Outline

- Class Introductions
- Class Goals
- Syllabus
- A Star is born
- History lesson 101

Next Class:

The ISM
This Class (Lecture 1):
Introductions/History

TR 1300-1420
134 Astronomy Building

Leslie Looney

Phone: 244-3615
Email: lwl@uiuc.edu
Office: Astro Building \#218
Office Hours:
Drop by or by appointment

Welcome to Astro 596

The Universe: Some Facts to Help you Live in it

- It's a great time to take this course!
- New instruments are putting theories and observations of star formation at the cutting-edge of astrophysics.
- New observations and theories are bringing together a much better picture of star formation

Star Formation
"We had the sky up there, all speckled with stars, and we used to lay on our backs and look up at them, and discuss about whether they was made or only just happened. Jim he allowed they was made, but I allowed they happened; I judged it would have took too long to MAKE so many. Jim said the moon could a LAID them; well, that looked kind of reasonable, so I didn't say nothing against it, because I've seen a frog lay most as many, so of course it could be done."

The Adventures of Huckleberry Finn by Mark Twain

After this course one should be able to:

- Understand our current scientific view of star formation in the universe/galaxy.
- Conceptualize how observations are used in addressing the main outstanding questions in start formation.
- Propose what the future may hold for the field.
- Make informed decisions about star formation.
- Summarize a scientific journal in the field of observational star formation and make a judgment on quality/topic/and conclusions.

Course Outline

Topics:

- ISM (InterStellar Medium)
- GMCs (Giant Molecular Clouds)
- Cores (Prestellar/starless)
- Protostars
- Binarity
- Massive star evolution
- Jets and outflows from YSOs (Young Stellar Objects)
- Circumstellar disks
- Massive stars
- Take part of the journey, and let's enjoy the ride.

Course Requirements

Requirement	Percentage of Grade	Points
Class Participation	40%	40
Discussion Paper Summary	10%	10
Discussion Lead	35%	35
Discussion Secondary	15%	15
Total	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 0}$

- Main format will be a 20-30 minute lecture, followed by discussion of a current journal or review article
- Main thrust of course is ability to read observational star formation papers, get the point, understand observational evidence, and see possibly difficulties.

Class Participation: 40\%

Discussion Paper Summary 10\%

- You are expected to attend lectures.
- We can not discuss the journal articles if no one is here.
- I find this is a very effectual teaching tool, so I am using class participation as 40% of the class grade.
- On the other hand, I, of course
 expect some absences, but please try to tell me in advance of any missed classes.
- Schedule of papers is posted
- Each class a student is chosen (randomly before class).
- That student gives a 5 minute (MAXIMUM) verbal summary of the paper.
- What are the fundamental conclusions of the paper?
- Include impact based on class lectures and previous discussions.

Procrastination

Class Discussion Lead: 35\%

- Each student has to lead at least one discussion.
- Papers are all observational majority content.
- An electronic presentation is given using ppt or pdfs or whatever.
- The presentation MUST be less than 20 minutes without interruptions (can be longer if questions interrupt).

Class Discussion Lead: Slides

1. Introduction

- Describe issues of paper and background
- Use concepts from class.
- Set observations in scientific background

2. Observations

- Discuss the most relevant observations in paper.
- What are the difficulties/advantages of the observations?
- What is being traced? How is it related to main points?

3. Main Points (core)

- What do the observations suggest? Relationship to theory?
- Make sure to show figures from the paper that help lead a discussion.

4. Outstanding issues.

- What would affect these results? Issues in sample or interpretation?

5. Conclusions

- Place observations in overall context of star formation.

Discussion Secondary

Textbooks

- No textbooks are required for this class
- But, here are some useful books

"The Physics and Chemistry of the Interstellar Medium" by A.G.G.M. Tielens
"Accretion Processes in Star Formation" by Lee Hartmann

는
 The Form of Stars

Class Discussion Lead: Slides

Should not include

1. Step by step details of observations.
2. Step by step details of connection to theory.
3. Too much information such that the main points are not clear.

Should include

1. Careful, well thought out goals
2. Informed decision on what to include and what to exclude
3. Humor as well as insight

- Each paper will have a discussion secondary.
- This student must also read one of the important referenced papers from the reviewed paper.
- I recommend that the secondary work with the primary to discuss which paper to chose from the references.
- The student will give a 5 minute maximum verbal summary of that paper.
- The decision on timing of the summary (beginning, middle, or end of the primary discussion) should be decided by the secondary and primary ahead of time.

A Star is Born!

A Star is Born

- Actually a new-ish concept .
- Still, let's compare Hollywood to Star Formation
- How much do we know?

- Hollywood has been making stars since 1910 (almost 100 years)
- First Hollywood movie was "In Old California"
- The Universe is 13.7 billion years old, and has been making stars for ~ 13.5 billion years
- Hubble's Law shows finite Universe age (1929)
- Evidence of Universe age from WMAP (2004)
- Globular cluster ages (1930's)

- Marilyn Monroe is not the \#1 box office star today
- And likewise, stars are not permanent fixtures of the Milky Way.
- We know this from interpretation of the HR diagram in the 1920's - Stars evolve

Massive Stars: $>10 \mathrm{M}_{\text {sun }}$ The James Dean of Stars

Live Fast

Star life is struggle vs gravity
Nuclear fires keep hot, stable

Die Young

- Fuel exhaustion \Rightarrow collapse
- Core becomes dense, "bounce"
- Shock wave launched
\Rightarrow Supernova explosion!

Leave a Beautiful Corpse

- Ultradense "cinder"
neutron star/black hole
- Most material ejected at high speed

How to Make A Star Fast and Easy

,

The Hard Road To Stardom

1. Find (more than) a whole lot of gas \& dust, break it into many pieces \& stir it up all the time
2. Add gravity, magnetic fields \& plenty of harsh light
3. Wait about 1 million years for (slow?) gravitational collapse
...While this happens, a disk \& outflow will form, thanks to the spin the stirring gave your creation...Oh, and watch out for other stars \& blobs whizzing by, trying to mess up your plans
4. Turn on fusion (of deuterium, and worry about hydrogen later)
5. Voila, you're a new star, with a spinning disk of hanger-on groupies that can form planets
6. Start Fusing hydrogen \& join the "main sequence" (Actors' Equity)

Jan 16, 2007
Astronomy 596 Spring 2007

"You learn a lot by watching"

Yogi Berra

- Astronomy does not advance by experiment
- We can't arrange for "star birth" or "star death"
- We have to watch and wait for things to happen
- We have to take what we are given
- mostly the electromagnetic spectrum

History Lesson 101: Universal Gravity and Star Formation

The Nebulae
0

1738-1822
Observations relating to the Construction of the Heavens, 1811, Phil. Trans., Cl, 269-336.

Jan 16, 2007
Astronomy 596 Spring 2007 Much of the this slide was borrowed from Charles Lada

The Nebulae

 comparison, ...an annual description of the human figure, were it given from the birth of a child till he comes to be a man in his prime.""but... why should we not look up to the universal gravitation of matter as the cause of every condensation, accumulation, compression and concentration of the nebulous matter?

Observations relating to the Construction of the Heavens, 1811, Phil. Trans., Cl, 269-336.

Nature of Nebulae

"The riddle of nebulae was solved. The answer which had come to us in the light itself read: Not an aggregation of stars, but luminous gas...the light of this nebula had been emitted by a luminous gas."

William Huggins 1824-1910

The New Astronomy of the Nineteenth Century, June, 1897

Relationship to Stars?

At that time it did not fit together.

The composition of these "luminous fluids", being composed of hydrogen and nitrogen, differed from stars and planets and could not be the material from which stars formed as Herschel had suggested!

"The conclusion is strongly indicated that the order of the abundance of the elements in the solar atmosphere is much the same as in the earth's crust."

Russell, Dugan \& Stewart 1927 in Astronomy, Ginn \& Co., 502.

But clearly interstellar

- 1919: Edward Barnard, catalog of dark nebulae \rightarrow holes in stellar distribution or obscuring matter?
- As Herschel called B86,
"Loch im Himmel"

Stellar Atmospheres: Phd Thesis Harvard 1925

Two fundamental results:
1-Stars have uniform composition and
2- Stars are primarily made up of hydrogen

C. Payne-Gaposchkin 1900-1980
"It is the best doctoral thesis I have ever read" H.R. Russell
"undoubtably the most brilliant PhD thesis ever written in astronomy" O. Struve

First Proof:
Expanding OB Associations

V. A. Ambartsumian 1906-1996

Ambartsumian (1949) identified loose associations of OB stars with stellar densities less than the general galactic field and he demonstrated that such groups are unstable and will dissolve into the field on timescales of 10^{7} years, considerably less than the age of the Galaxy.

Jan 16, 2007

Second Proof: Nuclear Powered Stars

In 1938 Bethe and others worked out the fusion reactions (CNO and p-p cycles) that powered stars:

Stars are thermo-nuclear reactors that fuse the primary product of the big bang into heavier elements of the periodic table releasing enormous amounts of energy in the process.

Massive OB stars burn nuclear fuel at such prodigious rates that their lifetimes must be less

Hans Bethe 1906-2005

Third Proof: A Hydrogen Rich ISM

The discovery of pervasive HI emission in the galaxy by Ewen and Purcell in 1951 convincingly demonstrated that the raw material for building stars existed in substantial concentrations between the stars. HI emission was predicted by van de Hulst in 1945.

Dusty ISM

- 1930 (Robert Trümpler): Discovered interstellar extinction, (distance to open clusters is overestimated)
- Extinction followed a $\sim \lambda^{-1}$ law

Diffuse Interstellar Bands

- 1918 (Mary Lea Heger): Discovery of the Diffuse Interstellar Bands (DIBs)
- Merrill and Wilson, 1938
- About 250 DIBs are known
- The carriers of most DIBs are unidentified
$\lambda 5780$
- Some DIBs may be due to large carbonbearing molecules

Magnetic Field

- 1949 (John Hall \& William Hiltner): Correlation of polarization of starlight with reddening \rightarrow aligned grains \rightarrow interstellar magnetic field
- Confirmed by discoveries of synchrotron radiation, Faraday rotation, and Zeeman splitting in the 21 cm line

- 1937 - 40 (Swings \& Rosenfeld, McKellar, Adams): first small interstellar molecules ($\mathrm{CH}, \mathrm{CH}+, \mathrm{CN}$)

Spectrum toward ζ Oph by Adams (1941), showing the sharp interstellar CH and CN lines superposed on the broad stellar He line
an 16, 2007
Astronomy 596 Spring 2007

And...And.. And..

- 1960s: Discovery of soft X-ray background from hot, ionized gas
- 1950's - 60's: 21 cm maps \rightarrow galactic disk contains $5 \times 10^{9} \mathrm{M}_{\odot}$ of gas ($\approx 10 \%$ of disk mass) and $<\mathrm{n}>=1 \mathrm{~cm}^{-3}$
- 1968: NH^{3} (first polyatomic molecule)
- 1970: CO J = 1-0 emission at 2.6 mm

And...And.. And..

Jan 16, 2007
(10.) Multiwavelength Milky Way

