger claim

•  Breaking into a number of smaller claims – i.e. Divide-and-Conquer

•  Relating claim more closely to specific application in question (e.g. for a
generic requirement)

© 2008 Carnegie Mellon University 30

Presentation Title 1/22/09

59
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 3 – Identify strategy: Phrasing

The role of a strategy node is to clearly explain the relationship between a
claim and a set of sub-claims

An analogy:

Strategy statement should succinctly describe the argument approach
adopted, ideally in the form:

•  “Argument by … <approach>”

3xy3 + 2x2y2 + 5xy = 17y (Divide both sides by y)
3xy2 + 2x2y + 5x = 17

Strategy

60
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 3 – Identify strategy

Where do strategies come from?

For a safety argument, sources of information are:

•  The design itself

•  Analysis and Testing results

•  NB: not just supporting claims, but also structuring argument

However, can also simply be a question of presentation

•  Especially true at the high levels

•  (Analogous with Fault Trees – many different trees produce the same
cutsets)

•  In these cases
—  Look within the argument (claims, context) already outlined
—  Bottom line: aiming for a clear breakdown

© 2008 Carnegie Mellon University 31

Presentation Title 1/22/09

61
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Strategy

Step 3 – Identify strategy:

Strategies can be implicit or explicit

•  Implicit examples already shown
(Claims broken down directly into sub-claims)

•  Explicit strategy
is a node
placed between
parent and
child claims

62
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 3 – Identify strategy: Phrasing

Example statements:

•  “Argument by appeal to test results”

•  “Argument by consideration of historical data”

•  “Quantitative argument using simulated run data”

Noun-Phrase descriptions of the claim decomposition

•  Not actually part of the argument themselves

•  But help in understanding the argument presented

© 2008 Carnegie Mellon University 32

Presentation Title 1/22/09

63
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 3 – Identify strategy

Q: When is it necessary to explicitly introduce a strategy node?

A1: Whenever you wish to explain the relationship between a claim and its
sub-claims

•  Ask yourself whether the reader will understand how you have broken down
the claim into sub-claims

A2: Whenever the strategy requires additional (contextual) information,
justification or assumptions

64
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 3 – Identify strategy: Phrasing

Things to watch out for:

•  Strategies should not be imperative verb-phrases

—  e.g. “Use Historical Data”

•  Strategies should be expressed from the perspective of the argument
approach, not the design, testing, or analysis approach

—  e.g., “Argument by appeal to interlock” rather than
“Interlocks used”

•  Strategies should not contain claims

—  Should be possible to remove strategy nodes
and not affect the argument being made

© 2008 Carnegie Mellon University 33

Presentation Title 1/22/09

65
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 4 – Define basis for strategy

In the same way as is necessary for claims, must examine what contextual
information (including models) is required

Same process – examine strategy for terms or concepts introduced but not
‘bound’

•  e.g. for sub-system breakdown strategy the term ‘All identified sub-
systems” is used

Ask what information is required in order to expand or fulfill strategy
outlined

66
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 4 – Define basis for claims: Rationale

Additionally, it may be useful to explicitly represent the following:

•  Assumptions – are there any assumptions on which the strategy | claim is
being put forward as a solution to the parent claim?

•  Justification – why that particular strategy | claim is being put forward as a
solution to the parent claim?

Both assumptions and justifications are statements (like claims) and
therefore should be expressed as NOUN-PHRASE VERB-PHRASE

© 2008 Carnegie Mellon University 34

Presentation Title 1/22/09

67
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 5 – Elaborate strategy

Having identified an approach, it is necessary to lay out the claims that
fulfill that approach, e.g.

•  for strategy ranging over all sub-systems – expand for claims over each
individual sub-system

•  for quantitative results strategy – provide quantitative claim statements

In elaborating the strategy, define claims

If strategy, and basis of strategy, are clear – this step can be
straightforward

68
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 6 – Identify Solutions

Eventually, faced with a claim that doesn’t
need further expansion, refinement,
explanation …

In such cases, simply have to reference out
to information that supports claim by means
of solution

As references, solutions should be NOUN-
PHRASEs

© 2008 Carnegie Mellon University 35

Presentation Title 1/22/09

69
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Step 6 – Identify Solutions

Possible Mistake:

•  ‘Jumping’ to a solution too
soon

•  The relationship between
claim and the referenced
information should be obvious
to both writer and reader ???

70
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Overview

Definition and Purpose

The System Assurance Problem

Introduction to Assurance Cases

Hazard Analyses and Assurance Cases

Assurance Case Development

Conclusions

© 2008 Carnegie Mellon University 36

Presentation Title 1/22/09

71
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

The System Assurance Problem

Systems are getting more complex and more dependent on software

•  Reaching sound conclusions about dependability is getting harder

Traditional methods for evaluating dependable behavior are increasingly
inadequate

•  Too costly (in time and money) to test complex systems well

•  Testing is not the best way of showing impact of subtle, but critical errors

•  Constraining interactions among system components can make it easier to
increase dependability but may be hard to find constraints consistent with
required functionality

We need better ways of integrating a variety of analyses (evidence) into
assurance cases, i.e.,

•  We need better means of showing how certain evidence supports
conclusions about system properties

72
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Final Thoughts

Testing by itself is inadequate for reaching valid conclusions about SW
dependability in complex systems

Assurance case must

•  Integrate design analyses focused on SW hazards and FMEA

•  Be reviewable

Assurance case evaluation criteria are currently subjective

•  Need more data on which subtle defects are worth analysis efforts

•  Need more understanding of what makes dependability arguments sound

Assurance case patterns hold promise of capturing “valid” arguments and
guiding dependability improvement efforts

© 2008 Carnegie Mellon University 37

Presentation Title 1/22/09

73
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Purpose of Presentation

Show what Assurance Case technology is and how it can provide
•  help in leveraging scarce assurance resources

—  what part of case is most important to gaining assurance?
—  where can work be leveraged (e.g., aspects of requirements analysis)

•  help in producing a reviewable artifact providing
—  assurance of mission-critical properties (the claims)
—  go/no-go criteria at different stages of development

•  assessment of the impact of changes to a system
—  which part of the case is affected

•  development of and support for an engineering culture for software
—  explicit articulation and verification of assurance claims
—  focus on evidence and its significance

74
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Conclusions

Within conventional assurance reports the ‘chain of argument’ can often
get lost

•  But the argument is more important than the document!

GSN (and assurance cases) have been found to be a useful basis for
mapping out and evolving the structure of the Arguments

•  Provides a roadmap for a document or set of documents

•  Provides a basis for discussion among engineers and between developers
and assessors

•  Creating outline arguments at the beginning of a project helps show
progress towards a final solution

© 2008 Carnegie Mellon University 38

Presentation Title 1/22/09

75
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Contact Information

Charles B. Weinstock
System of Systems
Software Assurance Project
Telephone: +1 412-268-7719
Email: weinstock@sei.cmu.edu

U.S. mail:
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

World Wide Web:
www.sei.cmu.edu

Customer Relations
Email:
customer-relations@sei.cmu.edu
Telephone: +1 412-268-5800

76
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

© 2008 Carnegie Mellon University 39

Presentation Title 1/22/09

77
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Overview

Definition and Purpose

The System Assurance Problem

Introduction to Assurance Cases

Hazard Analyses and Assurance Cases

Assurance Case Development

Conclusions

78
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of Improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Portion of a typical,
traditional, software-
related hazard report

© 2008 Carnegie Mellon University 40

Presentation Title 1/22/09

79
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Faulty data exchanged
among redundant
computers causes all
computers to fail.

This could occur because of
improper requirements,
incorrect coding of logic,
incorrect data definitions
(e.g., initialized data), and/
or inability to test all
possible modes in the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.

Severity: Catastrophic

Likelihood: Improbable

Class: Controlled

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty
data sent among
redundant computers
causes them to fail

What software
safeguards?

80
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Faulty data exchanged
among redundant
computers causes all
computers to fail.

This could occur because of
improper requirements,
incorrect coding of logic,
incorrect data definitions
(e.g., initialized data), and/
or inability to test all
possible modes in the SW

Cause/Fault
Tree Ref Mitigation

b) Program
Development
Specifications and
Functional SW
Requirements

c) Subsystem design
and functional interface
requirements …

How are requirements
a mitigation for this
cause? How so?
Which ones?

© 2008 Carnegie Mellon University 41

Presentation Title 1/22/09

81
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

An error common to
software in each
redundant computer
causing all
computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Faulty data exchanged
among redundant
computers causes all
computers to fail.

This could occur because of
improper requirements,
incorrect coding of logic,
incorrect data definitions
(e.g., initialized data), and/
or inability to test all
possible modes in the SW

Cause/Fault
Tree Ref Verification

Extensive validation and testing
are in place to minimize generic
SW problems. The contractors
must perform rigorous reviews
throughout the SW definition,
implementation, and verification
cycles. These review processes
cover requirements, design,
code, test procedures and
results, and are designed to
eliminate errors early in the SW
life cycle.

What is “extensive”? What are “rigorous
reviews”? How do
they eliminate errors?

82
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

These ambiguities
in the hazard report
make certification
assessment more
difficult.

The answers may be
available elsewhere,
but we are left to
find them ourselves.

The mitigations and
verification actions
are implicitly related
to the cause/hazard.

Make the relationship
more explicit by
constructing claims
and evidence in an
assurance case.

© 2008 Carnegie Mellon University 42

Presentation Title 1/22/09

83
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Faulty data exchanged
among redundant
computers causes all
computers to fail.

This could occur because of
improper requirements,
incorrect coding of logic,
incorrect data definitions
(e.g., initialized data), and/
or inability to test all
possible modes in the SW

Claim: The possibility
that ‘Faulty data
exchanged among
redundant computers
causes all such
computers to fail
(during critical
mission phases)’ has
been reduced ALARP

84
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Faulty data exchanged
among redundant
computers causes all
computers to fail.

This could occur because of
improper requirements,
incorrect coding of logic,
incorrect data definitions
(e.g., initialized data), and/
or inability to test all
possible modes in the SW

Better claims: Each
possible cause has
been mitigated
(differently)

© 2008 Carnegie Mellon University 43

Presentation Title 1/22/09

85
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.

Severity: Catastrophic

Likelihood: Improbable

Class: Controlled

Claim context and
assumptions

86
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

AC to Resolve These Problems

© 2008 Carnegie Mellon University 44

Presentation Title 1/22/09

87
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

88
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

© 2008 Carnegie Mellon University 45

Presentation Title 1/22/09

89
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

Assurance Case Benefits

It’s not that we don’t already produce this data, but we don’t present it
effectively

•  The motivation for some activities and decisions is not evident to outside
reviewers or new personnel

Effective presentation can

•  Motivate consideration of different designs

—  Ways of eliminating data exchanges (requirements scrub)

•  Explain why certain evidence is critically important

—  Code reviews showing that data validation checks are done

—  Test results showing invalid data is rejected

•  Help prioritize activities that contribute to the argument

90
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

From Hazard Report to Assurance Case

Cause/Fault
Tree Ref

Effect/Severity/
Likelihood Mitigation Verification

Faulty data
exchanged among
redundant
computers causes
all computers to fail.
This could occur
because of improper
requirements,
incorrect coding of
logic, incorrect data
definitions (e.g.,
initialized data), and/
or inability to test all
possible modes in
the SW

Effect: Loss of
operation of system
during critical phase,
leading to loss of life.
Severity: Catastrophic
Likelihood: Improbable
Class: Controlled

a) Software safeguards
reduce, to the maximum
extent feasible, the
possibility that faulty data
sent among redundant
computers causes them
to fail
b) Program Development
Specifications and
Functional SW
Requirements
c) Subsystem design and
functional interface
requirements are used in
the design and
development of the
relevant SW
d) …

Extensive validation and testing are in
place to minimize generic SW problems.
The contractors must perform rigorous
reviews throughout the SW definition,
implementation, and verification cycles.
These review processes cover
requirements, design, code, test
procedures and results, and are designed
to eliminate errors early in the SW life
cycle.
After completing system level verification,
critical SW undergoes extensive
integrated HW/SW verification at facility
XXX
Extensive verification is independently
performed at facility XXX, using hardware
and software maintained to duplicate the
configuration of the fielded system

Extensive validation and testing
are in place to minimize generic
SW problems. …

Evidence should point to
each test and test result
related to verification of
each safeguard

© 2008 Carnegie Mellon University 46

Presentation Title 1/22/09

91
Assurance Cases
December 2008

© 2008 Carnegie Mellon University

When to Visualize the Argument?

Q: At what stage in a project is it worth visualizing the argument?

Answers:

•  Early on (high level) to get a clear picture (and gain agreement) of
argument structure

—  Useful as a scoping exercise and effort allocation

•  As project is progressing, in order to monitor status towards completion of
an acceptable argument

•  At end of project in order to present the final argument and evidence that
exists

