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Chapter 1

Two–Body Orbital Mechanics

In this chapter some basics concepts of Classical Mechanics will be reviewed in order to develop
an analytical solution for the two–body problem from Newton’s Law of Universal Gravitation.
The constants of the motion and orbit parameters will be introduced while deriving the trajectory
equation.

1.1 Birth of Astrodynamics: Kepler’s Laws

Since the time of Aristotle the motion of planets was thought as a combination of smaller circles
moving on larger ones. The official birth of modern Astrodynamics was in 1609, when the
German mathematician Johannes Kepler published his first two laws of planetary motion. The
third followed in 1619. From Astronomia Nova we read

... sequenti capite, ubi simul etiam demonstrabitur, nullam Planetae relinqui figuram Orbitæ,

praeterquam perfecte ellipticam; conspirantibus rationibus, a principiis Physicis, derivatis, cum

experientia observationum et hypotheseos vicariæ hoc capite allegata.

and

Quare ex superioribus, sicut se habet CDE area ad dimidium temporis restitutorii, quod dicatur

nobis 180 gradus: sic CAG, CAH areae ad morarum in CG et CH diuturnitatem. Itaque CGA

area fiet mensura temporis seu anomaliae mediae, quae arcui eccentrici CG respondet, cum

anomalia media tempus metiatur.

The third law was formulater in “Harmonice Mundi”

Sed res est certissima exactissimaque, quod proportio quae est inter binorum quorumcunque

Planetarum tempora periodica, sit praecise sesquialtera proportionis mediarum distantiarum, id

est Orbium ipsorum

In modern terms, the three laws can be formulated as follows:

First Law: The orbit of each planet is an ellipse with the Sun at a focus.

Second Law: The line joining the planet to the Sun sweeps out equal areas in equal times.

Third Law: The square of the period of a planet is proportional to the cube of its mean
distance from the Sun.

Kepler derived a geometrical and mathematical description of the planets’ motion from
the accurate observations of his professor, the Danish astronomer Tycho Brahe. Kepler first
described the orbit of a planet as an ellipse; the Sun is at one focus and there is no object at the
other. In the second law he foresees the conservation of angular momentum: since the distance

1
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Figure 1.1: Kepler’s second law.
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Figure 1.2: Sketch of Kepler’s first and second laws.

of a planet from the Sun varies and the area being swept remains constant, a planet has variable
velocity, that is, the planet moves faster when it falls towards the Sun and is accelerated by the
solar gravity, whereas it will be decelerated on the way back out. The semi-major axis of the
ellipse can be regarded as the average distance between the planet and the Sun, even though
it is not the time average, as more time is spent near the apocenter than near pericenter. Not
only the length of the orbit increases with distance, also the orbital speed decreases, so that the
increase of the sidereal period is more than proportional.

Kepler’s first law can be extended to objects moving at greater than escape velocity (e.g.,
some comets); they have an open parabolic or hyperbolic orbit rather than a closed elliptical
one. Yet the Sun lies on the focus of the trajectory, inside the “bend” drawn by the celestial
body. Thus, all of the conic sections are possible orbits. The second law is also valid for open
orbits (since angular momentum is still conserved), but the third law is inapplicable because
the motion is not periodic. Also, Kepler’s third law needs to be modified when the mass of
the orbiting body is not negligible compared to the mass of the central body. However, the
correction is fairly small in the case of the planets orbiting the Sun. A more serious limitation
of Kepler’s laws is that they assume a two-body system. For instance, the Sun-Earth-Moon
system is far more complex, and for calculations of the Moon’s orbit, Kepler’s laws are far less
accurate than the empirical method invented by Ptolemy hundreds of years before.

Kepler was able to provide only a description of the planetary motion, but paved the way to
Newton, who first gave the correct explanation fifty years later.

1.2 Newton’s Laws of Motion

In Book I of his Principia (1687) Newton introduces the three Axiomata sive Leges Motus:
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Lex I - Corpus omne perseverare in statu suo quiscendi vel movendi uniformiter in directum,

nisi quatenus a viribus impressis cogitur statum illum mutare.

Lex II - Mutationem motus proportionalem esse vi motrici impressæ, et fieri secundum lineam

rectam qua vis illa imprimitur.

Lex III - Actioni contrariam semper et æ qualem esse reactionem: sive corporum duorum ac-

tiones in se mutuo semper esse æquales et in partes contrarias dirigi.

The laws of motion can be translated into the following English version:

First Law: Every object continues in its state of rest or of uniform motion in a straight line
unless it is compelled to change that state by forces impressed upon it.

Second Law: The rate of change of momentum is proportional to the force impressed and
is in the same direction as that force.

Third Law: To every action there is always opposed an equal reaction..

The first law requires the identification of an inertial system with respect to which it is possi-
ble to define the absolute motion of the object. The second law can be expressed mathematically
as

~F =
d~p

dt

where ~F is the resultant of the forces acting on the object and ~p = m~v is its momentum. For a
constant mass m, it is

~F = m~a

where ~a = d~v/dt is the acceleration of the mass measured in an inertial reference frame. A
different equation applies to a variable-mass system (as for instance a rocket launcher where the
variation of the mass per unit time, ṁ, is sizable). In that case the equation of motion becomes

~F = m~a + ṁ~v

The third law permits to deal with a dynamical problem by using an equilibrium equation.
Its scope is however wider: for instance, the presence of the action ~F on m implies an action
−~F on another portion of an ampler system.

1.3 Newton’s Law of Universal Gravitation

In the same book Newton enunciated the law of Universal Gravitation by stating that two
bodies, the masses of which areM and m, respectively, attract one another along the line joining
them with a force proportional to the product of their masses and inversely proportional to the
square of the distance between them, that is,

F = G
Mm

r2

where G = 6.673 10−11 m3kg−1s−2 is the Universal Gravitational Constant. The law is easily
extended from point masses to bodies with a spherical symmetry (see Mengali, 2001, §1.3), but
it is fairly accurate also for body of arbitrary shape, when their distance is several orders of
magnitude larger than their own dimension.
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Figure 1.3: The n–body problem.

1.4 The n–Body Problem

If n bodies of mass mi, i = 1, 2, ..., n move in an empty space under the action of their mutual
gravitational attraction only, the determination of their motion represents the so–called n–body
problem. An inertial reference frame Fi(O;x, y, z) is required to apply Newton’s second law of
dynamics to each one of the n bodies. The position of the i–th one is given by the vector ~Ri.
Assuming that each body is point–mass element, the problem is described by n second-order
non-linear vector differential equations

~̈Ri = −
N∑

j = 1
j 6= i

G
mj

R3
ij

(~Ri − ~Rj)

where Rij = ||~Ri − ~Rj ||.
In general the n–body problem is said not to admit any analytical solution for n > 2, inas-

much as the set of ordinary differential equations that rules the motion has only 10 first integrals
(Bruns demonstrated this theorem in 1887). Nonetheless, in 1912, the Finnish mathematician
K.F. Sundman derived a series solution in powers of t1/3 for the n = 3 (the so–called 3–body
problem).

The n–body problem is of paramount importance in the design of space missions. The
analysis of a space mission studies the motion of a spacecraft, which is the n–th body in a
system that comprises other n− 1 celestial bodies. The simultaneous knowledge of the position
of all the n bodies is necessary, as the mutual attraction between each pair of bodies depends
upon their relative position: the n–body problem is the ideal model for the system.

The problem can be expressed in the form

~̈Ri =
1

mi

(

~F g,i + ~F o,i

)
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where

~F g,i = −
N∑

j = 1
j 6= i

G
mj

R3
ij

(~Ri − ~Rj)

is the sum of the actions on mi of all the other n − 1 bodies, which are assumed to have point
masses (or, equivalently, a spherically symmetric mass distribution), and behaves according to
Newton’s law of gravitation. The additional term ~F o,i takes into account that

• usually the bodies are not spherically symmetric;

• the spacecraft may eject mass to obtain thrust;

• other forces (atmospheric drag, solar pressure, electromagnetic forces, etc.) act on the
spacecraft;

so that ~F o,i represents the resultant force on mi due to these perturbations.

The interest often lies on the motion relative to a specific celestial body, for instance, the
first one. The corresponding equation can be subtracted from all the others, and the vector
equations relevant for the problem of describing the motion about m1 become n− 1.

Moreover, the spacecraft mass is usually negligible and cannot perturb the motion of the
celestial bodies. In this case the problem is called restricted n–body problem, where the term
restricted means that the interest lies on the motion of a body so small that it does not perturb
the orbits of the other n− 1. Such orbits are regularly computed by astronomers and provided
to the Astrodynamics community in the form of ephemeris. This means that the position of
the n− 2 celestial bodies mi, i = 2, 3, ..., n − 1 is obtained from observations and it is assumed
known.

The remaining vector second–order differential equation, describing the spacecraft motion
relative to the first body, is transformed into a system of six scalar first–order differential equa-
tions, that can be solved numerically. An analytical solution can be only obtained if one assumes
the presence of just one celestial body, and neglects all the other actions on the spacecraft, which
is acted upon only by the point–mass gravitational attraction of the primary body (see Cor-
nelisse, 1979, §15.1 for more details).

When the resticted 3–body problem is dealt with, no explicit analytical solution is known,
but some important analytical results can be obtained in the circular case, when the two primary
bodies m1 and m2 are on a relative cricular orbit.

1.5 Equation of Motion in the Two-Body Problem

Consider a system composed of two bodies of masses m1 and m2, m1 > m2; the bodies are
spherically symmetric and no forces other than gravitation are present. Assume an inertial
frame Fi; vectors ~R1 and ~R2 describe the positions of masses m1 and m2, respectively. The
position of m2 relative to m1 is

~r = ~R2 − ~R1

so that their mutual distance is r = ||~r|| and the following equations hold for the relative velocity
and acceleration,

~̇r = ~̇R2 − ~̇R1 ; ~̈r = ~̈R2 − ~̈R1

where all the derivatives are taken in a (at least approximately) inertial frame.
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The law of Universal Gravitation is used to express the force acting on each mass, so that
the second law of dynamics can be used to describe separately the motion of each mass,

m1
~̈R1 = G

m1m2

r3
~r ; m2

~̈R2 = −Gm1m2

r3
~r

By subtracting the second equation from the first (after an obvious simplification concerning
masses) one obtains

~̈r = −Gm1 +m2

r3
~r

In most practical systems one of the masses is several order of magnitude larger than the
other one. The best balanced 2–body system in the Solar system is the planet Pluto with its
satellite Caron, which has a mass equal to 1/7 that of the planet. The Earth–Moon system is
the second best balanced pair, where the mass of the Moon is only 0.0123 that of the Earth.

As a consequence, it is usually possible to let m1 = M and m2 = m, with M ≫ m, so that
the Equation of Relative Motion can be rewritten in the following simple form:

~̈r = −µ
r

3
~r

where µ = GM is the primary body gravitational parameter. Some numerical values of mu are
reported in Tab. 1.1

It is worthwhile to remark that

• the relative position ~r is measured in a non-rotating frame which is not rigorously inertial;

• the relative motion is practically independent of the mass of the secondary body, when
m≪M ; a unit mass will be assumed in the following.

1.6 Potential Energy

The mechanical work done against the force of gravity to move the secondary body from position
1 to position 2

L =

∫ 2

1

µ

r3
~r · d~s =

∫ 2

1

µ

r2
dr = − µ

r2
+
µ

r1
= U2 − U1

does not depend on the actual trajectory from 1 to 2, so that one deduces that the gravitational
field is conservative. The work can be expressed as the difference between the values of the
potential energy at point 1 and 2, the dependence of which on the radius (i.e. the distance of
m from the M) can be expressed in the form

U = −µ
r

+ C

Table 1.1: Values of the gravitational parameter µ.

Sun 1.327 1011 km3 s−2

Earth 3.986 105 km3 s−2

Moon 4.903 103 km3 s−2
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The value of the arbitrary constant C is conventionally assumed to be zero in Astrodynamics,
that is, the maximum value of the potential energy is zero, when the spacecraft is at infinite
distance from the primary body, otherwise it is negative, and equal to

U = −µ
r

1.7 Constants of the Motion

By taking the scalar product of the equation of motion with the velocity vector ~v = ~̇r,

~̇r · ~̈r = − µ

r3

(

~̇r · ~r
)

and writing everything on the left–hand side by using Eq. (1.6) in Appendix, one gets

~v · ~̇v +
µ

r3

(

~̇r · ~r
)

= vv̇ +
µ

r3
rṙ

that is,
d

dt

(
v2

2
− µ

r

)

= 0

During the motion the specific mechanical energy

E =
v2

2
− µ

r

that is, the sum of kinetic and potential energy, is constant, even though it can be continuously
transferred from the kinetic to the potential form, and vice versa. This result is the obvious
consequence of the conservative nature of the gravitational force, which is the only action on
the spacecraft in the two-body problem.

The vector product of ~r with the equation of motion gives

~r × ~̇r = 0 ⇒ d

dt

(

~r × ~̇r
)

=
d

dt
(~r × ~v) = 0

where Eq. (1.3) was applied.
Therefore, the angular momentum

~h = ~r × ~v

is a constant vector. Since ~h is normal to the orbital plane, the spacecraft motion remains in
the same plane. This result is not surprising: the unique action is radial, no torque acts on the
satellite, and the angular momentum is constant.

Finally, the cross product of the equation of motion with the (constant) angular momentum
vector ~h gives

~̈r × ~h +
µ

r3
~r × ~h =

d

dt

(

~̇r × ~h
)

+
µ

r3
~r ×

(

~r × ~̇r
)

= 0

By using Eqs. (1.6) and (1.8), one gets

d

dt

(

~̇r × ~h
)

+
µ

r3

[(

~r · ~̇r
)

~r − (~r · ~r) ~̇r
]

=

d

dt

(

~̇r × ~h
)

+ µ

(

ṙ

r2
~r − ~̇r

r

)

=

d

dt

(

~̇r × ~h
)

− µ
d

dt

(
~r

r

)

= 0 (1.1)
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                    ν
F

                                         a

                               s

Figure 1.4: Building a conic section.

As a consequence, the vector

~e =
~v × ~h

µ
− ~r

r

is another constant of the spacecraft motion in the two-body problem.

1.8 Trajectory Equation

The dot product

~r · ~e =
~r · ~v × ~h

µ
− ~r · ~r

r
=
~r × ~v · ~h

µ
− r =

h2

µ
− r

allows one to determine the shape of the orbit. Letting ν be the angle between the (constant)
vector ~e and the relative position vector ~r, it is ~r · ~e = re cos ν, so that the shape of the orbit
in polar coordinates centered in M is given by

r =
h2/µ

1 + e cos ν

The radius attains its minimum value for ν = 0 and the constant vector ~e is therefore directed
from the central body to the periapsis.

1.9 Conic Sections

A conic is the locus of points P such that the ratio of their distance r from a given point F
(focus) to their distance d from a given line a (directrix) is a positive constant e (eccentricity),
r/d = e. Letting s be the distance between the focus and the directrix it is (see Fig. 1.9)

d = s− r cos ν ⇒ r = e (s− r cos ν)
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By collecting r on the r.h.s., one gets

r =
es

1 + e cos ν

which is the equation of a conic section, written in polar coordinates with the origin at the focus.
The parameter p = se is called the semi–latus rectum. It is the distance between the focus and
the point P of the conic section for ν = π/2.

By comparison with the trajectory equation, one deduces that

• in the two-body problem the spacecraft moves along a conic section that has the primary
body in its focus; Kepler’s first law is demonstrated and extended from ellipses to any type
of conics;

• the semi-latus rectum p of the trajectory is related to the angular momentum of the
spacecraft (p = h2/µ)

• the eccentricity of the conic section is the magnitude of ~e, which is named eccentricity

vector.

The name of the curves called conic sections derives from the fact that they can be obtained
as the intersections of a plane with a right circular cone. If the plane cuts across a half-cone,
the section is an ellipse; one obtains a circle, if the plane is normal to the axis of the cone, and
a parabola in the limit case of a plane parallel to a generatrix of the cone. The two branches of
a hyperbola are obtained when the plane cuts both the half-cones. Degenerate conic sections (a
point, one or two straight lines) arise if the plane passes through the vertex of the cone.

1.10 Relating Energy and Semi-major Axis

One of the constant of the motion, the angular momentum, has been proved to be simply
related to the semi-latus rectum. Also the specific energy E will now be related to a geometrical
parameter of the conics.

The constant values of the angular momentum and total energy can be evaluated at any
point of the trajectory, in particular at the periapsis, where the spacecraft velocity is orthogonal
to the radius vector and

h = rP vP ; E =
v2
P

2
− µ

rP
=

h2

2r2P
− µ

rP

If the orbit is a closed ellipse, the pericentre rP and the apocentre rA (i.e. the closest and
farthest distance of m from the focus where M lies) are given, respectively, by rP = p/(1 + e)
and rA = p/(1 − e), so that the semimajor axis a of the ellipse is

a =
rP + rA

2
=

p

1 − e2
⇒ p = a(1 − e2) =

h2

µ

It is thus possible to write

h2 = µa(1 − e2) and rP = a(1 − e).

By substituting these expressions in that of the specific energy at periapsis, one obtains

E =
µa(1 − e2)

2a2(1 − e)2
− µ

a(1 − e)
= µ

(
1 + e

2a(1 − e)
− 1

a(1 − e)

)

= − µ

2a
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A very simple relationship exists between the specific mechanical energy and the semi-major
axis.

The last relationship between geometrical parameter of the conics and the constant of the
motion is obtained by extracting the eccentricity e from the above expression of h2, that is,

e =

√

1 − h2

µa
=

√

1 + 2E h
2

µ2
.

It should be noted how degenerate conics have zero angular momentum and therefore unit
eccentricity.

Appendix: Vector Operations

The result of some vector operations is given in this appendix.

~a · ~a = a2 (1.2)

~a × ~a = 0 (1.3)

~a × ~b = ~b × ~a (1.4)

~a · ~b × ~c = ~a × ~b · ~c (1.5)

Equation (1.5) is intuitively proved by considering that either side represents the volume of the
parallelepiped the sides of which are given by the vectors ~a, ~b, and ~c. In a more rigorous way,
the scalar triple product of three vectors

~a · ~b × ~c = det





a1 a2 a3

b1 b2 b3
c1 c2 c3





is a pseudoscalar and would reverse sign under inversion of two rows. Therefore

~a · ~b × ~c = ~b · ~c × ~a = ~c · ~a × ~b

By equating the first and the last expression, and remembering that the dot product commutes,
one gets the result.

~a · ~̇a = aȧ ⇐ d

dt
(~a · ~a) =

d

dt

(
a2
)

(1.6)

Equation (1.6) is very important in orbital mechanics and rocket propulsion: when a vector ele-
mentary increment d~a is considered, its component parallel to ~a increases the vector magnitude,
whereas the perpendicular component just rotates ~a, keeping its magnitude constant.

As for the vector triple product, the following results hold:

(

~a × ~b
)

× ~c = (~a · ~c)~b −
(

~b · ~c
)

~a (1.7)

~a ×
(

~b × ~c
)

=
(

~b · ~c
)

~a − (~a · ~c)~b (1.8)



Chapter 2

Two-Dimensional Analysis of Motion

2.1 Reference Frames

The angular momentum vector is constant in the two-body problem. This means that the
position and velocity vectors always lie on the same plane , perpendicular to ~h, i.e. the trajectory
lies in a fixed orbit plane P. A two-dimensional analysis of the motion is usefully carried out in
the orbit plane after introducing a non-rotating reference frame Fi = (M ; n̂, m̂, k̂), centered in
the center of the primary body M , where n̂ can be chosen arbitrarily on P, while

m̂ =
~h × n̂

h
; k̂ =

~h

h

The distance r from the main body and the anomaly θ define the spacecraft position vector

~r = r cos θn̂ + r sin θm̂

A rotating frame Fo = (m; î, ĵ, k̂) is centered on the spacecraft and defined by the right-
handed set of unit vectors

î =
~r

r
; ĵ =

~h × î

h
; k̂ =

~h

h
.

Figure 2.1: Non–rotating and orbit frames.

11
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Velocity and acceleration components can be expressed in this frame. From Figure 2.1 it is
evident that

î = cos θn̂ + sin θm̂ ; ĵ = − sin θn̂ + cos θm̂

and, taking the time derivative,
˙̂
i = θ̇ĵ ;

˙̂
j = −θ̇î

2.2 Velocity and acceleration components

The velocity vector

~v = vr î + vθĵ

is described by its radial and tangential components, obtained by computing the first derivative
of the position vector

~v =
d~r

dt
=

d

dt
(rî) = ṙî + r

˙̂
i = ṙî + rθ̇ĵ

One obtains

vr = ṙ ; vθ = rθ̇

In a similar way the derivative of the velocity vector

~a =
d~v

dt
=

d2~r

dt2
= (r̈ − rθ̇)î + (rθ̈ + 2ṙθ̇)ĵ

provides the radial and tangential components of the acceleration vector

ar = r̈ − rθ̇ ; aθ = rθ̈ + 2ṙθ̇

2.3 First-Order Scalar Equations of Motion

The integration of the first–order scalar equations of motion is required in those cases when,
together with the gravity pull from the primary body, there are other forces acting on the space-
craft, such as gravitational perturbations due to other celestial bodies or the thrust of the engine
used to modify the orbit. A set of variables suitable for defining the state of the spacecraft is
given by the radius r, anomaly θ, radial (vr) and tangential (vθ) velocity components. Neglecting
other perturbations and assuming that the motion of the spacecraft is controlled by an engine
that produces an acceleration ~aT rotated of an angle ψ away from the radial direction (Fig.
2.3), the vector equation of motion

~̈r = − µ

r3
~r + ~aT

can be split into its radial and tangential components,

ar = r̈ − rθ̇2 = − µ

r2
+ aT sinψ

aθ = rθ̈ + 2ṙθ̇ = aT cosψ

Remembering that

vr = ṙ ⇒ v̇r = r̈ ; vθ = rθ̇ ⇒ v̇θ = ṙθ̇ + rθ̈
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Figure 2.2: Problem representation in the orbit plane.

one easily obtains the system of first–order ordinary differential equations describing the evolu-
tion of the state of the spacecraft

ṙ = vr

θ̇ =
vθ

r

v̇r =
v2
θ

r
− µ

r2
+ aT sinψ

v̇θ = −vrvθ

r
+ aT cosψ

The integration can be carried out when one knows the thrust law (i.e., magnitude and
direction of the thrust acceleration vector) and four integration constants (e.g., position and
velocity components at the initial time). Note that no integration is required for Keplerian
trajectories: four constants are sufficient to completely describe the spacecraft motion in the
orbit plane.

2.4 Perifocal Reference Frame

The eccentricity vector (i.e., the direction of the semi-major axis) is constant for Keplerian
trajectories; as a consequence di angle ω between the unit vector n̂ and the periapsis p̂1 =
~e/e is also constant (p̂1 · n̂ = cosω). As a consequence, the perifocal reference frame, FP =
(S; p̂1, p̂2, p̂3), becomes a suitable choice for the non-rotating frame. The related right-handed
set of unit vectors is given by

p̂1 =
~e

e
; p̂2 =

~~h × p1

h
; p̂3 =

~h

h
= k̂
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Figure 2.3: Perifocal frame and flight–path angle.

where p̂1 and p̂2 lie on the orbit plane P. When p̂1 and p̂2 replace n̂ and m̂, respectively, all the
equations in the previous sections still hold, but the true anomaly ν replaces the angle θ:

θ = ν + ω ; ν̇ = θ̇ ; ν̈ = θ̈

2.5 Flight Path Angle

By combining the expression for angular momentum with the trajectory equation,

h = rvθ ; r =
h2/µ

1 + e cos ν

it is possible to express the tangential velocity as

vθ =
µ

h
(1 + e cos ν)

Thus the trajectory equation may be written in the form

r(1 + e cos ν) = p = const.

By taking the time derivative of the above equation, one gets the following equation:

ṙ(1 + e cos ν) − reν̇ sin ν = 0

so that the flight path angle ϕ can be written as

tanϕ =
vr

vθ
=

ṙ

rν̇
=

e sin ν

1 + e cos ν

As a consequence the radial component of the spacecraft velocity can be expressed in the form

vr = vθ tanϕ =
µ

h
e sin ν

By using the above equations, the velocity components in the perifocal reference frame are given
by

vp1
= vr cos ν − vθ sin ν = −µ

h
sin ν ; vp2

= vr sin ν + vθ cos ν =
µ

h
(e+ cos ν)



G. Colasurdo, G. Avanzini - Astrodynamics – 2. Two-Dimensional Analysis of Motion 15

2.6 Elliptical Orbits

2.6.1 Geometry of an Elliptical Orbit

An ellipse can be defined as the locus of points such that the sum of their distances from two
fixed point, the focii, is constant:

r1 + r2 = 2a.

The maximum width of the ellipse is the major axis, and its length is 2a, while the maximum
width at the centre in the direction perpendicular to the major axis is the minor axis, 2b. The
distance between the focii is 2c.

From the expression of an ellipse’s equation in polar coordinates

r =
p

1 + e cos ν

and defining its geometrical characteristics as in Fig. 2.6.1, it is easy to derive the following
relations:

rP = p/(1 + e)

rA = p/(1 − e)

2a = rP + rA = 2p/(1 − e2)

2c = rA − rP = 2pe/(1 − e2) = 2ae

b2 = a2 − c2 = a2(1 − e2) = ap

As a consequence, the area of the ellipse

A = πab

can be rewritten as
A = πa2

√

(1 − e2) = πa
√
ap

Figure 2.4: Geometry of an ellipse.
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Figure 2.5: Eccentric anomaly E.

2.6.2 Period of an Elliptical Orbit

The differential element of area swept out by the radius vector as it moves through an angle dν
is

dA =
1

2
r2dν ⇒ dA

dt
=

1

2
r2ν̇ =

1

2
rvθ =

h

2
= const

thus demonstrating Keplers third law. The constant value of dA/dt is evaluated by assuming
that the radius vector sweeps out the entire area of the ellipse,

dA

dt
=
πab

T

which permits to obtain the period T of an elliptical orbit:

T =
2πab

h
= 2π

√

a2b2

µp
= 2π

√

a3

µ
.

2.7 Time–of–Flight on the Elliptical Orbit

The time-of-flight tP from the periapsis V to any point P of the elliptic orbit is reduced to the
evaluation of the area A(FV P ) swept out by the radius vector,

tP = T A(FV P )

πab

If one introduces an auxiliary circle of radius a, centered in the center of the ellipse O, the
point Q on the circle with the same abscissa as the point P is distinguished by its eccentric
anomaly E. By using the Cartesian equations of ellipse and circle

x2
P

a2
+
y2

P

b2
= 1 ;

x2
Q

a2
+
y2

Q

a2
= 1
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(where the axes are centered in O, as in Fig. 2.7) one realizes that, for the same abscissa
(xP = xQ) the ratio of the y coordinates yP/yQ is constant and equal to b/a (the same conclusion
also applies to the segments F1P and F1Q). Therefore the shaded area FV P is given by

A(FV P ) =
b

a
A(FV Q)

The area A(FVQ) is equal to that of the circular sector OV Q minus the triangle OFQ,

A(FV Q) = A(OV Q) −A(OFQ) =
E

2π
(πa2) − 1

2
ca sinE

=
E

2
a2 − 1

2
ea2 sinE

=
a2

2
(E − e sinE) .

As a consequence, the time–of–flight from V to P is

tP = 2π

√

a3

µ

1

πab

b

a

1

2
(a2) (E − e sinE)

that is,

tP =

√

a3

µ
(E − e sinE) =

1

n
M1

where, according to Kepler, the mean motion n and the mean anomaly M are defined as

n =

√
µ

a3
; M = E − e sinE.

The angle E is related to the actual spacecraft position by the equation

a cosE = ea+ r cos ν

and by replacing either r or ν, one obtains, respectively,

cosE =
a− r

ea
; cosE =

e+ cos ν

1 + e cos ν

The correct quadrant for E is obtained by considering that ν and E are always in the same
half-plane: when ν is between 0 and π, so is E.

For the evaluation of the time-of-flight to point P2 from some general point P1, which is not
periapsis, the following relation holds:

t1→2 = tP1
− tP2

= n(M2 −M1)

that is,

t1→2 =

√

a3

µ
[E2 −E1 − e (sinE2 − sinE1)]

Some care is required if the spacecraft passes k times through periapsis, as 2kπ must be added
to E2.
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2.8 Extension to hyperbola and parabola

The time–of–flight tP from the periapsis V to any point P of a hyperbolic trajectory can be
expressed as

tP =

√

−a
3

µ
(e sinhF − F )

where the hyperbolic eccentric anomaly F can be related to either r or ν,

coshF =
a− r

ea
; coshF =

e+ cos ν

1 + e cos ν

Note how the above definitions of F closely resemble those of E, with the substitution of the
goniometric one with the corresponding hyperbolic one.

The time–of–flight on a parabolic trajectory is

tP =
1

2
√
µ

(

pD +
1

3
D3

)

where the parabolic eccentric anomaly D is defined as

D =
√
p tan

(ν

2

)

2.9 Circular and Escape Velocity, Hyperbolic Excess Speed

On a circular orbit, the radius r = rc = is constant. Dot multiplication of the vector equation
of motion by the radial unit vector î provides

ar = −rθ̇2 = − µ

r2c

The circular velocity vc is the speed necessary to place a spacecraft on a circular orbit, provided
that a correct direction (i.e. vr = 0) is obtained. In this case it is

vc =

√
µ

rc

Note that the greater the radius of the circular orbit, the smaller the speed required to keep the
spacecraft on this orbit.

The speed which is just sufficient to allow an object coasting to an infinite distance from the
intial distance r0 is called escape velocity ve. The specific mechanical energy

E = − µ

2a
=
v2

2
− µ

r
=
v2
e

2
− µ

r0
= 0

must be zero, as v → 0 at r → ∞. The above equation implies a = ∞, so that the minimum-
energy escape trajectory is a parabola. One obtains

ve =

√

2
µ

r0

On the same trajectory the escape velocity is not constant: the farther away the spacecraft is
from the central body, the less speed it takes to escape the remainder of the gravitational field.

If a spacecraft has a greater speed than the escape velocity, the residual speed at a very large
distance from the central body is defined hyperbolic excess velocity v∞. Its value is obtained
from the specific mechanical energy

E = − µ

2a
=
v2

2
− µ

r
=
v2
∞

2
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2.10 Cosmic Velocities

Cosmic velocities are the theoretical minimum speeds that a spacecraft must reach on leaving
the ground and

1. orbit the Earth, vI;

2. escape its gravitational pull, vII;

3. leave the solar system, vIII;

4. hit the Sun, vIV.

The first and second cosmic velocities correspond, respectively, to the circular and escape
velocities, computed using the gravitational parameter of the Earth (µE = 398600 km3s−22)
and the Earth’s mean radius (rE = 6371 km),

vI =

√
µE

rE
= 7.91 km s−1 ; vII =

√

2
µE

rE
= 11.18 km s−1

The circular and escape velocities are then computed using the solar gravitational parameter
(µS = 1.327 1011 km3s−2) and the mean Sun-Earth distance (RE = 149.5 106 km). The Earth’s
mean velocity while orbiting the Sun, vE , and the escape velocity from the Sun, vesc, for an
initial distance equal to the Earth’s orbit mean radius, RE , are given, respectively, by

vE =

√
µS

RE
= 29.79 km s−1 ; vesc =

√

2
µS

RE
= 42.13 km s−1

The former is an averaged value of the Earth heliocentric velocity, which is almost constant
as the Earth’s orbit eccentricity is very small. The latter is the heliocentric velocity just sufficient
to escape the solar attraction, for a spacecraft which has left the sphere of influence of the Earth,
but is yet at distance RE from the Sun. As the spacecraft heliocentric velocity is the sum of
the vectors ~vE (velocity of the Earth with respect to the Sun) and ~v∞ (hyperbolic excess speed
of the spacecraft when leaving the sphere of influence of the Earth), these are parallel, if the
escape from the Sun is achieved along the tangent to the Earth’s orbit in the same direction as
the Earth’s motion, that is

vesc = vE + v∞ ⇒ v∞ = vesc − vE = 12.34 km s−1

with the minimum velocity relative to the Earth. The corresponding velocity on leaving the
ground (i.e., the third cosmic velocity) is obtained using energy conservation,

v2
III

2
− µ

rE
=
v2
∞

2
⇒ vIII =

√

v2
∞ + v2

II = 16.65 km s−1.

A similar procedure is used to evaluate the fourth cosmic velocity, where in the heliocentric
reference frame the spacecraft must be motionless when leaving the sphere of influence of the
Earth in order to hit the theoretically point-mass Sun falling down on it along the vertical in the
heliocentric system. Assuming a launch along the tangent to the Earth’s orbit in the opposite
direction with respect to the Earth’s motion, one obtains

vesc = 0 = v∞ − vE ⇒ v∞ = vE = 29.79 km s−1

so that

vIV =
√

v2
∞ + v2

II = 31.82 km s−1.
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Table 2.1: Orbit types

v E a v∞ e shape

< ve < 0 > 0 — < 1 ellipse
= ve = 0 ∞ 0 = 1 parabola
> ve > 0 < 0 > 0 > 1 hyperbola

Appendix: Orbit types

The type of conic orbit is strictly related to the energetic and geometrical parameters. An
analysis of the following equations

E =
v2

2
− µ

r
=
v2

2
− v2

e

2
= − µ

2a
=
v2
∞

2
; e =

√

1 + 2E h
2

µ2

produces the conditions presented in the Tab. 2.1. The fulfillment of any of the reported
conditions is a sure sign of orbit type.

By increasing the spacecraft velocity, the trajectory changes in a regular way. Assume that
a spacecraft is launched horizontally with velocity vL from the surface of an atmosphere–free
Earth. A trajectory external to the surface is impossible before the launch velocity reaches
the first cosmic velocity vI; the trajectory would be an internal ellipse, with the launch point
as the apocenter, if the Earth had its mass concentrated in the center point. Starting from a
degenerate ellipse (e = 1, a = rE/2), the eccentricity progressively decreases as vLisincreased
until a circular orbit around the Earth for r = rE is achievable for vL = vI. By increasing vL

further, the orbit is again elliptical, but the launch point is at the pericenter. The larger vL, the
greater is the eccentricity, until for vL = vII the spacecraft in injected into a parabolic trajectory.
The following trajectories are hyperbolae of increasing energy, until, for infinite launch velocity,
the spacecraft moves on a degenerate hyperbola (e = ∞), i.e., a straight line tangent to the
Earth surface. In all this sequence, the semi-latus rectum p increases in a very regular way.



Chapter 3

Three-Dimensional Analysis of
Motion

A space mission occurs in a three-dimensional environment and the spacecraft motion must be
analyzed accordingly. At the same time, it is necessary to define the measurement of time in an
unambiguous way, as many phenomena related to space travel happen on very different time–
scales (minutes to hours for manoeuvres, days to months for orbit perturbations, several years
for the operational life of the satellite). This chapter is devoted to the presentation of time and
space reference frames.

3.1 The Measurement of Time

The sidereal day is the time DS required for the Earth to rotate once on its axis relative to the
“fixed stars”. The time between two successive transits of the Sun across the same meridian is
called apparent solar day. Two solar days have not exactly the same length because the Earth’s
axis is not exactly perpendicular to the ecliptic plane and the Earth’s orbit is elliptic. The Earth
has to turn slightly more than a complete rotation relative to the fixed stars, as the Earth has
traveled 1/365th of the way on its orbit in one day.

The mean solar day (24 h or 86400 s) is defined by assuming that the Earth is on a circular
orbit with the same period as the actual one, and its axis is perpendicular to the orbit plane.

The constant length of the sidereal day is obtained by considering that during a complete
orbit around the Sun (1 year) the Earth performs one revolution more about its axis relative to
the fixed stars than it doeas with respect to the Sun. One obtains thatDS = 23h 56m 04s = 86164
s. Therefore the angular velocity of the Earth motion around its axis is ω⊕ = 2π/DS =
2π · 1.0027379 rad/day = 7.2921 · 10−5 rad s−1.

The local mean solar time on the Greenwich meridian is called Greenwich Mean Time (GMT),
Universal Time (UT), or Zulu (Z) time (slight differences in their definition are here neglected).

The Julian calendar was introduced by Julius Caesar in 46 BC in order to approximate the
tropical year and be synchronous with the seasons. The Julian calendar consisted of cycles of
three 365–day years followed by a 366–day leap year. Hence the Julian year had on average
365.25 days; nevertheless it was a little too long, causing the vernal equinox to slowly drift
backwards in the calendar year.

The Gregorian calendar, which presently is used nearly everywhere in the world, was decreed
by Pope Gregory XIII, from whom it was named, on February 24th, 1582, in order to better
approximate the length of a solar year, thus ensuring that the vernal equinox would be constantly
close to a specific date. The calendar is based on a cycle of 400 years comprising 146,097 days;
leap years are every fourth year, but are omitted in years divisible by 100 but not divisible by

21
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400, giving a year of average length 365.2425 days. This value is very close to the 365.2424 days
of the vernal equinox year (which is shorter than the sidereal year because of the vernal equinox
precession). The last day of the Julian calendar was October 4th, 1582 and this was followed by
the first day of the Gregorian calendar, October 15th, 1582. The deletion of ten days was not
strictly necessary, but had the purpose of locating the vernal equinox on March 21st.

The Julian day or Julian day number (JD) was introduced to map the temporal sequence of
days onto a sequence of integers. The Julian day number makes the number of days between two
given dates easier to determine, as it is sufficient to subtract one Julian day number from the
other. The Julian day is the number of days that have elapsed since 12 noon GMT on Monday,
January 1st, 4713 BC in the proleptic (i.e., extrapolated) Julian calendar. It should be noted
that for astronomers a “day” begins at noon, also according to tradition, as midnight could not
be accurately determined, before clocks. Also note that 4713 BC is -4712 using the astronomical
year numbering, that has year 0, whereas Gregorian calendar directly passes from 1 BC to 1
AD.

The day from noon on January 1st, 4713 BC to noon on January 2nd, 4713 BC is counted as
Julian day zero. The astronomical Julian date provides a complete measure of time by appending
to the Julian day number the fraction of the day elapsed since noon (for instance, .25 means 18
o’clock).

Given a Julian day number JD, the modified Julian day number MJD is defined as MJD =
JD − 2,400,000.5. This has two purposes:

• days begin at midnight rather than noon;

• for dates in the period from 1859 to about 2130 only five digits need to be used to specify
the date rather than seven.

JD 2,400,000.5 designates the midnight between November 16th and 17th, 1858; so day 0 in
the system of modified Julian day numbers is November 17th, 1858.

The Julian day number (JD), which starts at noon UT on a specified date (D, M , Y ) of the
Gregorian or Julian calendar, can be computed using the following procedure (all divisions are
integer divisions, in which remainders are discarded; astronomical year numbering is used, e.g.,
10 BC = -9). After computing

a =
14 −M

12
; y = Y + 4800 − a ; m = M + 12a− 3

the Julian day number for a date in the Gregorian calendar is given by

JD = D +
153m+ 2

5
+ 365y +

y

4
− y

100
+

y

400
− 32045 ;

for a date in the Julian calendar it is

JD = D +
153m + 2

5
+ 365y +

y

4
− 32083.

To convert the other way round, for the Gregorian calendar compute

a = JD + 32044 ; b =
4a+ 3

146097
; c = a− 146097b

4

or, for a date in the Julian calendar,

b = 0 ; c = JD + 32082.
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Figure 3.1: Heliocentric frame.

Then, for both calendars,

d =
4c+ 3

1461
; e = c− 1461d

4
; m =

5e+ 2

153

and, finally,

D = e− 153m+ 2

5
+ 1 ; M = m+ 3 − 12

m

10
; Y = 100b+ d− 4800 +

m

10
.

3.2 Non–rotating Frames

In order to describe a space mission, it is necessary to provide, together with the time–frame for
the sequence of events and evolution of the orbit, a suitable reference system and a corrisponent
set of coordinates, that suits the application.

The first requirement for the spatial description of an orbit is a suitable (and at least ap-
proximately inertial) reference frame. A frame centered in the primary body (i.e. the most
massive body in the system), with axes pointing a fixed direction with respect to the far stars
(thus non–rotating) usually does well the job.

For trajectories around the Sun, the heliocentric frame FH = (S; ĝ1, ĝ2, ĝ3) (Fig. 3.2), with
the x and y axes on the ecliptic plane (that is, the plane of the Earth’s orbit about the Sun)
and the z axis perpendicular to it, in the direction of the Earth’s angular momentum, is an
obvious choice. For Earth orbiting satellites, a geocentric frame FG = (O; ĝ1, ĝ2, ĝ3) centered in
the center of the Earth and based on the equatorial plane is preferred (Fig. 3.2), the equatorial
plane being perpendicular to the Earth’s spin axis. For both systems the third unit vector,
namely ĝ3, is parallel to the z-axes and is therefore defined; its direction is towards the North.
The x-axis is common to both system and is parallel to the equinox line, which is the line of
intersection of the two fundamental planes, the ecliptic and the equatorial plane; its positive
direction is from the Earth to the Sun on the first day of spring or the vernal equinox (see Fig.
3.2). The unit vector ĝ1 points towards the constellation Aries (the ram).

The Earth’s axis of rotation actually exhibits a slow precession motion and the x–axis shifts
westward with a period of 26000 years (a superimposed oscillation with a period of 18.6 years
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Figure 3.2: Geocentric frame.

derives from the nutation of the Earth’s axis, which is due to the variable inclination of the
lunar orbit on the ecliptic plane). For computations, the definition of both systems is based on
the direction of the line–of–intersection at a specified date or epoch. In astronomy, an epoch is
a moment in time for which celestial coordinates or orbital elements are specified; the current
standard epoch is J2000.0, which is January 1st, 2000 at 12:00. The remaining unit vectors for
both reference frames, named ĝ2, are uniquely defined by the requirement for both frames to be
orthogonal and right–handed.

The spacecraft position can be described by the Cartesian components of its position vector
with respect to the origin of the reference frame; the use of the distance ρ from the center and
two angles is usually preferred. The declination δ is measured northward from the x–y plane;
the right ascension α is measured on the fundamental plane, eastward from the vernal equinox
direction.

We remind that once an orbiting object is dealt with, it is easy to express its position and
velocity vectors in the perifocal frame FP = (S; p̂1, p̂2, p̂3 = k̂), introduced in the previous
Chapter. FP is also a non–rotating, but its orientation depends on the particular orbit consid-
ered.

The issue of coordinate transformation will be dealt with in the Section 3.7, where the more
general problem of the coordinate transformation is presented for the specific case of passage
from perifocal to geocentric–equatorial components.

3.3 Classical Orbital Elements

A Keplerian trajectory is uniquely defined by 6 parameters. The initial values for the integration
of the second-order vector equation of motion, i.e. the spacecraft position and velocity at epoch,
could be used, but a different set of parameters, which provides an immediate description of the
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trajectory, is preferable. The classical orbital elements are widely used for this purpose. Only 4
elements are necessary in the two–dimensional problem: three parameters describe size, shape,
and direction of the line of apsides; the fourth is required to pinpoint the spacecraft position
along the orbit at a particular time. The remaining 2 parameters describe the orientation of the
orbital plane.

The classical orbital elements are

1. eccentricity e (shape of the orbit);

2. semi–major axis a or, equivalently, semi–latus rectum p (size of the orbit);

3. inclination i, that is, the angle between the third unit vector ĝ3 and the angular momentum
~h (inclination of the orbit plane with respect to the base plane of the non–rotating reference
frame);

4. longitude of the ascending node, Ω, that is, the angle in the fundamental plane measured
eastward from the first coordinate axis of the non–rotating frame ĝ1 to the ascending

node, i.e. the point where the spacecraft crosses the fundamental plane while moving in
the northerly direction (orientation of the orbit plane);

5. argument of periapsis ω, that is the angle in the orbit plane between the ascending node
and the periapsis, measured in the direction of the spacecraft motion (pericenter direction
in the orbit plane);

6. true anomaly ν0 at a particular time t0 or epoch (spacecraft position); it is sometime
replaced by time of periapsis passage T .

Some of the above parameters are not defined when either inclination or eccentricity are
zero. Alternate parameters are

• longitude of periapsis Π = Ω + ω, which is defined when i = 0 and the ascending node is
not defined;

• argument of latitude at epoch u0 = ω + ν0, which is defined when the orbit is circular,
e = 0, and the periapsis is not defined;

• true longitude at epoch ℓ0 = Ω + ω + ν0 = Π + ν0 = Ω + u0, which remains defined when
either i = 0 or e = 0.

3.4 Modified Equinoctial Orbital Elements

It should be noted that geostationary orbits are circular and equatorial, which means that both
the eccentricity and the inclination are zero. One possible alternative choice is to use the modified

equinoctial orbital elements. This is a set of orbital elements that are always univocally defined,
for circular, elliptic, and hyperbolic orbits with any inclination, as the modified equinoctial
equations exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90
degrees.

However, two of the components are singular for an orbital inclination of 180 degrees, that
is, for retrograde orbits, that is, equatorial orbits flown in the direction opposite to Earth’s spin
motion. As these orbits are seldom used, this singularity does not represent a serious problem.

Relationship between modified equinoctial and classical orbital elements is given by the
following set of equations:

1. p = a(1 − e2);
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2. f = e cos(ω + Ω);

3. g = e sin(ω + Ω);

4. h = tan(i/2) cos Ω;

5. k = tan(i/2) sin Ω;

6. ℓ0 = Ω + ω + ν0.

The inverse relations that allow to recover the classical orbital elements from the modified ones
are as follows:

semimajor axis: a =
p

1 − f2 − g2

eccentricity: e =
√

f2 + g2

inclination: i = 2 tan−1
(√

h2 + k2
)

= tan−1
(

2
√
h2 + k2, 1 − h2 − k2

)

argument of periapsis: ω = tan−1 (g/f) − tan−1 (k/h)

= tan−1 (gh− fk, fh+ gk)

right ascension of the ascending node: Ω = tan−1 (k, h)

true anomaly at epoch: ν0 = ℓ0 − Ω − ω

argument of latitude at epoch: u0 = ω + ν0

= tan−1 (h sin ℓ0 − k cos ℓ0, h cos ℓ0 + k sin ℓ0)

In the above equations the expression tan−1(a, b) indicates the calculation of the four quadrant
inverse tangent.

3.5 Determining the orbital elements

The orbital elements are easily found starting from the knowledge of the Cartesian components
of position and velocity vectors ~r and ~v at a particular time t0 in either non–rating reference
frame defined in Section 3.2. One preliminarily computes the components of the constant vectors

~h = ~r × v and ~e =
~v × ~h

µ
− ~r

r

and therefore the unit vectors

k̂ =
~h

h
; î =

~r

r
; n̂ =

~g3 × ~k

||~g3 × ~k||
; p̂1 =

~e

e

These vectors, centered in the center of mass of the primary body, define respectively the di-
rections normal to the orbit plane, and towards the spacecraft, the ascending node, and the
pericenter, respectively.

The orbital elements are thus given by

1. p = h2/µ

2. e = ||ê||
3. cos i = k̂ · ĝ3 = k3

4. cos Ω = n̂ · ĝ1 = n3 (Ω > π, if n2 < 0)

5. cosω = n̂ · p̂1 (ω > π, if e3 < 0)

6. cos ν0 = î · p̂1 (ν0 > π, if ~r · ~v < 0)
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In a similar way one evaluates the alternate parameters

• cos u0 = î · n̂ (u0 > π, if i3 < 0)

• cos Π = p̂1 · ĝ1 (Pi > π, if e2 < 0)

• cos ℓ0 = î · ĝ1 (ℓ0 > π, if i2 < 0)

The last two equations hold only for zero orbit inclination (i = 0).

3.6 Determining Spacecraft Position and Velocity

After the orbital elements have been obtained from the knowledge of ~r and ~v at a specified time,
the problem of updating the spacecraft position and velocity is solved in the perifocal reference
frame using the closed–form solution of the equation of motion. The position and velocity
components for a specific value of the true anomaly ν are found using the equations presented
in Section 2.5. The procedure in Section 2.7 permits the evaluation of the time of passage at the
selected anomaly. The ~r and ~v components in the geocentric-equatorial (or heliocentric-ecliptic)
frame can be obtained using a coordinate transformation.

3.7 Coordinate Transformation

The more general problem of coordinate transformation is presented here for the specific case of
passage from perifocal to geocentric–equatorial components, but the approach can be extended
to change of reference between any pair of mutually orthogonal triads of unit vectors in a three–
dimensional space.

The same vector can be expressed in terms of components in different frames (e.g. FP and
FG) as

~v = vg1ĝ1 + vg2ĝ2 + vg3ĝ3

= vp1p̂1 + vp2p̂2 + vp3p̂3

where vP = (vp1, vp2, vp3)
T indicates the components of ~v in FP and vG = (vg1, vg2, vg3)

T

indicates the components of the same vector in FP . The characteristics of the vector (magnitude
and direction) are not affected by the change of frame in which its component are represented.

Taking the dot product with the unit vector ĝ1 provides the component

vg1 = vp1p̂1 · ĝ1 + vp2p̂2 · ĝ1 + vp3p̂3 · ĝ1.

By repeating the same procedure with ĝ2 and ĝ3, one obtains the transformation matrix





vg1

vg2

vg3



 =





p̂1 · ĝ1 p̂2 · ĝ1 p̂3 · ĝ1

p̂1 · ĝ2 p̂2 · ĝ2 p̂3 · ĝ2

p̂1 · ĝ3 p̂2 · ĝ3 p̂3 · ĝ3









vp1

vp2

vp3





or, in more compact form
vG = T GP vP

where T GP is the coordinate transformation matrix. Quite obviously it is also

vP = T PGvG = (T GP )−1vG

but by applying the procedure used to obtain T GP to the inverse transformation from geocentric–
equatorial to perifocal components, the inverse matrix T GP

−1 is simply given by the transpose
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matrix T GP
T . This is however a general property of the transformations between orthogonal

basis.

Each element of T GP is the dot product between two unit vectors, that is, the cosine of
the angle between them, hence the name cosine matrix often used to define the coordinate
transformation matrix T GP . As an example, T11 can be evaluated by means of the law of
cosines (see Appendix) for the sides of the spherical triangle defined by the unit vectors n̂, ĝ1,
and p̂1, that provides

T11 = cosΩ cosω − sin Ω sinω sin i

The procedure is however cumbersome. It is better to split the transformation into a sequence of
three elementary rotations (that is, rotations about one of the coordinate axes), by introducing
two intermediate (auxiliary) reference frames:

• FG′ = (ĝ′
1, ĝ

′
2, ĝ

′
3), based on the equatorial plane, with ĝ′

1 = n̂ and ĝ′
3 = ĝ3;

• FP ′ = (p̂′
1, p̂

′
2, p̂

′
3), based on the orbital plane, with p̂′

1 = n̂ and p̂′
3 = p̂3.

The rotation angle for each elementary rotation is referred to as an Euler angle. In the
present case, starting from the geocentric–equatorial frame, the first rotation that takes FG

onto FG′ (that is, the unit vector ĝ1 onto ĝ′
1 = n̂) is about the third axis, ĝ3 and its amplitude

is Ω. The coordinate transformation is expressed in matrix form as

vG = T GG′vG′ = T ′vG′

where the coordinate transformation matrix is easily obtained,

T GG′ = T ′ = T 3(Ω) =





ĝ′
1 · ĝ1 ĝ′

2 · ĝ1 ĝ′
3 · ĝ1

ĝ′
1 · ĝ2 ĝ′

2 · ĝ2 ĝ′
3 · ĝ2

ĝ′
1 · ĝ3 ĝ′

2 · ĝ3 ĝ′
3 · ĝ3



 =





cos Ω − sin Ω 0
sinΩ cos Ω 0

0 0 1





since ĝ3 = ĝ′
3 are perpendicular to the first and second unit vectors of both frames and the dot

products ĝ1 · ĝ′
1 = ĝ2 · ĝ′

2 = cos Ω. Finally, the angle between ĝ′
1 and ĝ2 is π/2 − Ω, such that

cos(π/2 − Ω) = sin Ω, while that between ĝ′
2 and ĝ1 is π − Ω, so that cos(π − Ω) = − sin Ω.

The second rotation takes place about ĝ′
1 = n̂ = p̂′

1 and takes ĝ′
3 = ĝ3 onto p̂′

3 = p̂3 = ~h/h.
Its amplitude i is the orbit inclination, and it can be shown that the coordinate transformation
is ruled by the equation

v′
G = T G′P ′vP ′ = T ′′vP ′

where

T G′G′′ = T ′′ = T 1(i) =





p̂′
1 · ĝ′

1 p̂′
2 · ĝ′

1 p̂′
3 · ĝ′

1

p̂′
1 · ĝ′

2 p̂′
2 · ĝ′

2 p̂′
3 · ĝ′

2

p̂′
1 · ĝ′

3 p̂′
2 · ĝ′

3 p̂′
3 · ĝ′

3



 =





1 0 0
0 cos i − sin i
0 sin i cos i





The last rotation takes place about the new third axis p̂′
3 = p̂3 = ~h/h and takes ĝ′

1 = n̂ = p̂′
1

onto p̂1 = ~e/e. Again the coordinate transformation can be expressed in matrix form,

vP ′ = T P ′P vP = T ′′′vP

and the coordinate transformation matrix for rotation about the third axis is similar to the
previous one (but for the amplitude of the rotation), so that

T P ′P = T ′′′ = T 3(ω) =





p̂1 · p̂′
1 p̂2 · p̂′

1 p̂3 · p̂′
1

p̂1 · p̂′
2 p̂2 · p̂′

2 p̂3 · p̂′
2

p̂1 · p̂′
3 p̂2 · p̂′

3 p̂3 · p̂′
3



 =





cosω − sinω 0
sinω cosω 0

0 0 1
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Matrix multiplication provide the overall transformation matrix:

vG = T GG′vG′ = T ′vG′ = T ′(T ′′vP ′) = T ′[T ′′(T ′′′vP )] = (T ′T ′′T ′′′)vP

so that the coordinate transformation matrix takes the form

T GP =





cos Ω cosω − sin Ω sinω cos i − cos Ω sinω − sin Ω cosω cos i sin Ω sin i
sin Ω cosω + cos Ω sinω cos i − sin Ω sinω + cos Ω cosω cos i − cos Ω sin i

sinω sin i cosω sin i cos i





Euler’s eigenaxis rotation theorem states that it is possible to rotate any frame onto another
one with a simple rotation around an axis â that is fixed in both frames, called the Euler’s

rotation axis or eigenaxis, the direction cosines of which are the same in the two considered
frame (a simple algebraic proof of Euler’s theorem is given in the appendix). Three parameters
(one for the rotation angle plus two for the axis orientation) define the rotation.

Equivalently three Euler elementary, non coplanar rotations are sufficient to take the first
frame onto the second one. There are 3× 2× 2 = 12 possible sequences of Euler rotations. The
order in which they are performed is not irrelevant, as matrix multiplication is not commutative.
Singularities, e.g., when the orbit is circular or equatorial, cannot be avoided unless a fourth
parameter is introduced.

3.8 Derivative in a Rotating Reference Frame

Consider a base reference frame FB (which is not necessarily fixed) and another, rotating one
FR, defined by the unit vectors î, ĵ, and k̂, rotating with angular velocity ~ω with respect to the
base frame.

The time derivative of a generic vector

~f = f1î + f2ĵ + f3k̂

with respect to the base coordinate system is

d~f

dt

∣
∣
∣
∣
∣
B

= ḟ1î + ḟ2ĵ + ḟ3k̂ + f1
˙̂
i + f2

˙̂
j + f3

˙̂
k

It is easily proved that
˙̂
i = ~ω × î ;

˙̂
j = ~ω × ĵ ;

˙̂
k = ~ω × k̂

and therefore
d~f

dt

∣
∣
∣
∣
∣
B

=
d~f

dt

∣
∣
∣
∣
∣
R

+ ~ω × ~f

where the subscript R denotes a time derivative as it appears to an observer moving with the
rotating frame. This rule is independent of the physical meaning of vector ~f .

In particular, when one takes the first and second time derivative of the position vector ~r in
an inertial frame FI , it is

~v|I =
d~r

dt

∣
∣
∣
∣
I

=
d~r

dt

∣
∣
∣
∣
R

+ ~ω × ~r = ~v|R + ~ω × ~r

and

~a|I =
d ~v|I
dt

∣
∣
∣
∣
∣
I

=
d~vI

dt

∣
∣
∣
∣
R

+ ~ω × ~v|I =
d2~r

dt2

∣
∣
∣
∣
R

+ 2~ω × ~v|R + ~ω × (~ω × ~r)
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The second equation of dynamics m~a|I = ~f , when written in a rotating frame becomes

m
d2~r

dt2

∣
∣
∣
∣
R

= ~f +m2~ω × ~v|R +m~ω × (~ω × ~r)

where, together with the resultant of the applied forces ~f , two apparent forces

~f co = −2m~ω × ~v|R and ~f cf = −m~ω × (~ω × ~r)

(named Coriolis and centrifugal force, respectively) must be added.

3.9 Topocentric Reference Frame

The launch of a satellite or a radar observation is made from a point on the Earth surface. The
propulsive effort or the measured signal is connected to a rotating reference frame centered on
the launch pad or radar location. The obvious choice for the fundamental plane is the local
horizontal plane and as a consequence the z–axis is parallel to the local vertical , and points
to the zenith. The x–axis points southward along the local meridian, and the y–axis eastward
along the parallel. The right-handed set of unit vectors t̂1, t̂2, and t̂3 defines the topocentric

frame FT , centered on a location (topos in ancient greek) on the Earth’s surface.

Representation of vectors in Topocentric coordinates

The vectors ~ρ and ~w are used to express position and velocity relative to the topocentric frame,
that is, as they appear to an observer fixed to this frame. Spherical polar coordinates, expressed
as magnitude of the vector ρ and two angles (elevation ϕ above the horizon and azimuth ψ
measured clockwise from the North) are often preferred to the Cartesian components.

By indicating with the symbols ρT = (ρ1, ρ2, ρ3)
T and wT = (w1, w2, w3)

T the components
of the (relative) position and velocity vectors ~ρ and ~w in FT , respectively, it is

ρ1 = −ρ cosϕρ cosψρ ; w1 = −w cosϕw cosψw

ρ2 = ρ cosϕρ sinψρ ; w2 = w cosϕw sinψw

ρ3 = ρ sinϕρ ; w3 = w sinϕw

Nevertheless, the energy achieved by the spacecraft with the launch is directly related to the
distance from the central body,

~r = ~r⊕ + ~ρ = ρ1t̂1 + ρ2t̂2 + (r⊕ + ρ3)t̂1

and the absolute velocity (i.e., the velocity with respect to a non-rotating reference frame such
as the set of geocentric–equatorial coordinates)

~v = d~r/dt|G = ~w + ~ω⊕ × ~r = ~w + ~u

where ~u = ω⊕r cos δt̂2 ≈ ω⊕r⊕ cos δt̂2 decreases from the maximum value ueq = 464.6m/s at
the equator, to zero at either pole. The components of the absolute velocity in the topocentric
frame are therefore

v1 = −w cosϕw cosψw ; v =
√

v2
1 + v2

2 + v2
3

v2 = w cosϕw sinψw + u ; sinφw = v3/v
v3 = w sinϕw ; tanφw = −v2/v1

One should note that azimuth and elevation angles of the absolute velocity (ψv and φv) are
different from the same angles (ψw and φw) for the relative velocity, that is, the angles as seen
by an observer looking at the moving spacecraft from the topocentric frame.
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As far as vector magnitudes are concerned, it is w− u ≤ v ≤ w+u, and the launch strategy
aims at obtaining v (the effective velocity for orbital motion) larger than w (the rocket velocity
attainable by means of the propellant only). In order to obtain the maximum benefit from the
Earth rotation, u should be as high as possible and v = w + u. The last requirement implies
w1 = w3 = 0, that is, φw = 0 and ψw = π/2.

Coordinate transformation matrix from topocentric to geocentric equatorial
frame

The estimation of the orbit parameters of a satellite requires the simultaneous knowledge of
position and velocity vectors in the non–rotating, geocentric equatorial frame at a given time
t0. If these vectors are evaluated from a tracking station GS on the ground, with geographical
coordinates Lat and Lo, they will be known in a topocentric frame centered in GS, and a
coordinate transformation from topocentric to geocentric equatorial frame is thus necessary.

It must be remembered that the topocentric frame rotates together with the Earth, so that,
first of all, it is necessary to evaluate the right ascension of the ground station itself, that is, the
angular displacement between the vernal equinox unit vector ĝ1, and the plane of the meridian
passing through the ground station. This can be evaluated as the sum of the right ascension of
the Greenwich meridian GM plus the longitude of GS,

α = αG + Lo

where

αG = αG0
+ ω⊕(t− t0)

The angle αG0
at t0 is often provided as the Greenwich sidereal time at 0:00 of January, 1st

of a specified year. In such a case, αG0
is close to 100 deg, with less than 1 deg oscillations due

to the non–integer number of the days in a year.

As the equatorial plane is the base plane of the geocentric equatorial frame, the declination
of GS is equal to its latitude, that is δ =Lat.

The elementary rotations that take FG onto FT are a rotation alpha about ĝ3, followed by
a rotation π/2 − δ about t̂2, that is

T GT = T 3(α)T 2(π/2 − δ)

where the symbol T i( ) indicates, as in the previous paragraph, the coordinate transformation
matrix for an elementary rotation about the i-th axis. Being

T 3(α) =





cosα − sinα 0
sinα cosα 0

0 0 1





and

T 2(π/2 − δ) =





cos(π/2 − δ) 0 sin(π/2 − δ)
0 1 0

− sin(π/2 − δ) 0 cos(π/2 − δ)



 =





sin δ 0 cos δ
0 1 0

− cos δ 0 sin δ





one gets

T GT =





cosα sin δ − sinα cosα cos δ
sinα sin δ cosα sinα cos δ
− cos δ 0 sin δ
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3.10 Satellite Ground Track

Information on overflown regions and satellite visibility from an observer on the ground requires
the knowledge of the motion of the satellite relative to the Earth’s surface. This motion results
from the composition of the Keplerian motion of the satellite with the Earth rotation on its axis.
The track of a satellite on the surface of a spherical Earth is the loci of the intersections of the
radius vector with the surface. The altitude and the track on a chart of the Earth constitute a
quite useful description of the satellite motion.

The ground track of a satellite moving on a Keplerian orbit is a great circle, if the Earth is
assumed spherical and non-rotating. Suppose that the satellite overflies point S of declination
δ at time t. Consider the meridians passing through S and the ascending node N. Complete
a spherical triangle NMP with an equatorial arc of angular length ∆α between the meridians,
the third vertex being the pole P. The ground track will split this triangle into two smaller ones
(NMS and NSP). By applying the law of sines to both triangles, one obtains

sin i

sin δ
=

sin(π/2)

sin θ
⇒ sin δ = sin i sin θ

sin θ

sin∆α
=

sin(π/2 − δ)

sin(π/2 − i)
=

sin(π/2)

sin(π − ψ)
⇒ sin ∆α =

cos i

cos δ
sin θ

The equations on the right side provide the satellite track in a non–rotating frame. The angular
position of N with respect to the equinox line (i.e., ĝ1) is called local sidereal time α = Ω + ∆α.
The law of sines for the triangle NMP also provides the equation

cos i = cos δ sinψ

an important relation that will be discussed in the following chapter.
Geographical latitude La and longitude Lo are needed to locate point S in a cartographical

representation of the Earth surface. The former is simply Lat = δ, while the latter is given by
Lo = α− αG and requires the knowledge of the Greenwich sidereal time, which is given by (see
the previous paragraph)

αG = αG0
+ ω⊕(t− t0)

3.11 Ground Visibility

For the sake of simplicity, consider a satellite moving a circular orbit of altitude z above the
ground. Adequate visibility from a base L on the Earth surface requires a minimum elevation
ε above the horizon, dependent on radiofrequency and characteristics of the radio station. The
satellite is seen from the base when its position on the ground track is inside a circle, which is
drawn around L on the sphere, and whose radius has angular width Σ. The same angle describes
the Earth surface around the satellite and visible from it.

The law of sines of plane trigonometry applied to the triangle OLS (S is the limit position
for visibility),

sin(π − Σ − π/2 − ε)

r⊕
=

sin(π/2 + ε)

r⊕ + z
=

sin Σ

d

provides the angle Σ:

cos(Σ + ε) =
r⊕

r⊕ + z
cos ε

and the maximum distance between a visible satellite and the ground–base base L:

d = (r⊕ + z)
sin Σ

cos ε
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(a) (b)

Figure 3.3: Great circles (a) and spherical triangle ABC (b).

The latter parameter is related to the power required for data transmission.
The time of visibility depends on

• the length of the ground track inside the circle (the closer to L the passage, the longer the
track);

• the satellite altitude (the higher z the lower the spacecraft angular velocity i.e., the time
to cover a unit arc of the ground track).

Note that the visibility zone is a circle on the sphere. On a cartographic representation of
the Earth surface, the same zone is again a circle for an equatorial base, but is increasingly
deformed for bases located at increasing latitudes.

Appendix A - Spherical Trigonometry

Consider a sphere of unit radius. The curve of intersection of the sphere and a plane passing
through the center is a great circle. A spherical triangle is a figure formed on the surface of a
sphere by three great circular arcs intersecting pairwise in three vertices.

Eight triangles are actually created, and we will consider only triangle ABC (Fig. 3.11(a)).
The sum of the angles of a spherical triangle α + β + γ is greater than π, being something
between π and 3π.

The study of angles and distances on a sphere is known as Spherical Trigonometry and is
essentially based on two basic equations, (i) the law of cosines for the sides (a similar one for
the angles exists), and (ii) the law of sines.

Let a spherical triangle be drawn on the surface of a unit sphere centered at point O, with
vertices A, B, and C (Fig. 3.11(b)). The unit vectors from the center of the sphere to the vertices
are êA, êB, and êC , respectively. The length of the side BC, denoted by a, is seen as an angle
from the center of the sphere (remember that a great circle on the unit sphere is a circle of unit
radius, such that the length on an arc on the circle is equal to the angle at the center expressed
in radians). The angle on the spherical surface at vertex A is the dihedral angle between planes
AOB and AOC, and is denoted by α.

A.1 - Law of the cosines

The dot product (êA × êB) · (êA × êC) can be expressed in two ways:

(êA × êB) · (êA × êC) = [(êA × êB) × êA] · êC
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= [(êA · êA)êB − (êA · êB)êA] · êC

= [êB − cos cêA] · êC

= cos a− cos b cos c

But it is also

(êA × êB) · (êA × êC) = sin b sin c cosα

and equating the results, one obtains the law of cosines for the sides:

cos a = cos b cos c+ sin b sin c cosα

A.2 - Law of the sines

After computing

sinα

sin a
=

1

sin a

||(êA × êB) × (êA × êC)||
||êA × êB || ||êA × êC ||

=
1

sin a

||[êA · (êA × êC)]êB − [êB · (êA × êC)]êA||
sin b sin c

=
||êB · (êA × êC)êA||

sin a sin b sin c

one recognizes that the result is independent of the selected vertex on the basis of the geometrical
meaning of the numerator (see Eq. A.4 in Chapter 1). The law of sines is therefore expressed as

sin a

sinα
=

sin b

sin β
=

sin c

sin γ

Appendix B - Algebraic proof of Euler’s theorem

A simple algebraic demonstration of Euler’s theorem can be obtained from the following con-
siderations:

• the eigenvalues of any (real) orthogonal matrix T have unit modulus; indicating with H
the Hermitian conjugate, which, for a real matrix is coincident with the transpose, one has

Ta = λa ⇒ aHT T Ta = λ̄λaHa ⇒ (1 − λ̄λ)aHa = 0

that for any nontrivial eigenvector a implies that

λ̄λ = 1 ⇒ |λ| = 1

• (at least) one eigenvalue is λ = 1; any n × n real matrix has at least one real eigenvalue
if n is an odd number, which means that a 3 × 3 orthogonal matrix must have at least
one eigenvalue which is λ1 = ±1. The other couple of eigenvalues will be, in the most
general case, complex conjugate numbers of unit modulus, which can be cast in the form
λ2,3 = exp(±iφ). The determinant is equal to the product of the eigenvalues, which is one,
for an orthogonal matrix, so that

λ1λ2λ3 = 1 ⇒ λ1 = 1
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The eigenvector relative to the first eigenvalue satisfies the relation

Ta = 1 · a

This means that there is a direction a which is not changed under the action of transformation
matrix T . If T represents a coordinate change, the vector a will be represented by the same
components in both the considered reference frames. For this reason, the transformation that
takes the initial frame onto the final one can be considered as a single rotation α about the Euler
axis â.
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Chapter 4

Earth Satellites

4.1 Introduction

Several aspects of satellite launch and operation are analyzed in this chapter. The orbit cannot
be reached directly from the ground and part of the propulsive effort is done at high altitude with
a reduced efficiency. The orbit is perturbed by non-Keplerian forces, mainly aerodynamic drag
and Earth asphericity, in the proximity of the planet, solar and lunar gravitation for satellites
orbiting at higher altitudes. The choice of the orbital parameters is not free as a satellite operates
in strict connection with the ground, continuously up–loading and down–loading data from and
to ground–stations at each passage over them.

The mission starts with the ascent to the orbit, that is greatly dependent on the geographical
location of the launch base. Orbital maneuvers may be required for the achievement of the final
orbit. Maneuvering is also necessary to correct injection errors and maintain the operational
orbit compensating for the effects of perturbations.

4.2 The cost of thrusting in space

The simplest way of changing the specific energy of a satellite of mass m is the use of the engine
thrust T provided by exhausting an adequate mass flow (−ṁ) of propellant. A thrust impulse
Tdt is applied to a spacecraft in the absence of gravitational and aerodynamic forces. This
hypothesis is not too restrictive: for instance, it is compatible with the presence of gravitation,
if the displacement dr in the time interval dt is negligible,

d~v =
~T

m
dt ; c = − T

ṁ
⇒ dv = −cdm

m

where c is the engine effective exhaust velocity. The mass expenditure dm (< 0) represents the
cost, which is directly related to the infinitesimal velocity increment.

The burn time of a chemical engine is short when compared with the orbital period. The
impulsive model (infinite thrust applied for infinitesimal time, therefore at constant radius) is
undoubtedly acceptable for an interplanetary mission, where orbit periods are very long and
the approximation of neglecting the thrust pulse duration is reasonable. For Earth orbiting
satellites, the model still holds without excessive errors; in any case it provides the theoretical
minimum propellant consumption, as the whole propulsive effort is concentrated in the optimal
position for delivering the thrust pulse.

A different model (finite-thrust maneuver), which takes into account the finite magnitude of
the available thrust, provides more accurate results. The use of the exact model, where pulses
of finite duration are considered, is necessary when electric propulsion is exploited.

37
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The thrust level determines the angular length of the maneuvers and is quantified by com-
paring the thrust and gravitational accelerations. The thrust acceleration available in present
spacecraft permits low–thrust few–revolution interplanetary trajectories and very–low–thrust
multi–revolution maneuvers orbit transfers around the Earth.

Assume that an impulsive maneuver is carried out to provide an assigned energy increment
∆E to a spacecraft moving on a Keplerian trajectory. The thrust direction and the velocity
increment ∆~v form an angle β with the velocity ~v1 just before the maneuver. The velocity after
the (ideally instantaneous) thrust pulse will be

~v2 = ~v1 + ∆~v ⇒ v2
2 = v2

1 + ∆v2 + 2v1∆v cos β

so that the assigned energy increment is

∆E = E2 − E1 = − µ

2a2
+

µ

2a1
=
v2
2

2
− v2

1

2
=

1

2
∆v(∆v + 2v1 cos β)

suggesting that the ∆v magnitude, i.e., the cost, is minimized if

• the thrust is applied in the point of the largest velocity on the initial trajectory;

• the thrust vector is parallel to the velocity (β = 0 for ∆E > 0 or β = π for ∆E < 0).

The same result can be obtained by considering the mechanical energy

E =
v2

2
− µ

r

and evaluating its increment for a constant position, r = const, so that

dE = vdv = ~v · d~v

As a consequence, in order to obtain a given energy increment with the minimum velocity
increment (i.e. minimum propellant consumption), one should avoid

• misalignment losses, wasting part of the thrust to rotate the spacecraft velocity);

• gravitational losses, letting the gravity reduce the velocity while the spacecraft moves away
from the central body (i.e. fire the thrusters when r is small and v is higher).

4.3 Energetic aspects of the orbit injection

If a spacecraft flying on a circular orbit of radius rc is considered, it is

vc =

√
µ

rc
; T =

2πrc
vc

= 2π

√

r3c
µ

As the radius increases from the minimum theoretical value r⊕ = 6371 km (mean radius
of the Earth), the velocity continuously decreases from the maximum value vI = 7.91 km s−1.
The period increases starting from 84m 24s, as the spacecraft becomes slower on a longer orbit,
farther from the Earth centre. Figure 4.1 presents the kinetic (Ec), gravitational (Eg), and total
(E) nondimensional energy, scaled with respect to the absolute value of the gravitational energy
on the Earth surface, as a function of the nondimensional radius r/r⊕. For higher orbits the
kinetic energy diminishes, but its reduction is only half of the increment of the potential energy,
that prevails, so that a greater propulsive effort ∆E is required to attain higher orbit.
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Figure 4.1: Energy of circular orbits.

The same Fig. 4.1 also applies to an elliptic orbit, if the semi–major axis a is considered
instead of the radius rc. An elliptic orbit is equivalent to the circular one with rc = a, from the
energetic point of view, but has a lower pericenter. One should note that kinetic and potential
energies are not constant along the elliptic orbit; the values of Fig. 4.1 are attained when
the satellite passes through the minor axis. When compared with non-equivalent ellipses, the
circular orbit has the minimum energy among orbits with equal pericenter, and the maximum
energy if the same apocenter is assumed.

If the ascent to an orbit of semi-major axis a2 from the Earth surface is considered, the
equivalent velocity on the ground v0eq , that corresponds to the increment of spacecraft energy
sufficient to reach the energy relative to the target orbit, is obtained from the equation

v2
0eq

2
= ∆E = E2 − E0 = − µ

2a2
+

µ

r⊕

and lies between the first and second cosmic velocities. Unfortunately one impulsive velocity
increment on the Earth surface does not permit to attain an orbit with rP > r⊕: the spacecraft
will pass again through the point where the engine has been turned off at the end of the injection
maneuver (see the dotted line in Fig. 4.2). This means that in order to attain orbit with a perigee
radius greater than the Earth radius, the last application of thrust must occur at rP > r⊕.

At least two impulsive burns are therefore necessary. By means of a first velocity impulse
v0, the spacecraft leaves the ground (point 0) on a ballistic trajectory with an apogee at point
1. A second tangential burn ∆v = v2 − v1 in 1 parallel to the velocity vector (thus avoiding
misalignment losses) will raise the perigee of the orbit up to r2. The total energy increase is
obtained by means of two increments of kinetic energy:

∆E =
v2
0

2
+
v2
2

2
− v2

1

2
=
v2
0

2
+

∆v2

2
+ v1∆v

The comparison between the square of the total velocity increment (∆vtot = v0 + ∆v) and
the equivalent velocity increment on the ground (v0eq) provides

∆v2
tot

2
−
v2
0eq

2
=

(v0 + ∆v)2

2
− ∆E = (v0 − v1)∆v
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Figure 4.2: Orbit injection with two velocity increments.

Since the mechanical energy is constant during the ballistic ascent, for an assigned value of
the radius r1 of the injection point 1 it is

v2
0

2
− v2

1

2
=
µ

r0
− µ

r1
= const =

C

2

and therefore v0 results to be an increasing function of v1, since

v0 − v1 =
C

v0 + v1

As a consequence it is possible to write the energy loss with respect to the equivalent ∆v on the
ground as

∆v2
tot

2
−
v2
0eq

2
= C

v2 − v1
v0 + v1

= C
∆v

v0 + v1

where the loss, which is actually gravitational, is reduced if the ballistic trajectory reaches the
injection point with the highest value of the velocity v1, that is, the transfer ballistic orbit from
0 to 1 has the largest value of the semi-major axis possible to reach point 1, which in turn is the
perigee of the final orbit. In order to minimize ∆v losses during the launch phase, the spacecraft
should depart horizontally from a ground base located at the antipodes of the injection point,
as depicted in Fig. 4.2.

4.4 Injection errors

Consider an ascent to a circular orbit, carried out according to the model presented in the
previous section. Suppose that the injection point has been exactly attained; an error δv2 on
the velocity magnitude or δϕ2 on the flight path angle after the injection burn are considered
separately, and their effect on the perigee of the final orbit is evaluated.
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By differentiating both sides of the energy equation considering r as fixed one gets

v2

2
− µ

r
= − µ

2a
⇒ vdv =

µ

2a2
da ⇒ da =

2a2

µ
vdv

which corresponds to an increment dz = 2da of the orbit altitude at the antipodes of the injection
point. Therefore

δz = 2δa2 =
4a2

µ
v2δv2 ≈ 4a

δv2
v2

where, for a circular orbit, it is v2 =
√

µ/r2 =
√

µ/a2.

If the Earth mass parameter is considered, a reduction of only 0.1% on v2 for a circular orbit
at 200 km altitude (that is, 7.8 m s−1) produces a 0.4% reduction of the perigee height (26.3
km), whereas exceeding v2 of the same amount would increase the apogee altitude of the same
amount.

An error in any direction on the flight path angle lowers the perigee. From the equation for
the orbit parameter it is possible to express the eccentricity,

h2

µ
= p = a(1 − e2) ⇒ e =

√

1 − h2

µa

where the angular momentum vector in 1, after application of the ∆v, is given by h = r1v2 cosϕ.
As a consequence, for small errors on the flight–path angle (and consequently quasi–circular
orbits), the eccentricity becomes

e=

√

1 − r21v
2
2 cos2 ϕ

µa2
≈
√

1 − cos2 ϕ = | sinϕ| ≈ |δϕ2|

Thus, an error of 1 mrad (3’ 26”) in the direction of the velocity vector at injection reduces the
perigee altitude by 6.6 km.

4.5 Perturbations

Keplerian trajectories are conic sections that describe the relative motion of two spherically
symmetric bodies under the action of their mutual gravitational attraction only. A real space-
craft is acted upon by several forces, together with the gravitational pull from the closest planet
which, by the way, is never perfectly spherical. These forces, however, are usually relatively
small, if compared to the main gravitational action, and the orbits of planets and satellites are
well approximated by conic sections. Nonetheless, in the long run, the combined action of the
other forces will result in a sizable variation of the current position from the ideal one, predicted
by the Keplerian theory, so that the actual trajectories are referred to as perturbed Keplerian
orbits.

The six orbital parameters are uniquely determined by position and velocity of the spacecraft
at some instant. They are not constant for a perturbed trajectory, but the spacecraft appears
continuously passing from a Keplerian orbit to another. The keplerian orbit that at specific time
has the same orbital elements of the perturbed trajectory is called osculating orbit. The osculat-

ing orbital elements of a spacecraft are the parameters of its osculating conic section, which varies
with time. In general they present a linear trend (secular variation) with superimposed long–
period oscillations, due to interactions with variations of another element, and shorter-period
oscillations usually related to phenomena repeated during each orbital revolution.
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The equation of motion can be written in the form

~̈r = − µ

r3
~r + ~aP

where ~aP is the acceleration due to the action of the perturbing forces. In general, no closed–form
analytical solution is available for describing the long term effects of orbital perturbation, and
numerical techniques (special perturbation methods) or approximate analytical solutions (general

perturbation methods) are necessary to estimate such effects.

4.5.1 Special perturbations

Special perturbation methods numerically integrate the equation of motion and provide the
trajectory of a particular spacecraft, starting from its initial conditions at a specific time (see
Bate, cap. 9.5, p. 412-9).

The simple numerical integration of the perturbed equation of motion is called Cowell’s
method. It makes no use of the fact that the actual trajectory can be approximated by a conic
section. The integration step is small, even though the Cartesian coordinates of the original
method are replaced by other (e.g., spherical) coordinates.

Encke’s method assume the osculating orbit at some instant as a reference Keplerian orbit
which is known by means of the analytical solution of the unperturbed equation of motion

¨~rK = − µ

r3K
~rK

The deviation of the actual trajectory from the reference orbit

δ~r = ~r − ~rK ⇒ δ~̇r = ~̇r − ˙~rK ⇒ δ~̈r = ~̈r − ¨~rK = −µ
(
~r

r3
− ~rK

r3K

)

+ ~aP

is numerically integrated. The integration step can be chosen larger than in Cowell’s method,
at least until perturbations accumulate and ∆r becomes large. Then, the reference orbit is
corrected, i.e., a new reference orbit is assumed (Cornelisse 18.3, p. 412; Bate 9.3, p. 390-96).

The method of variation of orbital parameters rewrites the vector equation of perturbed
motion as a system of differential equation for the orbital parameters of the osculating orbit.
Only the rate of change of the osculating parameters, which derives from the perturbing forces,
is integrated. Moreover, the effects of perturbations are made evident by the clear geometrical
significance of the orbital elements (Cornelisse 18.4, p. 413; Bate 9.4, p. 396-410).

4.5.2 General perturbations

General perturbations cover the analytical methods in which a perturbing acceleration is se-
lected, expanded into series, which are opportunely truncated and integrated termwise. An-
alytical expressions describe the general effects of a particular perturbing force on the orbital
elements as a function of time (Cornelisse 18.5, p. 425; Bate 9.4.3, p. 910-2).

4.6 Perturbed satellite orbits

The most important perturbing forces acting on an artificial Earth satellite are due to lunar and
solar attraction, asphericity of the Earth, aerodynamic drag, solar radiation, and electromagnetic
effects.
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Figure 4.3: A satellite in the Earth–Moon system.

4.6.1 Lunar and solar attraction

Consider the three-body system, where a third body of massMP perturbs the motion of an Earth
satellite m. Assume an inertial reference frame FI where ~R0 and ~ρ0 are the position vectors of
the Earth and of the satellite, respectively, while ~R and ~ρ define their position relative to the
perturbing body. After writing the equations of motion for the spacecraft and the Earth,

m~̈ρ0 = −GMm

r3
~r −G

MPm

ρ3
~ρ

M ~̈R0 = G
Mm

r3
~r −G

MPM

R3
~R

where ~r = ~ρ0 − ~R0, it is possible to operate as in Section 1.5. Letting µP = GMP , one gets

~̈r = − µ

r3
~r − µP

ρ3
~ρ +

µP

R3
~R

= − µ

r3
~r + ~aP

where the disturbing acceleration,

~aP = µP

[
µP

R3
~R − µP

ρ3
~ρ

]

can be expressed as (see Fig. 4.3) as

aP = µP

√
1

R4
+

1

ρ4
− 2 cosα

R2ρ2

which for ρ≪ R reduces to aP ≈ µP/ρ
2.

For an Earth orbiting satellite it is ε = r/R ≪ 1. The angular position with respect to the
Earth, β, is related to the angular position with respect to the third body, α, by the equation

cosα =
R− r cos β

ρ
=
R

ρ
(1 − ε cos β)

so that the perturbing acceleration can be expressed as

aP =
µP

ρ2

√

1 +
ρ4

R4
− 2

ρ

R
(1 − ε cos β)
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Table 4.1: Perturbing attraction of a third body for r = 42,200 km.

Disturbing Body µP /µ⊕ R/r (aP /a⊕)max

Moon 0.0123 9.1 3.3 10−5

Sun 332,946 3.48 103 1.6 10−5

The distance from the perturbing body can be expressed using the (plane) cosine theorem, that
is

ρ2 = R2 + r2 − 2rR cos β ⇒
( ρ

R

)2
= 1 − 2ε cos β + ε2

Using the binomial series expansion

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 + O(x3)

and neglecting terms of order ε3, it is possible to write ρ/R as

ρ

R
=

(
1 − 2ε cos β + ε2

)1/2 ≈ 1 − ε cos β +
1

2
ε2 − 1

2
ε2 cos β

( ρ

R

)4
=

(
1 − 2ε cos β + ε2

)2 ≈ 1 − 4ε cos β + 2ε2 + 4ε2 cos β

By substituing the above expressions into the equation for aP , one obtains

aP =
µP

ρ2

√

ε2(1 + 3 cos2 β) = µP
r

R3

√

1 + 3 cos2 β

Taking the ration with the gravitational acceleration a⊕ due to the Earth, it is possible to
express the relative importance of the perturbation,

aP

a⊕
=
µP

µ⊕

r3

R3

√

1 + 3 cos2 β,

which increases with the third power of the satellite distance from the Earth. In particular the
main perturbations on geostationary satellites are the disturbing attractions of Sun and Moon,
the former being approximately a half of the second.

4.6.2 Asphericity of the Earth

The gravitational potential of the Earth in the two-body problem, expressed as µ/r, is valid
under the assumption of a perfectly spherically symmetric body, but the Earth is oblate (e.g.
flattened at the poles), bulged at the equator, and generally asymmetric because of density
variations inside its volume.

The asphericity of the Earth is the dominant perturbation for satellites orbiting outside of
the densest layers of the atmosphere, yet below an altitude of few tens thousands of kilometers.
The excess of mass near the equator produces a slight torque on the satellite about the center
of the Earth. The torque causes the orbit plane to precess, and the line of the nodes moves
westward for direct orbits and eastward for retrograde satellites. Earth’s oblateness also causes
a rotation of the line–of—apsides.

The gravitational acceleration can be written as the gradient of a scalar function,

Eg = −µ
r

{

1 −
∞∑

n=2

Jn

(r⊕
r

)n
Pn(sinLa) −

∞∑

n=2

∞∑

m=2

Jn,mPm
n (sinLa) cos [m (Lo− Lon,m)]

}
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which describes the gravitational potential of the Earth in the rotating geocentrical equatorial
frame. The function Pn(x) is Legendre’s polynomial of degree n, that can be expressed by
Rodrigues’ formula as

Pn(x) =
1

2n n!

dn

dxn

[(
x2 − 1

)]
,

while Pm
n (x) is the associated Legendre polynomial of degree n and order m,

Pm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
[Pn(x)] .

The Newtonian point–mass potential is thus joined by a series of terms in Jn, called zonal
harmonics, and terms in Jn,m, called tesseral and sectorial harmonics for n 6= m and n = m,
respectively. The zonal harmonics, which describe the deviation in the North–South direction,
are dependent on latitude only. The tesseral and sectorial harmonics causes the deviation in
the East–West direction; the former are dependent on both latitude and longitude, the latter
on longitude only. The terms with n = 1 are absent, as the center of the frame and the center
of mass of the Earth coincide.

The even numbered zonal harmonics are symmetric about the equatorial plane and the
odd numbered harmonics antisymmetric. The second zonal coefficient, J2, describes the Earth
oblateness and its value, J2 = 1.082637 10−3, is three order of magnitude greater than any other;
J3 describes the Earth as pear–shaped. The term J2,1 is very small, as the axis of rotation of
the Earth practically coincides with a principal axis of inertia; J2,2 describes the ellipticity of
the Earth equator.

The effects of tesseral and sectorial harmonics are averaged and generally cancelled by the
rotation of the Earth inside the planar orbit of the satellite. An important exception is the
geostationary satellites that maintain a fixed position relative to the Earth and are very sensitive
to the East–West anomalies in the gravitational field.

For most practical orbits, with the above mentioned exception of geostationary ones, only
the zonal harmonics are considered, i.e., the gravitational field is assumed to be axi–symmetric
and the reference frame does not need to rotate with the Earth.

In particular, if the method of general perturbation is applied retaining only the second zonal
harmonic, J2, three orbital elements exhibit changes after one orbital revolution:

∆Ω = −3πJ2

(
r⊕
p

)2

cos i

∆ω =
3

2
πJ2

(
r⊕
p

)2
(
5 cos2 i− 1

)

∆M = nTd + 3πJ2

(
r⊕
p

)2

cos i
(1 + e cosω0)

3

1 − e2

where Td is the nodal or Draconian period. The regression of the line–of–nodes and the rotation
of the line–of–apsides are both decreasing functions of the orbit altitude (i.e., higher orbits are
less affected by the non–sphericity of the Earth). The direction of the former rotation changes
passing through the polar orbit (i = π/2); the semi–major axis rotates in the same direction of
the satellite motion for i < 63.4 deg or i > 116.6 deg.

4.6.3 Aerodynamic drag

The motion of a satellite inside the Earth’s atmosphere is accompanied by lift and drag forces.
The former is negligible in most cases; the latter is in a direction opposite to the velocity vector
relative to the atmosphere, with magnitude

aD =
1

2
ρw2 S

m
CD
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The area S of the frontal section depends on the attitude of the satellite, and can vary between a
minimum and a maximum value that can be significantly different. The drag coefficient is close
to 2, as the flow is of the free–molecular type and drag is due to the molecular impact on the
satellite surface. The atmospheric density rapidly decrease with altitude, but it depends also
on season, local solar time, and solar activity, resulting barely predictable. As a consequence,
the magnitude of aerodynamic drag can be only roughly estimated. It is the most important
perturbation below 200 km altitude, whereas can be completely neglected above 1000 km.

A satellite flying an eccentric orbit with perigee altitude below 700 km is subjected to
aerodynamic forces that are much stronger at the periapsis than at the apoapsis, due to the
combined effects of higher velocity and density during perigee passes. As a consequence, the
apogee is rapidly lowered; after the orbit has become near-circular (r ≈ const) it is possible to
express the orbit decay from the expression of total energy:

− µ

2a
=
v2

2
− µ

r
⇒ µ

2a2
ȧ = vv̇ = −v

(
1

2
ρw2 S

m
CD

)

By approximating the velocity with respect to the atmosphere with the orbital velocity, it is
possible to assume that

w2 ≈ v2 ≈ µ

a
⇒ ȧ = −√

µa ρ
S

m
CD

The rate of reduction of orbit altitude is ruled by atmospheric density and becomes faster as
the satellite flyes lower.

4.6.4 Radiation pressure

The direct solar radiation, the solar radiation reflected by the Earth, and the radiation emitted
by the Earth itself may be regarded as a “beam” of photons that hits the satellite surface,
thus imparting a momentum. The corresponding radiation pressure is quite small and usually
negligible, except for spacecraft with high volume/mass ratio (Bate 9.7.3, p. 424–425). The
magnitude of the resulting acceleration can be expressed approximately as

aRP = fS/m

where m is the satellite mass, S the frontal area exposed to the solar radiation pressure, and
f = 4.5 10−8 m3kg−1s−2.

4.6.5 Electromagnetic effects

A satellite may acquire electrostatic charges in the ionized high-altitude atmosphere; electric
currents circulate in its subsystems. Interactions with the Earth’s magnetic field are possible but
generally negligible. Control of satellite formations by electrostatic fields obtained by charging
the satellites is currently investigated. In general, electromagnetic effects have a deeper impact
on satellite attitude dynamics, and can be used for attitude control of small satellites.

4.7 Geographical constraints

Satellite operations for communication, intelligence, navigation, and remote sensing are evidently
related to the Earth’s surface. Any spacecraft with no exception, however, needs to download
data to ground stations, which in turn detect its position and velocity. Satellite reconfiguration
and orbital maneuvers usually occur in sight of a command station.

The analysis of the ground track is therefore essential. According to the equation

cos i = cos δ sinψ
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the ground track crosses the equator at an angle equal to the orbital inclination. The maximum
latitude North or South of the equator that a satellite pass over just equals the orbit plane
inclination i (π− i, for retrograde orbits). A global surveillance satellite should be in polar orbit
to overfly the Earth’s entire surface. The Earth rotation displaces the ground track westward
by the angle the Earth turns during one orbital period. If the time required for n complete
rotations of the Earth on its axis (n sidereal days) is an exact multiple of the orbital period, the
satellite will retrace the same path over the Earth (a correction is required to account for the
additional displacement due to the regression of the line-of-nodes). This is a desirable property
for a reconnaissance satellite; in general it might be necessary when the number of available
ground station is limited and the orbit has a great inclination.

The geographical position of the launch site (see Appendix to the present Chapter) is even
more important. Latitude and launch azimuth influence both the rocket overall performance
and the orientation of the orbit plane. The first stage booster falls to the Earth several hundreds
kilometers downrange and the launch azimuth is constrained to assure the passage over unin-
habited and traffic–free regions. According to section 3.9, the same rocket has a greater payload
for launches from a base close to the equator (δ → 0), and for an easterly launch (ψ = π/2).
The orbital inclination will be the minimum achievable and equal to the latitude of the launch
site. Greater inclinations, up to the limit value π − δ, are achievable from the same site with
payload reduction; retrograde orbits require a westerly launch.

The same inclination can be achieved with two different launch azimuths, if both are inside
the safety constraints. In some cases the longitude of the ascending node is also assigned; the
launch is possible twice a day when the launch site passes through the envisaged orbit plane,
and the azimuth constraints can be fulfilled. The lift–off time is strictly fixed for maximum
payload. However a fraction of the payload is traded for propellant, thus adding maneuvering
capabilities and allwoign for an out–of–plane ascent. A launch window of several minutes is
created around the theoretical launch time: the rocket departs as soon as all the requirements
for a reliable launch are met.

4.8 Practical orbits

The satellite orbits can be classified on the basis of their altitude. A Low Earth Orbit (LEO) is
confined between 200 and 600 km, the lower limit being related to the increase in atmospheric
drag for lower altitudes, the upper one due to the Van Allen radiation belts, which are harmful
to humans and detrimental for solar cells and some instruments. As a consequence, also orbit
eccentricity must also be quite low (e < 0.03). A LEO assures safe manned flight, and con-
stitutes an efficient parking orbit for an interplanetary mission. Moreover it guarantees high
photographic resolution at the price of limited ground visibility.

A High Earth Orbit (HEO), above 10,000 km altitude, is drag free and safe from radiation;
a large part of the Earth’s surface can be seen at one time. In the middle lie Medium Earth
Orbits (MEO), which represents a compromise that permits adequately high resolution sensing
of Earth’s surface and low transmission power with a sufficiently wide ground visibility to limit
the number of satellites necessary to cover the entire surface.

Orbit circularity is an appreciate characteristic, but is rarely mandatory, as it implies the
costs of a precise injection or the need of corrective maneuvers. High-ellipticity orbits are often
used for space probes, as the spacecraft operates at high altitudes for a large part of its lifetime
and the launch energy is lower in respect to a circular orbit with the same apogee.

A satellite on a circular direct equatorial orbit with a period equal to a sidereal day is
motionless with respect to the ground. At an altitude of 42,200 km this geostationary (GEO)
satellite sees almost a half of the Earth’s surface. Three satellites, 120 deg apart, cover the whole
Earth, except for small regions around the poles, while being able to communicate between
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Figure 4.4: Stable and unstable longitudes for GEO satellites.

them. Such a satellite is extremely useful for communications, altough high power antennas are
necessary. The reconnaissance role is difficult, if not impossible, as photographic resolution is
poor from an altitude of 35800 km.

A geosynchronous satellite has the semi-major axis corresponding to the period of a sidereal
day. If it flies on a circular inclined orbit, the satellite has a “figure–eight” ground track between
latitudes equal to the inclination and approximately along the same meridian. A non-zero
eccentricity would distort the eight–shape, the resulting apparent trajectory with respect to the
Eart’s surface depending also on the argument of perigee.

Geostationary satellites is perturbed by solar and lunar attractions, that increase the incli-
nation at a rate close to 1 deg per year, with a minor variation related to the inclination of the
lunar orbit plane to the equatorial plane, which oscillates between 18.3 deg and 28.6 deg with a
period of 18.6 years. The elliptic shape of the Earth equator (described by the second sectorial
coefficient J2,2) pulls the spacecraft towards one of the two equilibrium longitudes. Maintain-
ing the satellite nominal position requires periodic maneuvers: North-South station-keeping to
compensate for the lunar and solar perturbing actions; East-West station-keeping to counteract
the Earth asphericity.

Communication satellites for high–latitude regions of the northern hemisphere use high-
eccentricity Molniya orbits with a period equal to 12 sidereal hours (even though 8-hour or
24-hour periods could also be chosen). The spacecraft spends the most part of the orbital
period near the apogee, located over the highest latitude north if ω = −π/2. A constellation
of three satellites with displaced ascending nodes (∆Ω = 120 deg) allows for the continuous
coverage of the target region. On the converse, an inclination i = 63.4 deg is mandatory in
order to avoid the rotation of the line–of–apsides induced by the J2 effect.

A satellite is on a Sun-synchronous orbit if the line–of–nodes rotates in an easterly direction
with the rate of one revolution per year (0.986 deg per day) that equals the mean angular motion
of the Earth about the Sun. This rate can be naturally obtained from the Earth oblateness
by carefully selecting semi–latus rectum and inclination of a retrograde Low Earth Orbit, for
instance a 600 km altitude circular LEO with i = 97.76 deg. Sun-synchronous satellites are
very attractive for Earth observation because of constant ground lighting conditions; a suitable
orbital period would add a synchronism with the ground. A satellite with the line–of–nodes
perpendicular to the Sun–Earth line will move approximately along two meridians at local
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Table 4.2: Launch sites in former Soviet Union.

Launch Site Country Latitude Longitude

Baikonur Kazakhstan 45.6◦ N 63.4◦ E
Plesetsk Russia 62.8◦ N 40.4◦ E
Kapustin Yar Russia 48.5◦ N 45.8◦ E
Svobodniy Russia 51.7◦ N 128.0◦ E

Websites.

http://www.aerospaceguide.net/spacebusiness/launchfacilities.html
http://www.orbireport.com/Linx/Sites.html
http://www.spacetoday.org/Rockets/Spaceports/LaunchSites.html
http://www.russianspaceweb.com/centers.html
http://www.esa.int/SPECIALS/ESA Permanent Mission in Russia/SEMHIZW4QWD 0.html

sunrise and sunset, respectively, a favorable condition for intelligence. The spacecraft could also
remain continuously in sunlight, thus resorting only on solar cells for power. One should note
that a short eclipse behind either pole is possible during few months every year.

Appendix – Launch Sites

Baikonur Cosmodrome is the oldest space–launching facility; it is located about 200 miles south-
west of the small mining town of Baikonur, in a region of flat grasslands in the former Soviet
republic of Kazakhstan, northeast of the Aral Sea at 45.6◦ N, 63.4◦ E. Baikonur Cosmodrome is
the launch complex where Sputnik 1, Earth’s first artificial satellite, was launched. The rocket
that lifted Yuri Gagarin, the first human in orbit, was also launched from Baikonur. In fact, all
Russian manned missions are launched from Baikonur, as well as all geostationary, lunar, plan-
etary, and ocean surveillance missions. All Space Station flights using Russian launch vehicles
are launched from Baikonur, since all nonmilitary launches take place there. Baikonur is also
the only Russian site that has been used to inject satellites into retrograde orbits.

Plesetsk Cosmodrome, located at 62.8◦ N, 40.4◦ E, has launched the most satellites since
the beginning of the Space Age. Plesetsk’s location makes it ideal for launching into polar or
high-inclination orbits (63 to 83◦ inclination), typical for military reconnaissance and weather
satellites. It continues to be highly active today, especially for military launches and all Molniya-
class communications satellites.

Kapustin Yar is the Russian oldest missile test site, located at 48.5◦ N, 45.8◦ E. Although
used quite often for launches of smaller Cosmos satellites during the 1960s, the number of
launches from this site fell dramatically during the 1970s and 1980s to about one orbital launch
per year.

Svobodniy Cosmodrome, located 51◦42’ N, 128◦00’ E, (Minimum Inclination: 51.0 degrees.
Maximum Inclination: 110.0 degrees) was planned during the 1990s to accommodate the new
modular Angara launch vehicles in the medium and heavy categories, as the break-up of the
Soviet Union left the main Russian launch site (Baikonur) on foreign territory, while Plesetsk
Cosmodrome did not have facilities for large launch vehicles and was not suited for support
of launches into lower-inclination orbits. Sufficient funding was not available for this massive
project, and by 2000 conversion of unfinished Zenit pads at Plesetsk for use with Angara was
underway. It seems that Svobodniy will be limited to launches if Rokot, Strela and Start-1
rockets, while Plesetsk would be developed as the main Russian cosmodrome. Geosynchronous
launches from Plesetsk could be made economically by using Moon’s gravity to change the
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orbital plane of the satellite and Svobodniy would still be needed to reach the 51.6 degree orbit
of the International Space Station.



Chapter 5

Orbital Manoeuvres

5.1 Introduction

Orbital manoeuvres are carried out to change some of the orbital elements. This can be necessary

• when the final orbit is achieved via a parking orbit;

• to correct injection errors;

• to compensate for orbital perturbations (stationkeeping).

The task is usually accomplished by the satellite propulsion system, and occasionally, in the
first two cases, by the rocket last stage. Elementary manoeuvres, that involve a maximum of
three parameters and require a maximum of three impulses, are analyzed in this chapter. When
it is necessary, two or more elementary manoeuvres are combined and executed according to a
more complex strategy that permits, in general, a minor propellant consumption. Nevertheless,
it has been demonstrated that any optimal impulsive manoeuvre requires a maximum of four
burns.

The propellant consumption for the manoeuvre (mp) is evaluated after the total velocity
change has been computed. The equation presented in Section 4.2 is easily integrated under the
hypothesis of constant effective exhaust velocity c

dv = −cdm
m

⇒ ∆v = c log
mi

mf
⇒ mf = mi exp

(

−∆v

c

)

and provides the relationship between the spacecraft final and initial mass, which is known as
rocket equation or Tsiolkovsky’s equation. Therefore

mp = mi −mf = mi

[

1 − exp

(

−∆v

c

)]

5.2 One-impulse manoeuvres

A single velocity impulse is sufficient to change all of the orbital elements. Unfortunately, it is
not always possible to avoid changes in more than one orbit parameter at the same time. As an
example, if the initial orbit is circular, it is not possible to increase its semi-major axis (that is,
its radius) maintaining zero eccentricity, so that transfer between two circula orbits will require
at least two pulses even in the co–planar case.

Simple cases are analyzed in this section where subscripts 1 and 2 denote characteristics of
the initial and final orbit, respectively. In the figures, dashed lines indicate the orbit prior to
the manoeuver, solid lines the orbit after the velocity increment.

51
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Figure 5.1: Single–impulse manoeuvre for apogee (left) and perigee (right) increment.

5.2.1 Adjustment of perigee and apogee height

An efficient way of changing the height of perigee and apogee relies on a velocity increment
provided at the opposite (first) apsis. Misalignment losses and rotation of the semi-major axis
are avoided. Once the required variation ∆z of the second apsis altitude is known, one easily
deduces the new length of the semi-major axis a2 = a1 + ∆z/2, which is used in the energy
equation to compute the velocity v2 at the first apsis after the burn, which therefore provides
the required ∆v = v2 − v1.

For small variations of the second apsis radius, the differential relationship of Section 4.4 can
be applied, obtaining

∆z = 2∆a ≈ 4a2

µ
v1∆v

One should note that in some manoeuvres the apsides may interchange their role (from periapsis
to apoapsis, and vice versa).

This type of manoeuvre may be required for stationkeeping of a Low Earth elliptical Orbit.
The effects of atmospheric drag will be higher were the height of the orbit is lowest, that is,
close to periapsis passage. The effect of atmospheric drag can be modeled as a negative ∆v that
slightly decreases the apogee height at every perigee pass, thus reducing both the semi–major
axis and the orbit period. In order to compensate for this effect, a station–keeping manoeuvre is
required where a positive ∆v at perigee pass takes back the apogee radius to the nominal value.
It should be noted that a positive ∆v at apogee pass will rise the perigee of the orbit.

5.2.2 Simple rotation of the line-of-apsides

A simple rotation ∆ω of the line of apsides without altering size and shape of the orbit is obtained
by means of one impulsive burn at either point where the initial and final ellipses intersect on
the bisector of the angle ∆ω. The polar equation of the trajectory and the constant position of
the burn point in a non-rotating frame imply

r2 = r1 ⇒ ν2 = 2kπ − ν1 , k = 0, 1
ϑ2 = ϑ1 ⇒ ν2 = ν1 + ω1 − ω2 = ν1 − ∆ω
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Figure 5.2: Single–impulse manoeuvre for periapsis rotation.

These relations imply that the point for the application of the velocity increment by the propul-
sive system is

ν1 = kπ + ∆ω , k = 0, 1

Energy and angular momentum are unchanged by the manoeuvre; this corresponds to con-
serving, respectively, magnitude and tangential component of the velocity. Therefore, the only
permitted change is the sign of the radial component ṙ = vr. The velocity change required is
equal to

∆v = 2vr = 2
µ

h
e| sin ν1| = 2

√
µ

h

e√
1 + e

∣
∣
∣
∣
sin

∆ω

2

∣
∣
∣
∣

It should be noted that the ∆v is the same in either point eligible for the manoeuvre. The
rightmost term can been obtained bu using the relationship h2/p = a(1 − e2) = rP (1 + e).

5.2.3 Simple plane change

The change of the orientation of the orbit plane requires that the velocity increment ∆~v has
a component perpendicular to the plane of the orbit prior to the manoeuvre. A simple plane
change rotates the orbital plane by means of one impulsive burn (r = const), without altering size
and shape of the orbit. Energy and magnitude of the angular momentum are unchanged, which
corresponds to conserving, respectively, magnitude and tangential component of the velocity.
Therefore, the radial component vr must also remain constant, while the tangential component
vθ is rotated of the desired angle ∆ψ. From the resulting isosceles triangle in the horizontal
plane one obtains (Fig. 5.3)

∆v = 2vθ sin(∆ψ/2)

The analysis of the azimuth equation presented in Section 4.7,

cos i = cos δ sinψ

indicates that a simple plane change at δ 6= 0 implies ∆i < ∆ψ (Fig. 5.4); moreover the
inclination after the manoeuvre cannot be lower than the local latitude (i2 ≥ δ). In a general
case the manoeuvre changes both inclination and longitude of the ascending node. If the plane
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Figure 5.3: Rotation ∆ψ of the transverse component of velocity.

change aims to change the inclination, the most efficient manoeuvre is carried out when the
satellite crosses the equatorial plane (therefore at either node) and Ω remains unchanged.

A plane rotation requires a significant velocity change (10% of the spacecraft velocity for a
5.73 deg rotation) with a considerable propellant expenditure associated with the manoeuvre,
with no energy gain. Gravitational losses are not relevant and the manoeuvre is better performed
where the velocity is low, inasmuch as a smaller velocity increment is sufficient to rotate the
velocity vector, when the initial value of its magnitude is smaller.

In most cases, by means of a careful mission planning, a specific manoeuvre for plane change
can be avoided or executed at a lower cost in the occasion of a burn aimed to change the
spacecraft energy.

5.2.4 Combined change of apsis altitude and plane orientation

Consider an adjustment of the apsis altitude combined with a plane rotation ∆ψ, which is
therefore the angle included between the vectors ~v1 and ~v2. Without any loss of generality,
suppose v2 > v1. If the manoeuvres are separately performed, the rotation is conveniently
executed before the velocity has been increased, and the total velocity change is therefore given
by

∆vs = ∆vr + ∆ve = 2v1 sin(∆ψ/2) + (v2 − v1)

The velocity increment of the combined manoeuvre is given by

∆vc =
√

v2
2 + v2

1 − 2v1v2 cos ∆ψ

and the benefit achieved ∆vs − ∆vc is presented in Fig. 5.4 for different values of ∆ve/v1. One
should note that, for small variations of the velocity vector azimuth angle, ∆Ψ it is cos ∆ψ ≈ 1,
so that ∆vc ≈ v2 − v1 = ∆ve. This means that the plane rotation is actually free, in terms of
fuel expenditure.

5.3 Two-impulse manoeuvres

In this case the manoeuvre starts at point 1 on the initial orbit, where the spacecraft is inserted
into a transfer orbit (labeled with the subscript t) that ends at point 2 with injection on the
final orbit.
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Figure 5.4: Efficiency of an inclination change carried out at different latitudes.
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5.3.1 Change of the time of periapsis passage

A change ∆T of the time of periapsis passage permits to phase the spacecraft on its orbit. When
the orbit is circular and the line of apsis is not defined, the manoeuvre is called orbit phasing,
as the spacecraft is transferred onto a different angular position on the same circular orbit. This
manoeuvre is important for geostationary satellites that need to get their design station and
keep it against the East-West displacement caused by the Earth’s asphericity.

Assuming ∆T > 0, the manoeuvre is accomplished by moving the satellite on an outer
waiting orbit where the spacecraft executes n complete revolutions. The period Tt of the waiting
orbit is selected so that the following equation is satisfied,

∆T = n(Tt − T0) = n∆T

where T0 is the period of the nominal orbit. When the change ∆T required is higher that T0/2
(half of the nominal orbit period) it is more convenient to put the spacecraft on a lower, faster
orbit in order to catch up the desired position along the orbit, instead of waiting for it. In this
case it is

T0 − ∆T = n(T0 − Tt) = n∆T
In this latter case, it is necessary that the perigee of the waiting orbit remains high enough
above the Earth atmosphere in order not to cause energy dissipation at perigeee passes because
of atmospheric drag.

Two velocity increment ∆v are needed, equal in magnitude, but in opposite directions:
the first puts the spacecraft on the waiting orbit; the second restores the original trajectory.
According to general considerations, the engine thrust is applied at the perigee and parallel to
the spacecraft velocity. The required ∆v is smaller if ∆T is reduced by increasing the number n
of waiting orbits. A time constraint must be enforced in order to obtain a meaningful solution
and avoid a manoevure wheren an infinite number of revolution with and infinitesimal ∆T is
necessaty to complete the transition.

The problem is equivalent to the rendezvous with another spacecraft on the same orbit. One
should note that thrust apparently pushes the chasing spacecraft away from the chased one.

5.3.2 Transfer between circular orbits

Consider the transfer of a spacecraft from a circular orbit of radius r1 to another with radius r2,
without reversing the rotation. Without any loss of generality, assume r2 > r1 (the other case
only implies that the velocity-change vectors are in the opposite direction). The transfer orbit
(subscript t) must intersect (or be tangent) at some point to both the circular orbits, so that
the following inequalities must be satisfied:

rPt =
pt

1 + et
≤ r1 ; rAt =

pt

1 − et
≥ r2

As a consequence the admissible values for eccentricity and semi–latus rectum, et and pt, of the
transfer orbit lie in the shadowed area of Fig. 5.6, inside which a suitable point is selected.

In order to determine the ∆v necessary to complete the transfer, it is necessary to compute
the energetic parameters of the transfer orbit,

Et = − µ

2at
= −µ1 − e2t

2pt
; ht =

√
µpt

and then velocity and flight path angle after the first burn,

v2
1 = 2

(
µ

r1
+ Et

)

; cosϕt =
ht

r1v1



G. Colasurdo, G. Avanzini - Astrodynamics – 5. Orbital Manoeuvres 57

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

semilatus rectum p/r
1

ec
ce

nt
ric

ity
 e

r
Pt

 = r
1

r
At

 = r
2

H

ellipses 

hyperbolae

Figure 5.6: Admissible parameters for a transfer orbit between circular orbits (r2 = 2r1).

The first velocity increment is thus

∆v2
1 = v2

1 + v2
c1 − 2v1vc1 cosϕ1

The second velocity increment at point 2 is evaluated in a similar way.

5.3.3 Hohmann transfer

The minimum velocity change required for a two-burn transfer between circular orbits corre-
sponds to using an ellipse, which is tangent to both circles, such that rPt = r1 and rAt = r2. In
this case the transfer orbit has a semi–major axis and energy equal to

at =
r1 + r2

2
; Et = − µ

r1 + r2

On leaving the inner circle, the velocity, parallel to the circular velocity vc1 =
√

µ/r1, is

v2
1 = µ

(
2

r1
− 1

at

)

= 2
µ

r1

(

1 − r1
r1 + r2

)

= v2
esc1

r2
r1 + r2

so that the velocity increment provided by the first burn is

∆v1 = v1 − vc1 = vc1

(√
2r2

r1 + r2
− 1

)

The velocity on reaching the target outer orbit at r = r2 = rAt , that is

v2
2 = µ

(
2

r2
− 1

at

)

= 2
µ

r2

(

1 − r2
r1 + r2

)

= v2
esc2

r1
r1 + r2

= v2
1

r21
r22
,

is again parallel, but smaller, than the circular velocity vc2 =
√

µ/r2. Therefore a second burn
is required, such that

∆v2 = vc2 − v2 = vc2

(

1 −
√

2r1
r1 + r2

)
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Figure 5.7: Hohmann transfer between circular orbits.

The time-of-flight is just half the period of the transfer ellipse,

∆Tt =
Tt

2
= π

√

a3
t

µ

One should note that the Hohmann transfer requires the minimum total velocity increment
∆vtot = ∆v1+∆v2, that is, it is the cheapest two–burn transfer between circular orbits. It is also
the two–burn transfer requiring the longest time. Increasing the apogee of the transfer orbit,
keeping constant its perigee radius reduces significantly the time-of-flight. The transfer orbit
remains tangent to the lower circular orbit but intersect the target orbit at a higher velocity
(Fig. 5.8). The resulting transfer segment is shorter and the spacecraft flies along it at a higher
velocity. A greater tangential ∆v1 is required upon leaving the initial orbit, in order to achieve
a higher energy. Also a higher ∆v2 is necessary for circularization upon reaching r = r2, as
the velocity of the transfer orbit will not be tangential to the circulat target one, as it is at the
apogee of the Hohmann transfer orbit. If the initial velocity increment ∆v1 is sufficiently high,
the transfer may follow a parabolic or a hyperbolic trajectory.

As it is evident from Fig. 5.8, the total velocity increment ∆vtot needed is always higher than
the fuel–optimal Hohmann transfer, but an increment of only 10% of the ∆v employed for the
transfer allows for a 22% reduction of the transfer time. The advantage is reduced considerably
on faster orbits: if the ∆vtot used is 1.5 times that of the Hohmann transfer, the transfer time
is reduced by only 40%, and using twice as much ∆vtot, the reduction is only 55%.

5.3.4 Noncoplanar Hohmann transfer

A transfer between two circular inclined orbits is analyzed (r2 > r1); a typical example of
application is the geostationary transfer orbit (GTO) that moves a spacecraft from an inclined
LEO to an equatorial GEO. The axis of the Hohmann ellipse coincides with the intersection of
the initial and final orbit planes. Both impulses provide a combined change of apsis altitude and
plane orientation (see Section 5.2.4). The greater part of the plane change is performed at the
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Figure 5.9: Non–coplanar Hohmann transfer.

apogee of the transfer orbit, where the spacecraft velocity attains the minimum value during the
manoeuvre. Nevertheless, even for r2 ≫ r1, a small portion of the rotation (typically 10% for
LEO–to–GEO transfers) can be attained during the perigee burn almost without any additional
cost.

5.4 Three–impulse manoeuvres

In special circumstances, some manoeuvres, which have been analyzed in the previous sections,
are less expensive if executed according to a three–impulse scheme, which is essentially a combi-
nation of two Hohmann transfers; subscript 3 denotes the point where the intermediate impulse
is applied.

5.4.1 Bielliptic transfer

The cost of the Hohmann transfer does not increase monotonically for increasing final orbit
radius, but it reaches a maximum for r2 = rH = 15.58r1 (Fig. 5.10). Beyond this value, it is
convenient to begin the mission on a transfer ellipse with apogee at r3 > r2, where the spacecraft
trajectory is not circularized, but a smaller ∆v3 takes the spacecraft directly onto a Hohmann–
transfer–like trajectory towards the target orbit of radius r2, where the spacecraft is slowed down
to circularize its orbit. The larger is r3, the smaller the total cost of the bielliptic manoeuvre;
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Figure 5.10: Bielliptic orbit transfer: trajectory (left) and comparison with Hohmann trans-
fer (right).

one easily realizes that the minimum total ∆vtot is obtained with a biparabolic transfer. In
this case two impulses transfer the spacecraft from a circular orbit to a minimum energy escape
trajectory and vice versa; a third infinitesimal impulse is given at infinite distance from the main
body to move the spacecraft between two different parabolae.

The biparabolic transfer has better performance than the Hohmann transfer for r2 > 11.94r1
. If the final radius r2 is between rB and rH , also the bielliptic manoeuvre performs better than
the Hohmann transfer if the intermediate radius r3 is sufficiently great (Fig. 5.10).

The biparabolic transfer permits a maximum ∆v reduction of about 8% for r2 ≈ 50r1, but
the minor propellant consumption of bielliptic and biparabolic transfers is achieved at the cost
of a considerably increment of the flight time. A three-impulse manoeuvre is seldom used for
transfers between coplanar orbits; it becomes more interesting for noncoplanar transfer as a large
part of the plane change (expensive in terms of fuel consumption) can be performed during the
second impulse, far away from the central body, when the velocity is small.

5.4.2 Three-impulse plane change

A plane change can be obtained using two symmetric Hohmann transfers that move the space-
craft to and back from a far point where a cheaper rotation is executed, In particular, any
arbitrary rotation is possible with an infinitesimally small velocity increment at an infinite dis-
tance from the central body. Assume that the spacecraft is in a low-altitude circular orbit. The
velocity change of a simple plane rotation ∆vspr is compared to the ∆vbp required to enter and
leave an escape parabola (biparabolic trajectory,

∆vspr = 2vc1 sin(∆ψ/2) ; ∆vbp = 2(vesc − vc1) = 2(
√

(2) − 1)vc1

The biparabolic transfer is more convenient for deviation of the flight path larger than
∆ψ = 48.94 deg. However a bielliptic transfer performs better than a single–burn rotation
between 38.94 deg and 60 deg (dashed line in Fig. 5.11). Moreover, a small fraction ψ1 of the
total rotation ∆ψ can be efficiently obtained upon leaving the circular orbit and then again on
reentering it (see 5.2.4). In this case the three–impulse bielliptic plane change is convenient for
any amount of rotation, until the biparabolic manoeuvre takes over.
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Figure 5.11: Three–impulse plane rotation for circular orbits: ∆v for different strategies
(left) and optimal parameters r3 and ψ1 (right).
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5.4.3 Three-impulse noncoplanar transfer between circular orbits

Similar concepts also apply to the noncoplanar transfer between circular orbits of different radii.
As it appears in Fig. 5.12, the range of optimality of the bielliptic transfer becomes narrower
as the radius-ratio r2/r1 increases above unity, either if the rotation is concentrated at the
maximum distance r3, or if it is split among the three burns.

In particular, the classical noncoplanar Hohmann transfer is optimal for ∆ψ < 38 deg in the
case of the LEO-GEO transfer (plots on the right of Fig. 5.12, for r2/r1 = 6.4). For ∆ψ just
above this limit, the optimal manoeuvre is biparabolic.



Chapter 6

Lunar trajectories

6.1 The Earth-Moon system

The peculiarity of the Earth–Moon system, a peculiarity that has considerable effects on lunar
trajectories, is the relative size of Earth and Moon, whose mass ratio is 81.3, which is far larger
than any other binary system in the solar system, the only exception being the Pluto and Caron
pair, with a mass ratio close to 7.

The Earth-Moon average distance, that is, the semi-major axis of the geocentric lunar orbit,
is 384,400 km. The two bodies actually revolve on elliptic paths about their centre of mass,
which is distant 4,671 km from the centre of the planet, i.e., about 3/4 of the Earth radius. The
Moon’s average barycentric orbital speed is 1.010 km/s, while the Earth’s is 0.012 km/s. The
total of these speeds gives the geocentric lunar average orbital speed, 1.022 km/s (see Bate et

al., cap. 7.2; Cornelisse, p. 343).
The computation of a precision lunar trajectory requires the numerical integration of the

equation of motion starting from tentative values for position and velocity at injection time,
when the spacecraft leaves a LEO parking orbit to enter a ballistic trajectory aimed at the
Moon. Solar perturbations (including radiation), the oblate shape of the Earth, and mainly the
terminal attraction of the Moon must be taken into account. Because of the complex motion of
the Moon, its position is provided by lunar ephemeris. Approximate analytical methods, which
only take the predominant features of the problem into account, are required to narrow down
the choice of the launch time and injection conditions. These methods will be developed in the
following sections.

6.2 Simple Earth-Moon trajectories

A very simple analysis permits to assess the effect of the injection parameters, namely the radius
of the parking orbit r0, the velocity v0, and the flight path angle ϕ0, on the time–of–flight. The
analysis assumes that the lunar orbit is circular with radius R = 384,400 km, and neglects the
terminal attraction of the Moon. The spacecraft trajectory is in the plane of the lunar motion,
a condition that actual trajectories approximately fulfill to avoid expensive plane changes.

From the (constant) values of energy and angular momentum along the ballistic trajectory,

E =
v2
0

2
− µ

r
; h = r0v0 cosϕ,

the geometric parameters of the ideal Keplerian transfer orbit to the Moon can be determined:

a = −µ⊕
2E ; p =

h2

µ⊕
; e =

√

1 − p

a

63
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Figure 6.1: Representation of the Earth–Moon system (radii are in the correct scale, so that
the spacecraft flying between them is not visible).

Solving the polar equation of the conic section, one finds the true anomaly at departure, ν0,
and at the intersection with the lunar orbit, ν1, that is

cos ν0 =
p− r0
er0

; cos ν1 =
p− r1
er1

where r1 = R is the Moon orbit average radius.
The time–of–flight is computed using the time equations presented in Section 2.7.
Let ωM be the orbit angular velocity of the Moon along its orbit and gamma the phase

angle, i.e. the angle between the position vector of the probe and the position vector of the
Moon with respect to the Earth. Its value at departure and at arrival, indicated as γ0 and γ1,
respectively, satisfy the equation

γ0 + ωM(t1 − t0) = (ν1 − ν0) + γ1.

where γ1 = 0 for a direct hit (neglecting the final attraction of the Moon). The phase angle at
departure,

γ0 = (ν1 − ν0) + γ1 − ωM (t1 − t0),

under to the assumption of circularity for both the lunar and parking orbits, actually determines
the times of launch opportunities (the launch windows).

The total propulsive effort is evaluated by adding the theoretical velocity required to at-
tain the parking orbit energy (Section 4.3), v0eq

, and the magnitude of the velocity increment
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Figure 6.2: Earth–centered transfer orbit to the Moon: definition of the angles.

necessary for leaving the circular LEO

∆~v0 = ~v0 − ~vc0 = v0 sinϕ0î + (v0 cosϕ0 − vc0)ĵ.

The results presented in Fig. 6.3 suggest to depart with an impulse parallel to the circular
velocity (ϕ = 0) from a parking orbit at the minimum altitude that would permit a sufficient
stay, taking into account the decay due to the atmospheric drag.

Other features of the trajectories based on a 320 km altitude LEO are presented in Fig. 6.4 as
a function of the injection velocity v0. The minimum injection velocity of 10.82 km/s originates
a Hohmann transfer that requires the maximum flight time of about 120 hour (5 days). The
apogee velocity is 0.188 km/s, and the velocity relative to the Moon has the opposite direction,
resulting in an impact on the leading edge of our satellite.

A modest increment of the injection velocity significantly reduces the trip time. For the
manned Apollo missions, the life-support requirements led to a flight time of about 72 hour,
that also avoided the unacceptable non–return risk of hyperbolic trajectories. Further increments
of the injection velocity reduce the flight time and the angle ν1 − ν0 swept by the lunar probe
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Figure 6.4: Lunar trajectories departing from 320 km circular LEO with ϕ0 = 0.

from the injection point to the lunar intercept. In the limiting case of infinite injection speed,
the trajectory is a straight line with a zero trip–time, ν1 − ν0 = π/2, and impact in the centre
of the side facing the Earth.

It is also interesting to note that the phase angle at departure γ0 presents a stationary point
(that is, a maximum, for v0 = 10.94 km/s, in the range of hyperbolic transfer trajectories. In
this condition, given a prescribed (i.e. fixed) phase angle at arrival on the Moon orbit, γ1, and
assuming a tangential burn to leave LEO, such that ∋0= 0, it is

dγ0

dv0
=

dγ0

dt1

dt1
dv0

=

(
dν1

dt1
− ωM

)
dt1
dv0

=⇒ dν1 = ωMdt1

This means that, by choosing this strategy, an error on the initial speed, e.g., a higher
speed upon leaving LEO, reduces the swept angle, but the error is almost exactly compensated
(∆ν1 ≈ ωM∆t1) by the reduced time required by the Moon to reach the new intersection point.

The practical significance of this condition is scarce, because the model is oversimplified and
hyperbolic trajectories are not an option for the increased fuel necessary and the absence, for
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manned missions, of free–return trajectories. However, this kind of consideration are useful to
remind the reader that space missions are designed looking not only for reduced ∆v, but also
for safety from errors.

6.3 The patched-conic approximation

Any prediction of the lunar arrival conditions requires accounting for the terminal attraction of
the Moon. A classical approach is bases on the patched-conic approximation, which is still based
on the analytical solution of the two-body problem. The spacecraft is considered under the only
action of the Earth until it enters the Moon’s sphere of influence: inside it, Earth’s attraction
is neglected.

The concept of sphere of influence, introduced by Laplace, is conventional, as the transition
from geocentric to selenocentric motion is a gradual process that takes place on a finite arc of the
trajectory where both Earth and Moon affect the spacecraft dynamics equally. Nevertheless this
approach is an acceptable approximation for a preliminary analysis and mainly for evaluating
the injection.1 Solar perturbation is the main reason that makes the description of the trajectory
after the lunar encounter only qualitative.

The previous assumption of circular motion of the Moon in the same plane of the spacecraft
trajectory is retained. The probe enters, before the apogee, the lunar sphere of influence whose
radius

ρ = R

(
µM

µ⊕

)2/5

= 66, 200km

was assumed according to Laplace’s definition.

6.3.1 Geocentric leg

The geocentric phase of the trajectory is specified by four initial conditions:

- r0, radius of the LEO parking orbit;

- v0, velocity at injection onto the ballistic transfer orbit;

- ϕ0, flightpath angle at injection time t0;

- γ0, phase angle with the Moon at injection time t0 (see Fig. 6.2).

An iterative process allows for the determination of point 1, where the spacecraft enters the
lunar sphere of influence. The phase angle γ1 is conveniently replaced by another independent
variable, that is, the angle λ1 which specifies the position of point 1, where the trajectory crosses
the boundary of the lunar sphere of influence, with respect to the position vector of the Moon
in geocentric coordinates.

The computation of the geocentric leg is carried out using the equations presented in Section
4.2, with the only remarkable exception of radius and phase angle at end of the geocentric leg,
which are obtained by means of elementary geometry (Fig. 6.5):

r1 =
√

ρ2 +R2 − 2ρR cos λ1 ; sin γ1 =
ρ

r1
sinλ1

The last equation implies that the angle λ1 has the same sign as the phase angle, γ1, which is
positive if the Moon is ahead of the spacecraft. In Fig. 6.5 a case with λ1 < 0 is represented.

1The method of patched–conics works better for interplanetary missions, where the approximations introduced

by the concept of sphere of influence have a minor impact on long interplanetary transfers, where the transition to

and from the sphere of influence of one planet takes place over a much smaller angular segment of the Heliocentric

interplanetary transfer orbit.
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Figure 6.5: Geocentric leg (transfer to the Moon’s sphere of influence).

The conservation of energy and angular momentum provide the geocentric velocity and flight
path angle at point 1,

v1 =

√

2

(

E +
µ⊕
r1

)

; cosϕ1 =
h

r1v1

where ϕ > 0, since the arrival occurs prior to apogee.

It is worthwhile to note that the energy at injection E = v2
0/2 − µ⊕/(r⊕ + hLEO) must be

sufficient to reach point 1. In mathematical terms this meand that the argument of the square
root, 2(E + µ⊕/r1), must be positive. Note also that, in this respect, the energy necessary to
enter the sphere of influence of the Moon is less than that required by the Hohmann transfer
that takes the space probe to a distance equal to R, since r1 is strictly less than R.

6.3.2 Selenocentric leg

Spacecraft position and velocity on entering the sphere of influence (time t1) must be expressed
in a non-rotating selenocentric reference frame, in order to compute the trajectory around the
Moon. Both vector quantities that describe the initial condition of the selenocentrc leg will be
indicated by the subscript 2. Position can be described in polar coordinates by the radius r2 = ρ
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Figure 6.6: Entry in the Moon’s sphere of influence and start of the selenocentric leg.

and the anomaly ϑ2 = λ1; the velocity relative to the Moon is

~v2 = ~v1 − ~vM

The angle between the vectors ~v1 and −~vM in Fig. 6.6 is ϕ1 − γ1, where ϕ1 is the flight path
angle of the probe in point 1, so that the magnitude of ~v2 is

v2 =
√

v2
1 + v2

M − 2v1vM cos(ϕ1 − γ1)

The selenocentric frame can be chosen by taking

îM =
~r2

r2
and k̂M =

~hM

hM

where ~hM = ~R × ~vM is the angular momentum of the Moon in its motion around the Earth,
and the transverse unit vector ĵM = k̂M × îM completes a right–handed triad (Fig. 6.7).

The direction of ~v2 in the selenocentric frame is identified by the angle between ~v2 and the
radius vector ~r2, namely ε2, where a positive angle means a counterclockwise lunar trajectory.
In Fig. 6.6 a case with ε2 < 0 is represented. By taking the dot product ~v2 · ĵ, where ĵ is the
transverse unit vector of the selenocentric frame, one obtains the following relation:

v2 sin ε2 = vM cos λ1 − v1 sin[π/2 + γ1 − ϕ1 − λ1]

= vM cos λ1 − v1 cos(ϕ1 − γ1 + λ1)

The geocentric velocity v1 is usually quite low (some hundred of m/s) and a considerable
portion of the selenocentric velocity v2 is due to the Moon velocity. In most cases v2 is greater
than the lunar escape velocity at the boundary of the sphere of influence and the spacecraft will
approach the Moon along a hyperbola.
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Figure 6.7: Selenocentric leg.

The energy and angular momentum of the selenocentric motion can now be computed as

EM =
v2
2

2
− µM

r2
; hM = r2v2 cosϕ2 = r2v2 sinϕ2

The orbital elements that describe the shape of the lunar trajectory are thus given by

aM =
µM

2EM
; pM =

h2

µM
; eM =

√
(

1 − pM

aM

)

The true anomaly on entering the sphere of influence

cos ν2 =
pM − r2
eMr2

is always negative. The radius of the periselenium,

rPS
= r3 = aM (1 − eM )

plays a crucial role, since there are three possibilities depending mainly on its value:

1. if r3 < rM (= 1738 km) the spacecraft hits the Moon;

2. if r3 > rM the spacecraft

(a) can be slowed down by the engines and inserted into a lunar orbit;

(b) flies–by the Moon and crosses again the sphere of influence (fly–by and free–return).
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The first case comprises, together with a destructive impact, a soft landing on the lunar surface
without passing through an intermediate parking orbit. A retrorocket system or inflatable
cushions are required for landing.

Entering in a lunar orbit require a braking manoeuvre at the periselenium, where energy
variations are more efficient. If a semimajor axis ao is selected for the lunar orbit, it is

∆v3 = v3 − vo3

where the velocities before and after the manoeuvre are given by

v3 =

√

2

(

EM +
µM

r3

)

; vo3
=

√

µM

(
2

r3
− 1

ao

)

<

√

2
µM

r3
= vesc3

where vo3
must be less than the escape velocity at r3.

The velocity change necessary to perform an insertion onto a lunar orbit is reduced by a low
periselenium (minimum gravitational losses) and a high eccentricity orbit with a far apocentre,
which however should permit the permanent capture by the Moon. Circular orbits are preferred
when a rendezvous is programmed with a vehicle ascending from the lunar surface.

If no action is taken at the periselenium, the spacecraft crosses again the sphere of influence
at point 4 with relative velocity v4 = v2 in the outward direction and ε4 = π−ε2. The knowledge
of the geocentric velocity

~v5 = ~v4 + ~vM

is necessary for the analysis of the successive geocentric path. In what follows, subscript 5
denotes the same exit point on the boundary of the sphere of influence as subscript 4, but refers
to quantities measured in a non-rotating, geocentric reference frame.

One should note that the Moon has traveled the angle ωM (t4 − t2) around the Earth in the
time elapsed during the selenocentric phase; its velocity vM has rotated counterclockwise of the
same angle. Alternately, the exit point can be rotated clockwise of the angle ωM(t4 − t2), if
one is interested in keeping fixed the direction of the Earth-Moon line. In this latter case the
azimuth of the probe in selenocentric, polar coordinates based on the Earth–Moon line is

ϑ4 = λ1 ± 2ν2 − ωM (t4 − t2)

where the upper sign holds for ε2 > 0, i.e. counterclockwise lunar trajectories.

A passage in front of the leading edge of the Moon rotates clockwise the relative velocity so
that v5 < v1 and, by assuming r5 ≈ r2, it is also E5 < E2. On the converse, a passage near the
trailing edge of the Moon rotates counterclockwise the relative velocity. This means that v5 > v1
and the geocentric energy E5 > E2 may be sufficient to escape from the Earth gravitation.2 Only
the former trajectory suits a manned mission aimed to enter a lunar orbit, as, in the case of
failure of the braking maneuver, it should result into a low-perigee return trajectory.

6.3.3 Noncoplanar lunar trajectories

The preceding analysis was based on a two–dimensional approach, where the probe is assumed
to fly always in the plane of the Moon orbit. This is seldom true, as the launch usually puts
the spacecraft on an inclined parking orbit in the geocentric–equatorial reference frame and the
orbit plane of the Moon is inclined with respect to the base–plane of this reference.

2One should remember the a transfer orbit to the Moon has a very high eccentricity, higher than 0.95. This

means that the velocity at injection is close to the escape velocity and also a marginal increment can be sufficient

to leave the Earth’s sphere of influence.
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In particular, the orbit of the Moon lies on a plane at an angle of 5◦8′ ± 9′ with respect to
the Ecliptic, with the line of the nodes making one complete rotation westward every 18.6 years.
The inclination of the equatorial plane with respect to the ecliptic, on the converse, is fairly
constant, the precession of the Earth spin axis taking as much as 26,000 years. This means that
when the ascending node of the Moon orbit coincides with the direction of the vernal equinox
the inclination of the Moon orbit with respect to the equatorial plane is maximum, and it is
equal to 5◦8′ + 23◦27′ = 28◦35′. When the descending node lies in the direction of the vernal
equinox, this inclination is minimum, equal to 23◦27′ − 5◦8′ = 18◦19′.

In general, a plane change is always necessary during a Moon mission, which strongly depends
on the launch epoch and Lunar ephemeris at epoch. More details can be found in Bate et al.,
Section 7.5 (p. 344 and following).

6.4 Restricted Circular Three–Body Problem

The circular restricted three-body problem represents one of the long standing problems in
orbital dynamics. Originally formulated by Euler in 1772, it represents a particular case of the
more general three–body problem, that is, the problem of three point–masses that move under
the action of their mutual gravitational action only (Section 1.4).

The restricted circular three body problem concerns the motion of a small mass (→ restricted)
in the vicinity of two larger primary masses (→ a total of three–bodies) which move about each
other on circular orbits (→ circular), unaffected by the presence of the small one, since that is
assumed not to perturb the motion of the two primaries.

In spite of the simplifying assumptions, the three-body problem is very complex and difficult
to analyze; the resulting motion of the small mass under the gravitational action of the primary
bodies can be chaotic. The restricted problem (both circular and elliptical) was worked on
extensively by Lagrange in the 18th century and Poincar at the end of the 19th century.3

Although it has been shown that the problem cannot be solved analytically (i.e. in terms of a
closed-form solution of known constants and elementary functions), particular solutions do exist
and approximate ones can be calculated by means of series expansion, numerical methods or
perturbation methods.

Among the particular solutions, there are five equilibria Lagrangian points (or libration

points), where the small mass remains at rest relative to the two primary bodies, and peri-
odic solutions around some of them.

The circular restricted three-body problem is of importance in space system engineering as it
may be used as a dynamical model of the Earth–Moon system, an acceptable approximation as
the eccentricity of the Moon orbit is relatively small. Lunar transfer trajectories can be obtained
along with free–return trajectories. The Lagrange points also provide ideal locations for space
based telescopes and other space science missions.

6.4.1 System Dynamics

First of all it is necessary to define the circular restricted three–body problem, formulating the
equations of motion in a properly chosen set of Cartesian coordinates. Let us consider two
primary masses m1 and m2, in circular orbit around their centre of mass O. We can put a third
body of negligible mass m and study its motion with respect to the two primary masses. The
main assumption is that, being

m≪ m2 < m1

3Poincar’s work on the restricted three-body problem was the foundation of deterministic chaos theory.
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Figure 6.8: The resticted circular 3–body problem.

the third body does not influence the motion of the primary masses. This assumption can be
used for the motion of any spacecraft in the Earth–Moon system or in the Earth–Sun system.
The total mass of the system is

M = m1 +m2

(being m negligible with respect to both the other two). The mass ratio is defined as

µ =
m2

M

(it is µ = 0.01215 for the Earth–Moon system, and only 3.0359 10−6 for the Earth–Sun system).
Then, it is

m2 = µM

m1 = (1 − µ)M

The position of m2 with respect to m1 is identified by the vector ~R. It is possible to define
a set of Cartesian coordinates, centered in the centre of mass O, where the x–axis lies along ~R,
the z–axis is perpendicular to the orbit plane, parallel to the angular velocity vector, while the
y–axis is perpendicular to ~R and lies in the orbit plane (Fig. 6.8). For the circular restricted
three–body problem, the positions of the two primary bodies on the x–axis are fixed, m1 being
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at x = −µR and m2 at x = (1 − µ)R, and the reference frame rotates with a constant angular
velocity

ω =

√

GM

R3

The equation of motion of a small mass m in this rotating frame is writtem in vector form as

~̈r
︸︷︷︸

relative

+ ~ω × (~ω × ~r)
︸ ︷︷ ︸

centripetal

+ 2~ω × ~̇r
︸ ︷︷ ︸

Coriolis

=
1

m

(

~F 1 + ~F 1

)

where

~ω = ωk̂

~r = xî + yĵ + zk̂

~̇r = ẋî + ẏĵ + żk̂

Then

2~ω × ~̇r = −2ωẏî + 2ωẋĵ

~ω × (~ω × ~r) = −ω2xî − ω2yĵ

The gravitational acceleration on m due to the action of the two primary bodies is

1

m

(

~F 1 + ~F 1

)

= −GM
(

(1 − µ)~r1

r31
+
µ~r2

r32

)

where

~r1 = (x+ µR)î + yĵ + zk̂

~r2 = [x− (1 − µ)R]̂i + yĵ + zk̂

are the position vectors of m relative to m1 and m2. Collecting all the terms, one obtains

ẍ− 2ωẏ − ω2x = −G(1 − µ)M
x+ µR

r31
−GµM

x+ (1 − µ)R

r32

ÿ + 2ωẋ− ω2y = −G(1 − µ)M
y

r31
−GµM

y

r32
(6.1)

z̈ = −G(1 − µ)M
z

r31
−GµM

z

r32

These are the equations of motion for m in the rotating frame of reference.

It is possible to recast Eqs. (6.1) in nondimansional form, by defining the dimensionless
position vector

~ρ = (ξ, η, ζ)T = ~r/R with ξ = x/R ; η = y/R ; ζ = z/R

and the nondimensional time,

τ = ωt

such that

(·)· =
d(·)
dt

= ω
d(·)
dτ

= ω(·)′
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By substituting these definitions in Eqs. (6.1) and simplfying, one gets

ξ′′ − 2η′ − ξ = −(1 − µ)
ξ + µ

ρ3
1

− µ
ξ(1 − µ)

ρ3
2

η′′ + 2ξ′ − η = −(1 − µ)
η

ρ3
1

− µ
η

ρ3
2

(6.2)

ζ ′′ = −(1 − µ)
ζ

ρ3
1

− µ
ζ

ρ3
2

where

ρ1 =
√

(ξ + µ)2 + η2 + ζ2 ; ρ2 =
√

[ξ − (1 − µ)]2 + η2 + ζ2

There are no closed form solutions of these equations, in the form

ξ = f1(t) ; η = f3(t) ; ζ = f3(t)

although it is possible to demonstrate that there are 5 equilibrium solutions, the Lagrangian

points,the stability of which can be easily determined. Moreover, the system of ordinary differ-
ential equations (6.2) can be numerically integrated, in order to get some insight on the dynamic
behaviour of the third body. Numerical investigation shows that there exist also periodic so-
lutions, but the majority of the evolutions are chaotic, in the sense that there is a very strong
dependence on the initial conditions.

6.4.2 Jacobi Integral

It is possible to define a three–body potential, from which acceleration terms may be derived,

U =
1

2
(ξ2 + η2) +

1 − µ

ρ1
+
µ

ρ2

where the first term is relative to the centripetal acceleration, while the second and the third
determine the gravity acceleration induced by the two primary masses.

The partial derivative of U w.r.t. ξ is given by

∂U
∂ξ

= ξ − 1 − µ

ρ2
1

∂ρ1

∂ξ
− µ

ρ2
2

∂ρ2

∂ξ

From the definition of ρ1 it is

ρ2
1 = (ξ + µ)2 + η2 + ζ2

so that

2ρ1
∂ρ1

∂ξ
= 2(ξ + µ)

and
∂ρ1

∂ξ
=
ξ + µ

ρ1

Analogously, for ρ2, one obtains

2ρ2
∂ρ2

∂ξ
= 2[ξ − (1 − µ)]

that is
∂ρ2

∂ξ
=
ξ − (1 − µ)

ρ2
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Collecting all the terms,

∂U
∂ξ

= ξ − 1 − µ

ρ2
1

ξ + µ

ρ1
− µ

ρ2
2

ξ − (1 − µ)

ρ2

Using the same procedure for ∂U/∂η and ∂U/∂ζ, it is

∂U
∂η

= η − 1 − µ

ρ2
1

∂ρ1

∂η
− µ

ρ2
2

∂ρ2

∂η

and
∂U
∂ζ

= −1 − µ

ρ2
1

∂ρ1

∂ζ
− µ

ρ2
2

∂ρ2

∂ζ

with

∂ρ1

∂η
=

η

ρ1
;

∂ρ2

∂η
=

η

ρ2
;

∂ρ1

∂ζ
=

ζ

ρ1
;

∂ρ2

∂ζ
=

ζ

ρ2

Finally, it is

∂U
∂η

= η − 1 − µ

ρ2
1

η

ρ1
− µ

ρ2
2

η

ρ2

∂U
∂ζ

= −1 − µ

ρ2
1

ζ

ρ1
− µ

ρ2
2

ζ

ρ2

Thus Eq. (6.2) can be rewritten in terms of gradient of the potential U as

ξ′′ − 2η′ =
∂U
∂ξ

η′′ + 2ξ′ =
∂U
∂η

(6.3)

ζ ′′ =
∂U
∂ζ

Multiplying the first equation by ξ′, the second by η′ and the third by ζ ′, and summing up, one
gets

ξ′ξ′′ + η′η′′ + ζ ′ζ ′′ = ξ′∂Uξ + η′∂Uη + ζ ′∂Uζ

which can be rewritten as
1

2

d

dτ
(ξ′2 + η′2 + ζ ′2) =

dU
dτ

Letting V =
√

ξ′2 + η′2 + ζ ′2 be the magnitude of the (non dimensional) relative velocity of the
third body, the latter equation can be easily integrated, giving

ξ′2 + η′2 + ζ ′2 = V 2 = 2U − C

where the constant of integration C is the Jacobi’s constant. The quantity

V 2 = 2U − C

is the Jacobi’s integral, that can be used to bound the motion of the mass.
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Figure 6.9: Three–body potential function in the ξ − η plane.

6.4.3 Jacobi Integral in terms of absolute velocity

The absolute velocity ~va in a non-rotating frame (with the same origin, such that ~r = ~ra) is
expressed as a function of the relative velocity ~v in the rotating one {O; î, ĵ, k̂} as

~va = ~v + ~ω × ~r

In non dimensional terms, by defining ~w = ~va/(ωR), it is

~̇ρ = ~w − k̂ × ~ρ =⇒ V 2 = W 2 − 2~w · (k̂ × ~ρ) + ||k × ~ρ||2

= W 2 − 2k̂ · (~ρ × ~w) + (ξ + η)2

= W 2 − 2k̂ · ~h + (ξ + η)2 = W 2 − 2h3 + (ξ + η)2

where ~h = ~ρ × ~w is the (nondimensional) angular momentum vector of the third body. It
must be remembered that the total angular momentum of the system is constant. Since the
primary bodies have an absolute motion around the origin O of the system on a fixed plane with
constant angular velocity, the component of ~h along the vertical, h3 must also remain constant.
Substituting the definitions of the Jacobi integral, V 2 = 2U − C and of the Jacobi potential,
U = (1/2)(ξ2 + η2) + (1 − µ)/ρ1 + µ/ρ2, in the last equation, one gets

1 − µ

ρ1
+
µ

ρ2
− C

2
=
W 2

2
− h3

that is
W 2

2
− 1 − µ

ρ1
− µ

ρ2
− h3 = E − h3 = −C

2

As a consequence, Jacobi’s integral can be also expressed in a non–rotating frame as a combi-
nation of the total specific energy and the vertical component of the angular momentum of the
third body, both constant in an inertial frame of reference.
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6.4.4 Lagrangian libration points

Given two massive bodies in circular orbits around their common centre of mass, it can be
shown that there are five positions in space, the Lagrangian libration points, where a third body
of comparatively negligible mass would maintain its position relative to the two massive bodies.
As seen in the frame which rotates with the same period as the two co-orbiting bodies, the
gravitational fields of two massive bodies combined with the centrifugal force are in balance at
the Lagrangian points.

For a static equilibrium, it is necessary that the following equations hold,

ξ′ = ξ′′ = η′ = η′′ = ζ ′ = ζ ′′ = 0

Substituting these conditions in Eq. (6.3), one obtains for the equilibrium condition the following
expression:

∂U
∂ξ

=
∂U
∂η

=
∂U
∂ζ

= 0

After recalling the expressions of the components of the gradient of the potential U ,

∂U
∂ξ

= ξ − (1 − µ)
ξ + µ

ρ3
1

− µ
ξ − (1 − µ)

ρ3
2

∂U
∂η

= η − (1 − µ)
η

ρ3
1

− µ
η

ρ3
2

∂U
∂ζ

= −(1 − µ)
ζ

ρ3
1

− µ
ζ

ρ3
2

a first observation is that, from the third equation, in order to have ∂U/∂ζ = 0 one must have
ζ = 0, that is, all the equilibrium points lie in the ξ − η plane.

collinear points

The third equilibrium condition require that ζ = 0. If it is also η = 0 one gets that ∂U/∂η = 0
as well, so that only the first equation, ∂U/∂ξ = 0, is necessary for determining equilibrium
points along the ξ axis. With η = ζ = 0 one gets

ξ − (1 − µ)
ξ + µ

ρ3
1

− µ
ξ − (1 − µ)

ρ3
2

= 0

with ρ1 = |ξ + µ| and ρ2 = |1 − µ− ξ|.
Plotting the graphs of U and dU/dξ it is possible to determine graphically the position of

the collinear lagrangian points (Fig. 6.10). It is also possible to determine them numerically,
with greater accuracy. From the previous equation, three cases are obtained as a function of the
sign of ξ + µ and 1 − µ− ξ:

−µ < ξ < 1 − µ ⇒ ρ1 = ξ + µ ; ρ2 = 1 − µ− ξ ⇒ ρ1 + ρ2 = 1

ξ > 1 − µ ⇒ ρ1 = ξ + µ ; ρ2 = µ+ ξ − 1 ⇒ ρ1 − ρ2 = 1

ξ < −µ ⇒ ρ1 = −ξ − µ ; ρ2 = 1 − µ− ξ ⇒ ρ2 − ρ1 = 1

Case 1: −µ < ξ < 1 − µ

In this case, the equilibrium condition can be rewritten as

1 − µ− ρ2 −
1 − µ

ρ2
1

+
µ

ρ2
2

= 0
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Figure 6.10: Position of the collinear points along the ξ axis.

Multiplying by ρ2
1ρ

2
2 and setting the numerator of the resulting fraction to 0, one gets

(1 − µ− ρ2)ρ
2
1ρ

2
2 − (1 − µ)ρ2

2 + µρ2
1 = 0

Substituting ρ1 = 1 − ρ2 yields the fifth order polynomial

p1(ρ2) = ρ5
2 − (3 − µ)ρ4

2 + (3 − 2µ)ρ3
2 − µρ2

2 + 2µρ2 − µ = 0

When m2 is significantly less than m1, as in the Earth–Moon case, the only real solution for
this polynomial is approximately given by ρ2 ≈ 3

√

µ/3. In the Earth–Moon case this point is
known as the cislunar point.

Case 2: ξ > 1 − µ

Similarly, in Case 2, the equilibrium condition becomes

1 − µ− ρ2 −
1 − µ

ρ2
1

− µ

ρ2
2

= 0

that, multiplied by ρ2
1ρ

2
2 and setting the numerator of the resulting fraction to 0, becomes

(1 − µ− ρ2)ρ
2
1ρ

2
2 − (1 − µ)ρ2

2 + µρ2
1 = 0

Substituting ρ1 = ρ2 + 1 in the above expression and rearranging, one gets the fifth order
polynomial

p2(ρ2) = ρ5
2 + (3 − µ)ρ4

2 + (3 − 2µ)ρ3
2 − µρ2

2 − 2µρ2 − µ = 0

When m2 is significantly less than m1, the only real solution for this polynomial is approx-
imately given again by ρ2 ≈ 3

√

µ/3, but this point is on the other side, w.r.t. to the greater of
the two primary masses, where ξ = 1 − µ+ ρ2. In the Earth–Moon case this point is called the
translunar point.
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Figure 6.11: Position of the collinear points along the ξ axis.

Case 3: ξ < −µ

Finally, in the third case, the equilibrium condition can be rewritten as

1 − µ− ρ2 +
1 − µ

ρ2
1

+
µ

ρ2
2

= 0

Multiplying by ρ2
1ρ

2
2 and setting the numerator of the resulting fraction to 0, one gets

(1 − µ− ρ2)ρ
2
1ρ

2
2 + (1 − µ)ρ2

2 + µρ2
1 = 0

In this latter case it is ρ1 = 1 + ρ2 and the fifth order equation is

p3(ρ2) = ρ5
2 − (3 − µ)ρ4

2 + (3 − 2µ)ρ3
2 − (2 − µ)ρ2

2 + 2µρ2 − µ = 0

This equation has one real solution for ρ2 ≈ 2, if m2 ≪ m1, that is ρ1 ≈ 1. This point lies
along the ξ axis, approximately in the symmetric position of m1 w.r.t. the system origin. In the
Earth–Moon case the third lagrangian point is called the trans–Earth point.

Figure 6.11 shows the plots of the three polynomials pi(ξ), for i = 1, 2, 3 and the position of
their real roots in the three intervals of the ξ axis, that is the position of the collinear lagrangian
points.

Equilateral points

From the first two equations, we see that if ρ1 = ρ2 = 1, it is

∂U
∂ξ

= ξ − (1 − µ)(ξ + µ) − µξ − µ(1 − µ) = 0

∂U
∂η

= η − (1 − µ)η − µη = 0
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Figure 6.12: Position of equilateral lagrangian points in the ξ − η plane.

This means that at the intersections of the circumferences of radius 1 (i.e. radius R, in dimen-
sional terms) we have two equilibria, L4 and L5, which are the vertices, with m1 and m2 of two
equilateral triangles. In nondimensional coordinates, the position of L4 and L5 is given by

L4 = (1/2 − µ;
√

3/2; 0) ; L5 = (1/2 − µ;−
√

3/2; 0)

In the Lagrangian points L4 and L5 of the Sun–Jupiter system it is possible to observe the so
called Trojan Asteroids. More details are reported at the end of this section.

6.4.5 Lagrange Point stability

By linear perturbation analysis it is possible to evaluate the stability of the five lagrangian
points. Letting Li = (ξi; ηi) denote the position of the i–th libration points, it is possible to
determine the linearized expression of the equation of motion written in the form

ξ′′ − 2η′ =
∂U
∂ξ

η′′ + 2ξ′ =
∂U
∂η

ζ ′′ =
∂U
∂ζ

where we recall that

U =
1

2
(ξ2 + η2) +

1 − µ

ρ1
+
µ

ρ2
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Figure 6.13: Saddle point and local minimum.

Substituting in the equation of motion the perturbed values of the position vector components,

ξ = ξi + εξ ; η = ηi + εη ; ζ = 0 + εζ

and evaluating the Jacobian matrix of the potential

ε′′ξ − 2ε′η =
∂2U
∂ξ2

εξ +
∂2U
∂ξ∂η

εη +
∂2U
∂ξ∂ζ

εζ

ε′′η + 2ε′ξ =
∂2U
∂ξ∂η

εξ +
∂2U
∂η2 εη +

∂2U
∂η∂ζ

εζ

ε′′ζ =
∂2U
∂ξ∂ζ

εξ +
∂2U
∂η∂ζ

εη +
∂2U
∂ζ2 εζ

The eigenvalues of the symmetric jacobian matrix

∇2
ρU =













∂2U
∂ξ2

εξ
∂2U
∂ξ∂η

εη
∂2U
∂ξ∂ζ

εζ

∂2U
∂ξ∂η

εξ
∂2U
∂η2 εη

∂2U
∂η∂ζ

εζ

∂2U
∂ξ∂ζ

εξ
∂2U
∂η∂ζ

εη
∂2U
∂ζ2 εζ













provide the required information on the stability of the lagrangian points. It can be demonstrated
that equilateral points can be local minima for the potential U , i.e. be stable equilibria, if

µ

1 − µ
+

1 − µ

µ
≥ 25 =⇒ µ < 0.03852

a condition that is satisfied by both the Sun–Jupiter and Earth–Moon systems.
On the other side, for every value of the mass parameter µ the quadratic form ∇2

ρU for i = 1,
2, and 3 (collinear points) is that of a saddle point, that means that collinear points are always
unstable. This can be easily seen by considering the L1 point. If an object located in L1 drifts
closer to one of the masses, the gravitational attraction it feels from the closer mass would be
greater, and it would be pulled closer. However, a test mass displaced perpendicularly from the
central line would feel a force pulling it back towards the equilibrium point. In other words, the
first three Lagrangian points are stable only if constrained to the plane perpendicular to the line
between the two bodies. This is because in this latter case the lateral components of the two
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masses’ gravity would add to produce a restoring force, whereas the components along the axis
between them would balance out.

Although L1, L2, and L3 points are nominally unstable, it turns out that, at least in the
restricted three-body problem, it is possible to find stable periodic orbits around these points in
the plane perpendicular to the line joining the primaries.

6.4.6 Surfaces of zero velocity

The magnitude of the velocity vector must be a real number, so that:

• if 2U > C then V 2 > 0 and the motion is possible;

• if 2U < C then V 2 < 0 and no motion is possible.

Thus, the equation

2U − C = 0

defines the boundary between the allowed and the forbidden region in the rotating frame, that
is, the surface of zero velocity or Hill surfaces, where C ′ = 2U .

Recalling the definition of the potential U , it is

C ′ = 2U = ξ2 + η2 + 2
1 − µ

ρ1
+ 2

µ

ρ2

which is a surface in the three-dimensional space ξ − η − ζ. The surfaces of zero velocity are
symmetrical with respect to the ξ-η plane; only their intersection with this plane will be analyzed
in the following. Letting ζ = 0, it is possible to observe the intersection of the surfaces in the
ξ − η plane (Fig. 6.14).
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Figure 6.14: Contour lines of the three–body potential function U in the ξ − η plane.
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Note that if ξ and η are large, the terms 1/ρ1 and 1/ρ2 are both small and

C ≈ ξ2 + η2

that is a circle in the ξ − η plane. If ρ1 or ρ2 is small (i.e. the third body is near one of the
two primary masses), the correspondent term 1/ρ becomes dominant, and the contour lines are
circles around the nearest primary mass,

C ≈ 2
1 − µ

ρ1
or C ≈ 2

µ

ρ2

The position dependent function,

C ′ = ξ2 + η2 + 2
1 − µ

ρ1
+ 2

µ

ρ2

can be compared with the Jacobi integral C, which is a function of initial position and velocity
of the mass m,

C = ξ20 + η2
0 + 2

1 − µ

ρ10

+ 2
µ

ρ20

− V 2
0

A particle (a spacecraft, in our case) may have relative motion only in regions of space corre-
sponding to values of C ′ higher then (or at most equal to) its own C.

The constant −C/2 corresponds to the total energy of the third body in the non-rotating
frame, and in fact represents the maximum value of potential energy that the spacecraft can
attain by zeroing its velocity. The spacecraft can only access the region of space with C ′ ≥ C,
where the potential energy is less than its total energy. As V0 increases, the third mass can
access larger regions of space. Eventually, it can cross from m1 to m2 and further escape from
the system.

Figure 6.15 presents some zero velocity curves and, in particular, those for C1, C2, C3, cor-
responding to the values of potential in the collinear Lagrangian points. If C ′ is very large,
the zero velocity curves consist of three circles: the largest one has approximately radius

√
C

Figure 6.15: Intersections of zero-velocity surfaces with the ξ − η plane.
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and is centered on the origin of the frame; two smaller circles enclose the primaries; a spacecraft
orbiting the main body with C = C ′ is confined to move around it. A spacecraft with C > C ′

can leave the region around m1 and orbit around m2. For C ′ > C2 the spacecraft can escape
from the system, but only leaving the region around the primaries from the side of the second
body. This limit disappears for C ′ > C3. Any place can be reached when C > C4 = C5.

6.5 Summary and practical considerations

Summing up, in the circular problem there exist five equilibrium points. Three are collinear with
the masses in the rotating frame and are unstable. The remaining two are located 60 degrees
ahead of and behind the smaller mass in its orbit about the larger mass. For sufficiently small
mass ratio of the primaries, these triangular equilibrium points are stable, such that (nearly)
massless particles will orbit about these points that in turn orbit around the larger primary.

The L1 point lies on the line defined by the two main bodies, and between them. An object
which orbits the Earth more closely than the Moon would normally have a shorter orbital period
than the Moon, but if the object is directly between the bodies, then the effect of the lunar gravity
is to weaken the force pulling the object towards the Earth, and therefore increase the orbital
period of the object. As the object gets closer to the Moon, this effect become greater until, at
L1 point (the cislunar lagrangian point), the orbital period of the object becomes exactly equal
to the lunar orbital period.

The L2 point lies on the line defined by the two primary masses, beyond the smaller of
the two. On the side of the Moon away from the Earth, the orbital period of an object would
normally be greater than that of the Moon. The extra pull of the lunar gravity decreases the
orbital period of the object, which at the L2 point (the translunar lagrangian point) has the
same period as the Moon.

If the second body has mass m2 much smaller than the mass m1 of the largest one, then
L1 and L2 are at approximately equal distances r2 from the second body (L1 is actually a little
closer), given by the radius of the Hill sphere

r2 = R 3

√
m2

3m1

where R is the distance between the two bodies. The Sun-Earth L1 and L2 points are distant
1,500,000 km from the Earth, and the Earth-Moon points 61,500 km from the Moon.

The L3 point lies on the line defined by the two large bodies, beyond the larger of the two.
In the Earth-Moon system L3 is on the opposite side of the Moon, a little further away from
the Earth than the Moon is, where the combined pull of the Moon and Earth again causes the
object to orbit with the same period as the Moon.

The L4 and L5 points lie at the third point of an equilateral triangle with the base of the line
defined by the two masses, such that the point is respectively ahead of, or behind, the smaller
primary mass in its orbit around the larger one. L4 and L5 are sometimes called equilateral
Lagrange points or Trojan points.

Perturbations may change this scenario, and an object could not remain permanently stable
at any one of these five points. In any case a spacecraft can orbit around them with modest fuel
expenditure to maintain such a position, as the sum of the external actions is close to zero.

In the more general case of elliptical orbits, there are no longer stationary points in the same
sense: it becomes more of a Lagrangian “area” where the third body makes small odd-shaped
orbits about the invisible Lagrangian point; these orbits are commonly referred to as Halo orbits.
The Lagrangian points constructed at each point in time as in the circular case form stationary
elliptical orbits which are similar to the orbits of the massive bodies. This is due to the fact that
Newton’s second law, ~̇p = m~̇v = ~f (where ~p is the momentum, m the mass, ~v the velocity and
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~f the force), remains invariant if force and position are scaled by the same factor. A body at
a Lagrangian point orbits with the same period as the two massive bodies in the circular case,
implying that it has the same ratio of gravitational force to radial distance as they do. This fact
is independent of the circularity of the orbits, and it implies that the elliptical orbits traced by
the Lagrangian points are solutions of the equation of motion of the third body.

Stable periodic orbits around collinear points in the plane perpendicular to the line joining
the primaries, also known as halo orbits, can be exploited for some space missions even if, such
perfectly periodic orbits do not exist in a full n-body dynamical system such as the solar system.
Quasi-periodic (i.e. bounded but not precisely repeating) Lissajous orbits do exist even in the
more realistic n-body scenario. These quasi-periodic orbits are what all libration point missions
to date have used. Although they are not perfectly stable, a relatively modest propulsive effort
can allow a spacecraft to stay in a desired Lissajous orbit for an extended period of time. It also
turns out that, at least in the case of Sun–Earth L1 missions, it is actually preferable to place
the spacecraft in a large amplitude (100,000–200,000 km) Lissajous orbit instead of having it sit
at the libration point, since this keeps the spacecraft off of the direct Sun–Earth line and thereby
reduces the impacts of solar interference on the Earth–spacecraft communications links. Another
interesting and useful property of the collinear libration points and their associated Lissajous
orbits is that they serve as “gateways” to control the chaotic trajectories of the Interplanetary
Superhighway.

The Sun–Earth L1 is ideal for making observations of the Sun. Objects here are never
shadowed by the Earth or the Moon. The sample return capsule Genesis returned from L1

to Earth in 2004 after collecting solar wind particles there for three years. The Solar and
Heliospheric Observatory (SOHO) is stationed in a Halo orbit at the L1 and the Advanced
Composition Explorer (ACE) is in a Lissajous orbit, also at the L1 point. The Earth–Moon L1

allows easy access to lunar and Earth orbits with minimal ∆v, and would be ideal for a half-way
manned space station intended to help transport cargo and personnel to the Moon and back.

The Sun–Earth L2 offers an exceptionally favorable environment for a space–based observa-
tory since its instruments can always point away from the Sun, Earth and Moon while maintain-
ing an unobstructed view to deep space. The Wilkinson Microwave Anisotropy Probe (WMAP)
is already in orbit around the Sun–Earth L2 and observes the full sky every six months, as the
L2 point follows the Earth around the Sun. The future Herschel Space Observatory as well as
the proposed James Webb Space Telescope will be placed at the Sun–Earth L2. Earth–Moon
L2 would be a good location for a communications satellite covering the Moon’s far side.

The Sun–Earth L3 is only a place where science fiction stories put a Counter-Earth planet
sharing the same orbit with the Earth but on the opposite side of the Sun.

By contrast, L4 and L5 are stable equilibrium points, provided the ratio of the primary
masses is larger than 24.96. This is the case for the Sun–Earth and Earth–Moon systems,
though by a small margin in the latter case. When a body at these points is perturbed, it
moves away from the point, but the Coriolis force then acts, and bends the object’s path into
a stable, kidney bean–shaped orbit around the point, as seen in the rotating frame of reference
(Fig. 6.16).

In the Sun–Jupiter system several thousand asteroids, collectively referred to as Trojan
asteroids, are in orbits around the Sun–Jupiter L4 and L5 points (Greek and Trojan camp,
respectively). In 1904 Edward Emerson Barnard observed what is now believed the first Trojan
Asteroid ever observed from the Earth, but the importance of his observation was not understood
at the time. Only three years later the German astronomer Max Wolf discovered an asteroid in
the Lagrangian point L4 of the Sun–Jupiter system, and named it 588 Achilles. The peculiarity
of its orbit was soon clear, and many other asteroids were later discovered in both the triangular
Lagrange point of the Sun-Jupiter system. There are currently, as of July 2004, 1679 known
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Figure 6.16: Trajectory in the neighbourhood of an equilateral point.

Trojan asteroids, 1051 at L4 and 628 at L5. There are undoubtedly many others too small to
be seen with current instruments.

Other bodies can be found in the Sun–Neptune (four bodies around L4) and Sun–Mars
(5261 Eureka in L5) systems. There are no known large bodies in the Sun–Earth system’s
Trojan points, but clouds of dust surrounding the L4 and L5 were discovered in the 1950s.

Clouds of dust, called Kordylewski clouds, may also be present in the L4 and L5 of the
Earth–Moon system. There is still controversy as to whether they actually exist, due to their
extreme faintness; they might also be a transient phenomenon as the L4 and L5 points of the
Earth–Moon system are actually unstable, because of the perturbation induced by the Sun.
Instead, the Saturnian moon Tethys has two smaller Moons in its L4 and L5 points, Telesto and
Calypso, respectively. The Saturnian Moon Dione also has two Lagrangian co–orbitals, Helene
at its L4 point and Polydeuces at L5. The Moons wander azimuthally about the Lagrangian
points, with Polydeuces describing the largest deviations, moving up to 32 degrees away from
the Saturn–Dione L5 point. Tethys and Dione are hundreds of times more massive than their
“escorts” and Saturn is far more massive still, which makes the overall system stable.

Appendix - Sphere of influence

Consider a unit–mass spacecraft moving in the proximity of a body of mass m2, which orbits
around a primary body of much greater mass m1. The distance between the large bodies is
R; no forces other than gravitation are considered. One is interested in defining a region of
space where the action of the second body is dominant. A precise boundary does not exist, as
the transition from the dominance of the primary body to the prevailing action of the second
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Table 6.1: Planetary spheres of influence (Laplace definition)

Planet
Mass ratio ×104

(Planet/Sun)
Radius of the sphere
of influence (105 km)

Mercury 0.00164 1.12
Venus 0.0245 6.16
Earth 0.0304 9.29
Mars 0.00324 5.78
Jupiter 9.55 482
Saturn 2.86 545
Uranus 0.436 519
Neptune 0.518 868
Pluto 0.000066 341

body is quite smooth. Practical reasons suggest that it is possible to approximate such a region
with a sphere, whose radial extension is conventional. The most credited definitions of sphere
of influence, which are due to Laplace and Hill, do not coincide: the former deals with the
transition from a computational model to another; the latter definition is based on the limit
altitude of stable orbits.

The concept of sphere of influence is therefore a mere convention and to neglect the action of
the other primary mass is an approximation. Other forces can be significant, such as radiation
pressure or the attraction of other bodies (e.g. the gravitation pull of the Sun on an object
moving in the Earth–Moon system). Also the definition of the sphere of influence requires that
the third object is of negligible mass, in order not to introduce significant contribution to the
gravitation field through its own gravity.

Orbits just within the sphere are not stable in the long term; numerical methods demonstrate
that stable satellite orbits are inside 1/2 to 1/3 of the Hill sphere radius, with retrograde orbits
being more stable than prograde orbits.

The spheres of influence of the planets in the solar system are given in Table 6.1. Data refers
to the mean distance from the Sun. The planet with the largest sphere is Neptune; its great
distance from the Sun amply compensates for its small mass relative to Jupiter. Neptune has
also the largest Hill sphere (0.775 AU of radius), greater than Jupiter’s one (whose Hill sphere
measures 0.355 AU).

Laplace sphere of influence

The motion of a spacecraft can be studied in a non-rotating reference frame with its origin in
the centre of m2. The only actions on the spacecraft are the attractions of the central body Φ
and of the primary body m1, which is seen as a perturbation ∆Φ of the gravitational pull of
m2. Remembering the results presented in Section 4.6.1, it is

Φ =
µ2

ρ2
and ∆Φ = µ1

ρ

R3

√

1 + 3 cos2 β

where ρ is the distance of the spacecraft fromm2. If on the converse, the motion of the spacecraft
is analyzed in a non-rotating frame centered in the centre of mass of the largest primary body,
the main force F exerted by m1 and the perturbation force ∆F produced by m2 in its proximity
are instead

F =
µ1

r2
and ∆F =

µ2

ρ2
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where r ≈ R is the distance of the spacecraft from the largest primary mass. According to
Laplace, if one desires to neglect the perturbing action, thus retaining only the major effects
from the smaller yet closer body, m2, the two approaches can be considered equivalent when

∆F

F
=

∆Φ

Φ
=⇒ ρ5

R5
=
m2

2

m2
1

1
√

1 + 3 cos2 β

It is convenient to underline that this equivalence is just conventional, and it does not provide
any knowledge of the eventual errors.

The radius provided by the above equation defines a surface that is rotationally symmetric
about an axis joining the massive bodies. Its shape differs little from a sphere; the ratio of
the largest (β = π/2) and smallest (along line connecting the two primary bodies) values of ρ
is about 1.15. For convenience the surface is made spherical by replacing the square root with
unity (this is equivalent to select the largest sphere tangent to the surface). The sphere of radius

ρL = R

(
m2

m1

)2/5

is known as Laplace sphere of influence or simply sphere of influence, as it is the most widely
used definition.

The Earth’s sphere of influence has a radius of about 924,000 km, and comfortably contains
the orbit of the Moon, whose sphere of influence extends out to 66,200 km.

Hill sphere

The definition of the gravitational sphere of influence, also known as Hill sphere, is due to
the American astronomer G. W. Hill. It is also called the Roche sphere because the French
astronomer E. Roche independently derived its definition.

The determination of the Hill sphere of influence assumes a rotating reference frame with an
angular frequency equal to that of the two primary masses rotating about their centre of mass
(see Section 6.4.1), and considering the three vector fields due to the centrifugal force and the
attractions of the massive bodies. The Hill sphere is the largest sphere within which the sum of
the three fields is directed towards the second body. A small third body will orbit the second
one in a stable way (no escape allowed) only if it lies always within the Hill sphere during its
motion, where the resultant force is centripetal.

The Hill sphere extends between the Lagrangian points L1 and L2, which lie along the line of
centres of the two bodies. The region of influence of the second body is shortest in that direction,
and so it acts as the limiting factor for the size of the Hill sphere. Beyond that distance, a third
object in orbit around the second one would spend at least part of its orbit outside the Hill
sphere, and would be progressively perturbed by the main body until it is pulled out from the
neighbourhood of m2 and attracted towards m1, ending up orbiting the largest primary body.

The distance ρ of L1 and L2 from the smaller body is obtained by equating the attractive
accelerations of the two primaries to the centrifugal acceleration, that is

µ1

(R± ρ)2
± µ2

ρ2
= ω2(R± ρ) =⇒ µ1

(R2(1 ± ε)2
± µ2

ρ2
= ω2R(1 ± ε)

where the upper sign applies to L2 and the lower one to L1, while ε = ρ/R. Remembering that,
for m2 ≪ m1 it is ω2 = µ1/R

3, and that

(1 ± ε)−2 ≈ 1 ∓ 2ε
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one obtains

µ1

R2
(1 ∓ 2ε) ± µ2

ρ2
= ω2R(1 ± ε) =⇒ ±µ2

ρ2
= ±3ε

µ1

R2
= ±3ρ

µ1

R3

and therefore the radius ρ of the Hill sphere of the smaller primary mass is given by

ρH = R 3

√
µ2

3µ1
= R 3

√
m2

3m1

The Hill sphere for the Earth extends to about 1.5 106 km from its centre (approximately
0.01 AU); it should be noted that this is approximately 4 times the Moon–Earth distance, which
explains the long–term stability of the motion of the Moon even in presence of the sizable solar
perturbation. The radius of the Moon’s sphere of influence is close to 61,500 km.



Chapter 7

(Introduction to) Interplanetary
trajectories

7.1 The Solar system

7.1.1 Sun and planets

The heliocentric nature of the solar system was proposed by Copernicus in 1530 as a possible
explanation for the observed motion of the planets. Although his revolutionary treatise was
the first to formulate such a hypothesis in modern times, Aristarchus of Samos had already
proposed in the third centurt b.C. a heliocentric model in which the Earth revolves around
the Sun spinning about its axis. He based his theory on geometrical grounds, and he was also
the first to evaluate the size of the Sun and of the Moon and their distance from the Earth.
Unfortunately his work was strongly criticized and gradually forgot.

Nine planets (most of which accompanied by several satellites) encircle the Sun, which has
more than 99% of the total mass of the system. A great number of lesser bodies, asteroids or
comets, moves in the system, and additional mass is present under the form of meteors and dust
clouds (see Cornelisse, 1979, p. 481, for more details).

The mean distance of the planets from the Sun approximately follows Bode’s law formulated
it in 1772. Given the series of integers 0, 3, 6, 12,..., that is

n1 = 0, n2 = 3, ni = 2ni−1 for i ≥ 3

the distance of the planets in Astronomical Units1 is approximately given by

Ri = (ni + 4)/10 for i = 1, 2, ..., 9

According to some, the ninth position of the series is shared by Neptune and Pluto, thus
suggesting that Pluto might be an escaped satellite of Neptune.

The planets’ orbits are described by five almost constant orbital elements, whereas the sixth
(true longitude) defines the position along the orbit and rapidly changes. Different sources
provide Ephemeris, that are tables of the orbit elements at different dates for a great number
of major and minor bodies (Tab. 7.2). The orbits of the planets are nearly circular and located
in the ecliptic plane, with the exception of the extreme planets, Mercury (e = 0.206, i = 7.00
deg) and Pluto (e = 0.249, i = 17.14 deg). In particular Pluto’s perihelion lies inside the orbit
of Neptune.

1One Astronomical Unit is the semimajor axis of the Earth’s orbit around the Sun and is often used as a

reference distance when dealing with interplanetary trajectories or in describing the features of the Solar Systems.
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Table 7.1: Bode’s Law

Planet Bode’s Law distance Orbit semi-major axis

Mercury 0.4 0.39
Venus 0.7 0.72
Earth 1.0 1.00
Mars 1.6 1.52
Asteroids (average) 2.8 2.65
Jupiter 5.2 5.20
Saturn 10.0 9.52
Uranus 19.6 19.28
Neptune 38.8 30.17
Pluto 77.2 39.76

Table 7.2: Keplerian elements and their rates, with respect to the mean ecliptic and equinox
of J2000, valid for the time–interval 1800 AD - 2050 AD.

semimaj.axis eccentricity inclination true anomaly long.perihelion long.asc.node
Planet a [AU] e i [deg] ν [deg] Π [deg] Ω [deg]

(ȧ) [AU/Cy] (ė) [1/Cy] (i̇) [deg/Cy] (ν̇) [avg.deg/y] (Π̇) [deg/Cy] (Ω̇) [deg/Cy]

Mercury 0.38709927 0.20563593 7.00497902 252.25032350 77.45779628 48.33076593
(0.00000037) (0.00001906) (-0.00594749) (1494.72674111) (0.16047689) (-0.12534081)

Venus 0.72333566 0.00677672 3.39467605 181.97909950 131.60246718 76.67984255
(0.00000390) (-0.00004107) (-0.00078890) (585.17815387) (0.00268329 (-0.27769418)

Earth 1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 0.0
(0.00000562) (-0.00004392) (-0.01294668) (359.99372450) (0.32327364 ( 0.0)

Mars 1.52371034 0.09339410 1.84969142 -4.55343205 -23.94362959 49.55953891
(0.00001847) (0.00007882) (-0.00813131) (191.40302685) (0.44441088) (-0.29257343)

Jupiter 5.20288700 0.04838624 1.30439695 34.39644051 14.72847983 100.47390909
(-0.00011607 ) (-0.00013253) (-0.00183714) (30.34746128) (0.21252668) (0.20469106)

Saturn (9.53667594 0.05386179 2.48599187 49.95424423 92.59887831 113.66242448
(-0.00125060) (-0.00050991) (0.00193609) (12.22493622) (-0.41897216) (-0.28867794)

Uranus 19.18916464 0.04725744 0.77263783 313.23810451 170.95427630 74.01692503
(-0.00196176) (-0.00004397) (-0.00242939) (4.28482028) ( 0.40805281) (0.04240589)

Neptune 30.06992276 0.00859048 1.77004347 -55.12002969 44.96476227 131.78422574
(0.00026291) (0.00005105) (0.00035372) (2.18459453) (-0.32241464) (-0.00508664)

Pluto 39.48211675 0.24882730 17.14001206 238.92903833 224.06891629 110.30393684
(-0.00031596) (0.00005170) (0.00004818) (1.45207805) (-0.04062942) (-0.01183482)

Table 7.3: Physical properties of Sun and planets.

Celestial Diameter Rotational Oblateness Axial tilt Mass Mass par.
Body [km](Earth = 1) period* [deg] Earth = 1 [km3s−2]

Sun 1,392,000 (109) ≈ 25.4 days ≈ 10−5 7.25 333,432 1.327 1011

Mercury 4,879 (0.38) 58.65 days 0.0 2.0 0.055 2.232 104

Venus 12,104 (0.95) -243.02 days 0.0 177.4 0.815 3.257 105

Earth 12,742 (1.0) 23 hrs 56 min 0.0034 23.45 1.000 3.986 105

Mars 6,780 (0.53) 24 hrs 37 min 0.005 25.19 0.107 4.305 104

Jupiter 139,822 (10.97) 9 hrs 55 min 0.065 3.12 317.830 1.268 108

Saturn 116,464 (9.14) 10 hrs 40 min 0.108 26.73 95.159 3.795 107

Uranus 50,724 (3.98) -17.24 days 0.03 97.86 14.536 5.820 106

Neptune 49,248 (3.87) 16 hours 7 min 0.02 29.56 17.147 6.896 106

Pluto 2,390 (0.19) -6.38 days 0.0 119.6 0.002 0.797 103

* Negative numbers indicate retrograde rotation.
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Figure 7.1: A comet high–ellipticity orbit (note the two distinct tails).

7.1.2 Other bodies

The fifth position in Bode’s sequence is occupied by the asteroids, which might be the remnants
of a destroyed body or the matter destined for a never–born planet (see Tab. 7.1). About 220
asteroids are larger than 100 km. The biggest asteroid is Ceres, which is about 1000 km across.
The total mass of the Asteroid belt is estimated to be 1/35th that of the Moon, and of that
total mass, one–third is accounted for by Ceres alone.

Comets are small bodies in the solar system characterized by a nucleus, generally less than
50km across, which is composed of rock, dust, and ice. When a comet approaches the inner
solar system, radiation from the Sun causes its outer layers of ice to evaporate. The streams
of released dust and gas form a huge but extremely tenuous coma, which can extend over 150
million km (1 AU). The coma become visible from the Earth when a comet passes closes to the
Sun, the dust reflecting sunlight directly and the gases glowing due to ionization. The force
exerted on the coma by the solar wind and radiation pressure cause two distinct tails to form
pointing away from the sun in slightly different directions. The dust is left behind in the comet’s
orbit so that it often forms a curved tail; the ionized–gas tail always points directly away from
the Sun, since the gas is more affected by the solar wind than dust is, and follows magnetic field
lines rather than an orbital trajectory.

Comets are classified according to their orbital periods. Short period comets have orbits
of less than 200 years (comet Encke never is farther from the Sun than Jupiter). Long period
comets have larger orbits but remain gravitationally bound to the Sun. Single–apparition comets
have parabolic or hyperbolic orbits which will cause them to permanently exit the solar system
after one pass by the Sun. Short–period comets are thought to originate in the Kuiper belt,
which is an area of the solar system extending from within the orbit of Neptune (at 30 AU) to 50
AU from the Sun, at inclinations consistent with the ecliptic. Long–period comets are believed
to originate in the 50,000 AU distant Oort cloud, which is a spherical cloud of debris left over
from the condensation of the solar nebula and containing a large amount of water in a solid
state. Some of these objects were perturbed by gravitational interactions and fell from their
circular orbits into extremely elliptical orbits that bring them very close to the Sun. Because of
their low masses, and their elliptical orbits which frequently take them close to the giant planets,
cometary orbits are often perturbed and constantly evolving. Some are moved into sungrazing
orbits that destroy the comets when they get near to the sun, while others are thrown out of
the solar system forever.
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7.1.3 Orbital resonance

Some bodies in the solar system are in orbital resonance, a phenomenon that occurs when two
orbiting bodies have periods of revolution that are in a simple integer ratio, so that they exert
a regular gravitational influence onto each other. This can stabilize the orbits and protect them
from gravitational perturbation. For instance, Pluto and some smaller bodies called Plutinos
were saved from ejection by a 3:2 resonance with Neptune. The Trojan asteroids may be regarded
as being protected by a 1:1 resonance with Jupiter. Orbital resonance can also destabilize
one of the orbits. For instance, there is a series of almost empty lanes in the asteroid belt
called Kirkwood gaps where the asteroids would be in resonance with Jupiter. A Laplace
resonance occurs when three or more orbiting bodies have a simple integer ratio between their
orbital periods. For example, Jupiter’s moons Ganymede, Europa, and Io are in a 1:2:4 orbital
resonance.

A companion object of the Earth has been discovered in 1988; the asteroid 3753 Cruithne is
on an elliptical orbit which has almost the same period of the Earth. Due to close encounters
with the planet, this asteroid periodically alternates between two regular solar orbits. When
the asteroid approaches the Earth (the minimum distance is 12 106 km), it takes orbital energy
from the planet and moves into a larger and slower orbit. Some time later, the Earth catches
up with the asteroid and takes the energy back; as a consequence the asteroid falls back into a
smaller, faster orbit and a new cycle begins.

Epimetheus and Janus, satellites of Saturn, have a similar relationship, though they are of
similar masses and so actually exchange orbits with each other periodically (Janus is roughly 4
times more massive, but still light enough for its orbit to be altered).

7.2 Interplanetary missions

7.2.1 Generalities

The computation of a precision trajectory for an interplanetary mission requires the numerical
integration of the complete equations of motion where all perturbation effects are taken into
account. Initial values of state variables, namely position and velocity, and velocity increments
along the trajectory are modified until a satisfying mission profile is found.

The spacecraft spends most of the trip–time under the dominant gravitational attraction of
the Sun and the perturbations caused by the planets are negligible; only for brief periods the
trajectory is shaped by the departure and arrival planets. In these circumstances the patched–
conic model is absolutely adequate, and this simple approach is generally adopted for preliminary
analyses. The Sun attraction is neglected during the planetocentric legs, and, for the sake of
simplicity, the velocity relative to the planet, on exiting or entering the sphere of influence, is
assumed equal to the hyperbolic excess velocity. The dimension of the sphere can be neglected in
comparison with the distance from the Sun, and the extremes of the heliocentric leg are assumed
to coincide with the positions of the planets at the time of planet encounter.

In spite of the apparent model simplicity, the mission design task is far from trivial. Nu-
merically, it is necessary to evaluate spacecraft and planets orbit parameters with extremely
tight accuracies. Apparently minor errors on orbit parameters on the heliocentric legs may in-
duce considerable errors on orbit parameters upon enetring the sphere of influence of the target
planet. The same consideration is valid for orbit injection errors, and the same is true also
for actual errors during the mission. A certain amount of fuel for correction manoeuvres must
be included in the fuel budget, nonetheless, the more accurate the trajectory, the smaller the
penalty on fuel. Although the planets’ orbits lie almost on the same plane, the cost of orbit
plane change is made very high by the high velocity involved in interplanetary travel. Even more
difficult is the case of complex interplanetary missions, where the probe is required to fly–by a
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given sequence of planets. This may be useful in order to exploit the swing–by effect, where the
probe gets energy by entering the planet’s sphere of influence ”from behind”. A minor error on
the first planet intercept may result in an unacceptable error on the approach to the last planet
of the series.

7.2.2 Elongation and sinodic period

The design of an interplanetary mission requires also the careful evaluation of the so–called
launch window, that is, the time interval during which a succesfull launch can be performed
that takes the space probe in the best conditions for intercepting the planet with the minimum
amount of fuel and the maximum payload.

The launch window depends on the relative motion of departure and target planet at launch
time with respect to the planet. The planets configuration at departure time depends on the
selected transfer trajectory. The elongation is the angle under which the target planet is seen
from the departure one. If the target planet orbit is outside that of the departure planet, than
there are four particular values for the elongation:

1) ǫ = 0 (conjunction, where the target planet is on the same line with the departure one and
the Sun, on the same side with the Sun);

2) ǫ = π (opposition, where the target planet and the sun lie on the same line with the departure
one, but on opposite directions);

3 and 4) ǫ = ±π/2 (eastern and western quadrature).

On the converse, when the target planet orbit is inside that of the departure planet, the
elongation will lie on an interval ǫ < ǫmax. In this case the four particular values are:

1 and 2) ǫ = 0 (inferior and superior conjunction, where the target planet is on the same line
with the departure one and the Sun, on the same or on the other side of the Sun, respectively);

3 and 4) ǫ = ±ǫmax (eastern and western maximum elongation).

If a launch opportunity is given for a certain value of the elongation and is lost, the same
trajectory will be again available after one sinodic period τ , that is, the period after which the
two target planet and the Sun are again in the same relative configuration with respect to the
departure planet. This period is obtained from the equation ω2τ = ω1τ + 2π, so that it is

τ = 2π/(ω2 − ω1)

7.3 Heliocentric transfer

When the patched–conic approximation is used, the study of an interplanetary mission begins
with the heliocentric transfer orbit.

The heliocentric velocity at departure from the Earth

~v1 = ~v⊕ + ~v∞ (where v⊕ = 29.77 km s−1)

is the sum of the Earth velocity and the hyperbolic excess velocity. The latter is assumed to
be equal to the spacecraft velocity relative to the Earth. In general it is ~v⊕ ≫ ~v∞, due to the
modest capabilities of present space propulsion, so that the maximum angle between ~v⊕ and ~v1

is quite small. In particular the heliocentric leg will lie in a plane that can assume only a modest
inclination away from the ecliptic plane. In any case the Earth velocity is better exploited if the
spacecraft departs from our planet either in the same or in the opposite direction.
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Table 7.4: Hohmann transer to planets of the Solar system from the earth.

Planet Radius τ aH t2 − t1 γ1 Helioc.vel. Vel.incr.
[AU] [y] [AU] [y] [deg] v1 [km/s] ∆v1 [km/s]

Mercury 0.387 0.317 0.69355 0.289 -251.6734 22.258 7.535
Venus 0.723 1.599 0.86167 0.400 -54.0305 27.297 2.496
Mars 1.524 2.135 1.26186 0.709 44.3458 32.739 2.946
Jupiter 5.203 1.092 3.10144 2.731 97.1578 38.588 8.795
Saturn 9.537 1.035 5.26834 6.046 106.0927 40.085 10.291
Uranus 19.189 1.012 10.09458 16.036 111.3215 41.077 11.284
Neptune 30.070 1.006 15.53496 30.615 113.1596 41.450 11.657
Pluto 39.482 1.004 20.24106 45.532 113.9274 41.610 11.817

7.3.1 Ideal planets’ orbits

The orbit of most of the planets can be considered circular and coplanar, and the most efficient
transfer between them uses the Hohmann ellipse. One easily computes the heliocentric velocity
and then the hyperbolic excess velocity on leaving the Earth sphere of influence

E⊙ =
µ⊕

R1 +R2
; v1 =

√

2

(

E⊙ +
µ⊕
R1

)

; v∞ = |v1 − v⊕|

where R1 and R2 are the orbit radii of the departure and arrival planet, respectively. A transfer
to an inner planets requires that the spacecraft is launched in the direction opposite to the
Earth’s orbital motion.

The mission can be carried out using any of the ∞2 trajectories that intersect or are tangent
to the planets’ orbits. A transfer other than the Hohmann ellipse may be preferred if presents
minor sensitivity to injection errors, permits an Earth return trajectory, or simply reduces the
trip time.

Power requirements and solar interference on communications between ground stations and
spacecraft depend on the distance and phase angle α2 = γ1 + (ω2 − ω1)(t2 − t1) between the
planets at the arrival time

γ2 = γ1 + ω2(t2 − t1) − (ν2 − ν1) ; d =
√

R2
1 +R2

2 −R1R2 cosα2

and influence the selection of the heliocentric transfer orbit. Assuming γ2 = 0 (that is, a direct
planet hit), and neglecting ”third bodies” effects (that is, the presence of other celestial bodies
during the transfer orbit is neglegted), the characteristics of direct Hohmann transfer to Solar
system’s planet can be easily evaluated (Tab. 7.4).

By increasing the velocity increment at injection onto the transfer orbit, a minor trip time to
the target planet is achieved due to greater energy, at the expenses of a greater fuel consumption.
Of course, the phase angle at departure must be changed accordingly, which results in a variation
of the launch window with respect to the Hohmann transfer case. Some payload can be traded
off for opening a launch window. It must be remembered that the same mission can be flown
only after a synodic period.

7.3.2 Accounting for real planets’ orbits

When a more accurate mission design is required, it is necessary to perform a parameter analysis
that uses the time of departure from the Earth and the arrival time (or the trip time) as
independent variables. The conic orbit is a solution of the Lambert problem, and the parameters
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are varied until an optimal solution is found (in the sense of the best trade–off between minimum–
time, minimum–fuel and maximum payload).

Among many other perturbations of the ideal, coplanar transfer, it must be remembered
that the target planet will usually be outside of the ecliptic plane. This meand that at some
point it is necessary to perform an orbit inclination change, which is expensive in terms of
fuel consumption. A good solution is to apply a midcourse impulse in quadrature with the
arrival point, that minimises the magnitude of the plane change required. In this situation, the
required plane change variation is exactly equal to the latitude of the target planet at the time
of intercept, β, so that the required velocity increment is given by

∆v = 2vϑ sin(β/2)

7.4 Earth departure trajectory

After the selection of the transfer orbit to the target planet, it is necessary to design the escape
trajectory from the Earth, which takes place within the Earth’s sphere of influence. It must be
recalled that upon leaving the Earth’s sphere of influence, tha radius of which is approximately
106 km, the spacecraft velocity in the heliocentric frame must be v1 = v⊕+∆v1, where ∆v1 ≈ v∞,
that is, the velocity increment to enter the transfer orbit is approximately equal to the hyperbolic
excess speed upon leaving the Earth’s sphere of influence.

The spacecraft velocity at departure from the Earth surface or from a point with radius r0 on
a parking LEO is thus obtained by considering the conservation of energy during the geocentric,
hyperbolic leg

v2
0

2
− µ⊕
r0

=
v2
∞

2
− µ⊕
ρ⊕

≈ v2
∞

2
=⇒ v0 =

√

v2
∞ +

2µ⊕
r0

Departure is usually from a parking orbit, the altitude of which derives from a compromise
between gravitational losses (smaller, for lower orbits) and atmospheric drag (that are higher if
r0 is low).

The departure impulse is ∆v0 = v0−vc0 . In order to avoid misalignment losses (ϕ1 = ϕ0 = 0),
∆~v0 and the escape asymptote must be parallel to the spacecraft orbital velocity on LEO and
the Earth’s orbital velocity, respectively. In order to achieve such a result, the periaxis of
the hyperbolic escape trajectory (that is, the injection point) must form an angle Φ with the
direction of Earth’s orbital velocity which satisfies the equation

cos Φ = −1/e

where the eccentricity is obtained from the expressions of a = −µ⊕/v2
∞ and r0 = rP = a(1− e).

Any plane containing the nominal ~v∞ is permitted, so that virtually any place on the Earth
surface can be the launch site. Inasmuch as the displacement from the ecliptic remains limited, if
compared to interplanetary distances, orbit inclination in the heliocentric frame will be extremely
small, if ~v∞ is parallel to ~v⊕.

Injection errors must be kept as low as possible, as the hyperbolic excess speed depends
strongly on the value of injection velocity, v0. Assuming a given LEO of radius r0, it is

v0dv0 = v∞dv∞ =⇒ dv∞
v∞

=

(
v0
v∞

)2 dv0
v0

For a Hohmann transfer to Mars, where v∞ = 2.95 km s−1 and v0 = 11.6 km s−1, this meand
that a 1% error in v0 will result in a 15% error on v∞.
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7.5 Arrival to the target planet

The heliocentric leg is always tangent to the departure planet velocity vector, in order to exploit
as much as possible its momentum upon injection on the transfer orbit. On the converse, the
transfer orbit usually intersects that of the target planet with an angle ϕ2, unless a Hohmann
transfer is selected.

The velocity v2 at intercept is given by

v2 =

√

2

(
µ⊙
r2

+ Et

)

while the angle ϕ2 satisfies the equation

cosϕ2 = ht/(r2v2)

The velocity relative to the target planet is

~v3 = ~v2 − ~vT

where ~vT is the planet orbital speed.2 From the law of cosines it is

v2
3 = v2

2 + v2
T − v2vT cosϕ2

The angle ϑ between the planet’s velocity and ~v3 is obtained from the law of sines

sinϑ =
v2
v3

sinϕ2

If a direct hit to the target planet is sought, the phase angle at departure must be chose in
such a way that γ2 = 0. In this case, the intercept point on the planet’s orbit will be achieved
when also the planet is there. This means that the spacecraft enters the planet’s sphere of
influence with a velocity vector parallel to the local vertical to the planet centre, so that the
approach trajectory to the planet is a straight line along which the probe flies at hyperbolic
speed.

If a fly–by trajectory is sought, the phase angle at departure must be changed accordingly,
in order to miss the planet by a certain amount distance x (measured along the planet’s orbit).
In this case it is

γ1 = (ν2 − ν1) − ω2(t2 − t1) ± x/r2

where the + sign means a passage behind the planet, while the - sign is for passaged ahead of it.
It should be noted that the former is typical of missions that requires injection into a planetary
orbit, while the latter allows the exploitation of the swin–by effect, where the spacecraft gains
energy from the planet.

Letting the offset distance of ~v3 be defined as y = x sinϑ = x(v2/v3) sinϕ2 and remembering
that the velocity ~v3 represents the hyperbolic excess speed upon entering the planet’s sphere
of influence, the (constant) magnitude of the angular momentum is h = yv3, while the energy
of the approach orbit is Ee ≈ v2

3/2. As a consequence, the other orbital elements can easily

be found as p = h2/µT (parameter) and e =
√

(1 + 2Eeh2/µ2
T , where µT is the gravitational

parameter of the target planet.

The periapsis radius is thus given by rp = p/(1 + e) and from conservation of angular
momentum, the velocity at periapsis passage is vp = yv3/rp.

2In this section, the subscript T will indicate quantities related or referred to the target planet.
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In general, the design variable is a given periapsis radius (e.g. for injection onto a planetary
orbit), which allows for the evaluation of a certain offset distange, y = vprp/v3. But from
conservation of energy it is also

Ee =
v2
3

2
=
v2
p

2
− µT

rp
=⇒ vp =

√

v2
3 +

2µT

rp

so that the offset distance is given by

y =
rp
v3

√

v2
3 +

2µT

rp

From the practical point of view, it is important to determine the offset distance which
results into a periapsis radius equal to the radius of the target panet. This value is called impact

parameter, b, inasmuch as any offset minor than b will result with an impact on the planet
surface. By letting rp = rT , it is

b =
rT
v3

√

v2
3 +

2µT

rT

It should be noted that, being 2µT /rT > 0, it is always b > rT .
The circle of radius b placed at the boundaries of the sphere of influence and perpendicular to

the direction passing through the planet in the direction of the asymptote of the entry hyperbola
is the effective collision cross section. If the probe must enter the planet atmosphere, which is
always a thin layer of width ha several order of magnitude smaller than the planet radius,
ha ≪ rT , the entry corridor is an anulus of inner radius b and width db, where db = (db/drT )ha

is extremelemy small.
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