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Summary

This addendum describes the additional variables and unsteady loads which appear when full
dynamics are considered in ASWING. Other extensions include an unsteady liftting-line model and
a structural damping model. A general unsteady atmospheric gust velocity field is also considered.

The governing discrete equations for the extended model form a system of coupled 1st-order ODE’s
in time. These are numerically solved via implicit time marching. Both 1st-order and 2nd-order
accurate time discretizations are considered.

In addition to the nonlinear time marching, linearized unsteady analyses are derived, both for the
forced-response case (Bode analysis), and for the natural-response case (Eigenmode analysis). A
Reduced Order Model (ROM) is constructed using the eigenmodes as a basis, for the purpose of
approximate but very fast forced-response calculations, and for control-law synthesis.
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1 Unsteady State Variables

To treat the general case with unsteady deformations, the structural state vector ~ri, ~θi, ~Mi, ~Fi is
now augmented with the local rates ~ui and ~ωi. These are the linear and angular velocities of the
local csn beam axis system relative to the xyz body axes, as shown in Figure 1. The augmenting
equations are then simply the rate definitions with the appropriate transformations included.

~̇ri = ~ui (1)

~̇θi = ¯̄C ~ωi (2)

¯̄C =
[

¯̄T
T ¯̄K

]

−1
=







1 cosϕ tanψ sinϕ tanψ
0 cosϕ/ cosψ sinϕ/ cosψ
0 − sinϕ cosϕ






(surface beam) (3)

¯̄C =
[

¯̄T
T ¯̄K

]

−1
=







cosψ sinψ 0
− sinψ/ cosϕ cosψ/ cosϕ 0
sinψ tanϕ − cosψ tanϕ 1






(fuselage beam) (4)

The overall state vector is also augmented with the aircraft-frame position ~R in inertial space, and
the aircraft-frame orientation Euler angles Φ,Θ,Ψ relative to inertial space.
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Figure 1: Inertial axes XYZ, body axes xyz, and local beam axes csn.
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2 Frame Kinematics

A hierarchy of three axis systems, shown in Figure 1, is used to describe the overall aircraft motions
and deformations. The relative positions and motions of the axis-system origins are defined by the
following quantities.

~R xyz position relative to XYZ ~ri csni position relative to xyz

~U xyz velocity relative to XYZ ~ui csni velocity relative to xyz

~Ω xyz rotation rate relative to XYZ ~ωi csni rotation rate relative to xyz

~Θ xyz Euler angles relative to XYZ ~θi csni Euler angles relative to xyz

Note that there is only one XYZ and one xyz system, but a multitude of csni systems, one for
each beam node i.

The Euler angle triplet ~Θ = {Φ,Θ,Ψ}T is not a proper vector, and the symbol ~Θ will be used
only as a convenient terse notation. The following quantities are also convenient to describe local
beam-section dynamics.

~rp a point fixed to local csn system

∆~rp offset of point relative to csn origin

All vectors are normally expressed in terms of their xyz body-axes components. The ( )E subscript
denotes a vector given in terms of the “Earth” inertial axes XYZ. The component transformation
of any vector ~A from XYZ to xyz is via the three standard aircraft Euler angles, applied in the
sequence −Ψ, Θ, −Φ about z, y, x, respectively. The negated rotations account for the fact that
Ψ and Φ are rotations about the standard axes [1] which have x and z reversed from the present
system. Figure 1 shows the rotation directions. The inverse transformation of any vector ~A from
xyz to XYZ is then defined via the backward sequence Φ, −Θ, Ψ.











AX
AY
AZ











=







¯̄TE

















Ax
Ay
Az











(5)

¯̄TE =











cosΨ sinΨ 0

−sinΨ cosΨ 0

0 0 1





















cosΘ 0 sinΘ

0 1 0

−sinΘ 0 cosΘ





















1 0 0

0 cos Φ sinΦ

0 −sinΦ cos Φ











(6)

¯̄TE =













cosΘ cosΨ −sinΦ sinΘ cosΨ + cosΦ sinΨ cos Φ sinΘ cosΨ + sinΦ sinΨ

−cosΘ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ −cosΦ sinΘ sinΨ + sinΦ cosΨ

− sinΘ −sinΦ cosΘ cos Φ cosΘ













(7)

The aircraft rotation rate relative to the inertial axes is related to the time rate of change of the
transformation tensor by

˙̄̄
TE = ¯̄ΩE

¯̄TE −→ ¯̄ΩE ≡







0 −ΩZ ΩY
ΩZ 0 −ΩX
−ΩY ΩX 0






=

˙̄̄
TE

¯̄T
T

E
(8)
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which gives explicit expressions for the three rotation rate components.
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ΩY

ΩZ











=







¯̄KE





















Φ̇

Θ̇

Ψ̇















(9)

¯̄KE =







−cosΨ cosΘ sinΨ 0

sinΨ cosΘ cosΨ 0

sinΘ 0 −1






(10)

The rotation rate components in the body axes are then related to the Euler angle rates as follows.
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¯̄T
T

E
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T
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Φ̇
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(11)











Ωx

Ωy

Ωz











=







−1 0 sinΘ

0 cosΦ sinΦ cosΘ

0 sinΦ −cos Φ cosΘ





















Φ̇

Θ̇

Ψ̇















(12)

3 Trajectory Equations

In the quasi-steady formulation, the aircraft position ~RE and orientation ~Θ are prescribed explicitly.
In the unsteady case, ~RE evolves via its rate equation.

d~RE

dt
− ¯̄TE ~U = 0 (13)

Note that ~RE(t) does not directly couple to the aircraft structural dynamics. It is needed only to
interrogate an imposed gust velocity field ~VEgust

(~rE) implemented in the user-supplied subroutine
VGUSTE, and of course it conveys trajectory information. The rate equation residual for the Euler
angles is simply the inverse of equation (12).

d~Θ

dt
− ¯̄CE

~Ω = 0 (14)

¯̄CE =
[

¯̄T
T

E

¯̄KE

]

−1
=







−1 sinΦ tanΘ −cosΦ tanΘ

0 cos Φ sinΦ

0 sinΦ/ cosΘ −cos Φ/ cosΘ






(15)

Normally only Φ and Θ couple to the structural dynamics by their influence on the gravity vector
~g in body axes. If a gust velocity field ~VEgust

(~rE) is being imposed, then all three Euler angles will

come into play via the necessary transformation ~RE, ~r → ~rE.

The aircraft-frame velocity ~U and rotation rate ~Ω evolve according to their kinematic rate equations.

d~U

dt
+ ~Ω× ~U − ~ao = 0 (16)
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d~Ω

dt
− ~αo = 0 (17)

The inclusion of the frame-rotation term ~Ω× ~U makes ~ao the absolute acceleration vector relative to
the inertial XYZ earth system. The simple rate d~U/dt is merely the relative acceleration, equivalent
to (V̇∞ , V∞β̇ , V∞α̇) for the case α0 = β0 = 0.

The absolute acceleration ~ao and angular acceleration ~αo in equations (16) and (17) are additional
variables included in the state vector, which therefore must have additional constraining equations.
For an aircraft anchored to a mount having known motion (e.g. wind tunnel model), simple direct
constraints are appropriate:

~ao − ~aspec = 0 (18)

~αo − ~αspec = 0 (19)

For an aircraft in free flight, the following indirect constraints are used, like in the quasi-steady
case.

~F = 0 (20)

~M = 0 (21)

The ~F and ~M forces and moments include gravity and inertial reaction loads. Hence, they are
equivalent to “F −ma = 0”, and therefore are correct even for a maneuvering aircraft.

4 Inertial velocity, acceleration

The absolute velocity ~v and acceleration ~a relative to the inertial frame have the following forms
at the point ~ri on the beam s-axis.

~v(~ri) ≡ ~vi = ~U + ~ui + ~Ω× ~ri (22)

~a(~ri) ≡ ~ai = ~ao + ~̇ui + ~αo × ~ri + ~Ω×
(

~Ω× ~ri
)

+ 2~Ω× ~ui (23)

The centrifugal and Coriolis acceleration terms appear explicitly. The usual frame-rotation accel-
eration term ~Ω× ~U is contained in ~ao by virtue of relation (16), as discussed previously.

The offset vector ∆~rp is fixed to the local c, s, n axes which have the relative rotation rate ~ωi. Hence
the relative rate of change of the offset vector is due only to this rotation.

d

dt
∆~rp = ~ωi × ∆~rp (24)

The absolute velocity and acceleration of ~rp then have the following form.

~rp = ~ri + ∆~rp (25)

~v(~rp) ≡ ~vp = ~vi +
(

~Ω+ ~ωi
)

× ∆~rp (26)

~a(~rp) ≡ ~ap = ~ai +
(

~αo + ~̇ωi
)

×∆~rp

+ ~Ω×
(

~Ω×∆~rp
)

+ ~ωi×(~ωi×∆~rp) + 2~Ω×(~ωi×∆~rp) (27)

7



5 Aerodynamic loads

Unsteady aerodynamic loads are represented by a bound circulation Γ(s, t) which is now time-
dependent. The usual Fourier expansion along the surface beam can still be employed, but it now
has time-dependent coefficients.

Γ(θ, t) =
K
∑

k=1

Ak(t) sin(kθ) (28)

Alternatively, a piecewise-constant spanwise distribution Ai(t) can be employed, which is equivalent
to the usual Vortex-Lattice treatment where the strength of each horseshoe vortex is an unknown.

The inertial-frame velocity ~vc/4 of the bound vortex at the quarter-chord location ~rc/4 is given by
equation (26).

∆~rc/4 = (c̄/4−x̄o) ĉ (29)

~vc/4 = ~vi +
(

~Ω+ ~ωi
)

× ∆~rc/4 (30)

The velocity relative to the bound vortex is then given by the usual kinematic velocity summation.

~V (~rc/4, t) = ~Vind(~rc/4, t) + ~Vgust(~rc/4, t) − ~vc/4 (31)

~Vind(~rc/4, t) =
K
∑

k=1

~vk(~rc/4, t)Ak(t) + ~wvol(~rc/4)V∞(t) (32)

The induced velocity ~Vind is still given in terms of influence functions, which in effect neglects the
shed vorticity in the wake. This shed vorticity will be approximated later when the flow-tangency
constraints on the Ak coefficients are formulated. The volume influence function ~wvol is assumed to
be unaffected by unsteady effects except via the time dependence of the instantaneous freestream,
which is in effect a quasi-steady approximation. The gust velocity ~Vgust will be treated in more
detail in a later section.

The aerodynamic lift vector is taken to be the sum of steady and unsteady parts, computed using
the steady and unsteady vector form of the Kutta-Joukowsky theorem, with the total relative
velocity ~V taken at ~rc/4.

~flift = ~fS + ~fU (33)

~fS = ρΓ ~V × ŝ (34)

~fU = ρ
∂Γ

∂t

c̄

|~V⊥|
~V × ŝ (35)

The profile moment vector ~mlift is constructed to be consistent with Theodorsen’s theory [2].

~mlift = ∆~rc/4 × ~fS + ∆~rc/4 × ~fU +
1

2
ρ |~V⊥|

2 c̄2 cm ŝ (36)

Note that both parts of the lift act at the quarter-chord, which gives Theodorsen’s result at both
the low and the high reduced-frequency limits. The profile drag loads ~fdrag are assumed to be
unchanged from the steady case.

8



6 Loads

6.1 Inertial and gravity loads

The absolute acceleration at the local mass centroid of a beam element is given by equation (27),
with ∆~rcg being the offset vector from the s axis.

∆~rcg = ccg ĉ + ncg n̂ (37)

~acg = ~ai +
(

~αo + ~̇ωi
)

× ∆~rcg

+ ~Ω×
(

~Ω×∆~rcg
)

+ ~ωi×(~ωi×∆~rcg) + 2~Ω×(~ωi×∆~rcg) (38)

The local gravitational, inertial-reaction, and precession loads retain their quasi-steady form, except
that the local beam section rotations now also include ~ω and ~̇ω.

~facc = µ (~g − ~acg) (39)

~macc = ∆~rcg × ~facc − ¯̄T
T

¯̄ι ¯̄T
(

~αo + ~̇ωi
)

−
(

~Ω+ ~ωi
)

×
{

¯̄T
T

¯̄ι ¯̄T
(

~Ω+ ~ωi
)}

(40)

6.2 Apparent-mass loads

The surface apparent-mass loads still depend only on the normal component of the local acceleration
~ac/2 evaluated at midchord, per Theodorsen’s theory [2].

∆~rc/2 = (c̄/2−x̄o) ĉ (41)

~ac/2 = ~ai +
(

~αo + ~̇ωi
)

× ∆~rc/2

+ ~Ω×
(

~Ω×∆~rc/2
)

+ ~ωi×
(

~ωi×∆~rc/2
)

+ 2~Ω×
(

~ωi×∆~rc/2
)

(42)

Like the acceleration loads, the apparent mass loads include the effects of the local beam section ~ω
and ~̇ω.

~fam =
π

4
ρ c̄2

[

~V ×
(

~Ω+ ~ωi
)

· n̂ − ~ac/2 · n̂

]

n̂ (surface beam) (43)

~mam = −
π

4
ρ c̄2

c̄

4

[

~V ×
(

~Ω+ ~ωi
)

· n̂ +
c̄

8

(

~αo + ~̇ωi
)

· ŝ

]

ŝ + ∆~rc/2 × ~fam (44)

The apparent-mass loads on a fuselage beam have the same form as the quasi-steady case.

~fam = −2π ρR2
(

~ai − (~ai · ŝ) ŝ
)

(fuselage beam) (45)

The unsteady effects are hidden in the local acceleration ~ai given by (23), which now includes the
local beam velocity ~ui and acceleration ~̇ui,

6.3 Point-mass loads

The local relative air velocity ~Vp and the absolute acceleration ~ap of the point mass follow from
relations (26) and (27) with the usual pylon offset vector ∆~rp. The force and moment applied to
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the beam is then the same as the quasi-steady case.

∆~Fpmass = mp (~g − ~ap) +
1

2
ρ |~Vp| ~Vp (CDA)p + ~Feng (46)

∆ ~Mpmass = ∆~rp ×∆~Fpmass −
(

~Ω+ ~ωi
)

× ~Hp

− ¯̄Ip
(

~αo + ~̇ωi
)

−
(

~Ω+ ~ωi
)

×
(

¯̄Ip (~Ω+ ~ωi)
)

+ ~Meng (47)

Again, the unsteady effects are buried in ~ap and ~Vp, which now include the effects of ~ui, ~ωi, and

their rates ~̇ui, ~̇ωi.

6.4 Strut and joint loads

The strut and joint loads use a static formulation and are unaffected by dynamic effects. Hence,
they retain their steady form without change.

7 Velocity Influence Coefficients

7.1 Locally-2D approximation

ASWING does not explicitly track shed vorticity. Instead, to compute the total velocity at the beam
points, it uses a simplified approach where only horseshoe vortices are placed on the surface beams,
and their velocity influences at all control and beam points are computed via the usual horseshoe
vortex influence coefficients ~vk, together with the instantaneous (unsteady) vortex circulations.
The source and doublet elements on the fuselage beams are similarly computed via their influences
~wvol. The influence of the shed vorticity is assumed to act only locally, which is quantified by an
empirical lag term added to the following overall induced velocity summation. This added term
directly modifies the unsteady flow-tangency circulation constraint.

~Vind(~rc.p., t) =
K
∑

k=1

~vk(~rc.p.)Ak(t) + ~wvol(~rc.p.)V∞(t) −
b

V⊥

∂Γ

∂t
n̂c.p. (48)

(

~Vc.p. · n̂c.p.
)

unsteady
=

(

~Vc.p. · n̂c.p.
)

steady
−

b

V⊥

∂Γ

∂t
= 0 (49)

The new lag term accounts for the downwash of the spanwise vorticity being shed at a rate of
∂Γ/∂t, as shown in Figure 2, with b = 2/π being a suitable lag constant. This value is obtained by
comparing this approximate treatment with Theodorsen’s theory.

In the small-disturbance 2D thin-airfoil limit, with the control point at the 3/4 chord location, the
unsteady flow tangency constraint (49) becomes

V ϑ − ż +
c̄

4
ϑ̇ −

1

πc̄
Γ −

b

V

dΓ

dt
= 0 (50)

or Γ + πc̄
b

V

dΓ

dt
= π c̄

[

V ϑ − ż +
c̄

4
ϑ̇

]

(51)

where ϑ(t) and z(t) are the pitch and plunge motions. With the sinusoidal motion

ϑ(t) = ϑ̃eiωt z(t) = z̃eiωt Γ(t) = Γ̃eiωt
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Γ(t)
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−Vt

V 1Γ
γ  =  −

ignored

Figure 2: Unsteady downwash due to recently-shed vortex sheet strength γ related to current
circulation rate of change.

the flow tangency equation reduces to

Γ̃ (1 + 2π ik b) = π c̄ V

[(

1 +
1

2
ik

)

ϑ̃ − ik
z̃

c̄/2

]

(52)

k =
ωc̄

2V
(53)

where k is the standard reduced frequency based on the half-chord. The resulting circulation-related
unsteady complex lift computed via equations (34,35) is

flift = ρV Γ + ρc̄
∂Γ

∂t
(54)

f̃lift = ρV Γ̃ (1 + 2ik)

=
1

2
ρV 2 c̄ 2π

[(

1 +
1

2
ik

)

ϑ̃ − ik
z̃

c̄/2

]

1 + 2ik

1 + 2πik b
(55)

For a perfect match with Theodorsen’s result, the complex fraction on the righthand side should

be equal to the lag function C(k) = F (k) + iG(k), which has the asymptotic behavior C(k) → 1/2
as k → ∞. This indicates that b = 2/π is the appropriate choice for this empirical lag constant.
This defines an implied effective lag function.

Cimplied(k) = Fimplied(k) + iGimplied(k) =
1 + 2ik

1 + 4ik
(56)

In summary, when the empirically-lagged flow-tangency circulation constraint (49) is used for a
nearly-2D oscillatory case, the oscillatory lift and moment computed using expressions (34,35)
will be the same as if a standard Theodorsen analysis were performed, but with the approximate
Cimplied(k) function (56) being used in lieu of the actual exact C(k). As shown in Figure 3, the two
compare quite reasonably. In fact, it is doubtful whether a better match could be obtained with a
“correct” treatment of the unsteady wake, given the lifting-line representation of the surface.
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Figure 3: Comparison of approximate lag function components implied by empirical lagged flow
tangency treatment, compared with exact Theodorsen lag function components.

8 Structural Damping

8.1 Formulation

Structural damping is modeled by assuming that material stresses and loads are proportional not
only to the strain, but also to the strain rate. For example, a simple uniaxial stress/strain relation
for the structural material would have the form

σss = E (ǫss + tdǫ̇ss)

where td is a specified characteristic damping time. Any simple harmonic oscillator which uses this
material as the restoring spring will have a damping ratio, frequency, and damping time constant
given by

ζ =
1

2
ω0td ω = ω0

√

1− ζ2 σ = −ω0 ζ

where ω0 is the oscillator’s undamped natural frequency. Figure 4 shows the effect of the added
damping on the characteristic roots. For ω0td ≪ 1, there is little effect. Critical damping (ζ = 1)
occurs when ω0td = 2.

The damping is incorporated into the beam strain/load and curvature/moment relations.











γc + tγc γ̇c
ǫs + tǫs ǫ̇s
γn + tγn γ̇n











=











Fc/GKc

Fs/EA
Fn/GKn











+







0 −nea 0
nta 0 −cta
0 cea 0













¯̄E
−1

















M ′

c

M ′

s

M ′

n











(57)











κc − κc0 + tκc κ̇c
κs − κs0 + tκs κ̇s
κn − κn0 + tκnκ̇n











=







¯̄E
−1

















M ′

c

M ′

s

M ′

n











(58)
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Figure 4: Modification of undamped roots by the addition of damping time td.

A different damping time has been defined for each component, although this level of detail may not
be necessary in practice. It is reasonable to assume that the surface or beam has one damping time
tǫ characterizing the beam material which resists spanwise strains, such as the sparcaps. Another
damping time tγ is assumed to characterize the material resisting shearing, such as the torsion skin.
We can then define all six damping times by specifying only tǫ and tγ .











tγc
tǫs
tγn











=











tγ
tǫ
tγ





















tκc
tκs
tκn











=











tǫ
tγ
tǫ











(59)

8.2 Implementation

8.2.1 Shear and extension strain rates

To implement equations (57) and (58), it is necessary to express the time rates of the strains and
curvatures, γ̇, ǫ̇, κ̇ in terms of the state variables. First we rearrange the three previously derived
deflection/strain relations, and take the time derivative.











γc
1 + ǫs
γn











a

∆s0 = ¯̄T a ∆~r →











γ̇c
ǫ̇s
γ̇n











a

∆s0 = ¯̄T a ∆~̇r +
˙̄̄
T a ∆~r

Using ~̇r = ~u and
˙̄̄
T = − ¯̄T ¯̄ω then gives a suitable expression for the strain rates in terms of the

beam element positions, velocities, and rotation rates.











γ̇c
ǫ̇s
γ̇n











a

∆s0 = ¯̄T a {∆~u − ~ωa × ∆~r} (60)
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Starting again with the previously derived deflection/strain compatibility relations











∆x
∆y
∆z











=







¯̄T
T

a

















γc
1 + ǫs
γn











a

∆s0

we use (57) and (60) to eliminate the strains and strain rates in terms of the beam state variables.
This gives the following final discrete deflection/strain compatibility equations.











∆x
∆y
∆z











=







¯̄T
T

a



























Fc/GKc

1 + Fs/EA
Fn/GKn











+







0 −nea 0
nta 0 −cta
0 cea 0













¯̄E
−1

















M ′

c

M ′

s

M ′
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∆s0

−







tγc
tǫs
tγn






{∆~u − ~ωa × ∆~r} (61)

8.2.2 Curvature strain rates

Taking the time derivative of the rearranged angle/curvature relation gives











κc
κs
κn











∆s = ¯̄Ka ∆~θ →











κ̇c
κ̇s
κ̇n











∆s = ¯̄Ka ∆~̇θ +
˙̄̄
Ka ∆~θ (62)

where the extension-rate contribution from ˙(∆s) has been neglected since it’s expected to be very
small. The rate of the curvature-definition matrix ¯̄K(ϕ, ϑ, ψ) is expanded using its partial deriva-
tives,

˙̄̄
K = ¯̄Kϕ ϕ̇ + ¯̄Kϑ ϑ̇ + ¯̄Kψ ψ̇

so that

˙̄̄
K ∆~θ =

[

¯̄Kϕ ϕ̇+ ¯̄Kϑ ϑ̇+ ¯̄Kψ ψ̇
]

∆~θ =
{

¯̄Kϕ∆~θ
}

ϕ̇ +
{

¯̄Kϑ∆~θ
}

ϑ̇ +
{

¯̄Kψ∆~θ
}

ψ̇ ≡ ∆ ¯̄K ~̇θa

The ∆ ¯̄K matrix has the following forms for surface and fuselage beams.

∆ ¯̄K =









0 − cosψ sinϑ∆ϕ− cosϑ∆ψ − sinψ cosϑ∆ϕ

0 0 − cosψ ∆ϕ

0 cosψ cos ϑ∆ϕ− sinϑ∆ψ − sinψ sinϑ∆ϕ









(surface beam)

∆ ¯̄K =









sinϕ sinϑ∆ψ − sinϑ∆ϕ− cosϕ cos ϑ∆ψ 0

− cosϕ∆ψ 0 0

− sinϕ cos ϑ∆ψ cos ϑ∆ϕ− cosϕ sin θ ∆ψ 0









(fuselage beam)

Equation (62) can now be written as











κ̇c
κ̇s
κ̇n











∆s = ¯̄Ka ∆~̇θ + ∆ ¯̄K ~̇θa (63)
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and substituting ~̇θ = ¯̄K
−1 ¯̄T~ω then gives the curvature rates in terms of the state variables.










κ̇c
κ̇s
κ̇n











∆s = ¯̄Ka ∆

(

¯̄K
−1 ¯̄T~ω

)

+ ∆ ¯̄K
(

¯̄K
−1 ¯̄T~ω

)

a
(64)

Starting again from the angle/curvature compatibility relations

¯̄Ka ∆~θ =











κc
κs
κn











∆s

we use (58) and (63) to eliminate the curvatures and curvature rates in terms of the beam state
variables. This gives the final discrete angle/curvature compatibility equations.
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−
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∆ϕ0

∆ϑ0

∆ψ0











=







¯̄E
−1

















M ′

c

M ′

s

M ′

n











∆s

−







tκc
tκs
tκn







{

¯̄Ka ∆

(

¯̄K
−1 ¯̄T~ω

)

+ ∆ ¯̄K
(

¯̄K
−1 ¯̄T~ω

)

a

}

(65)

In practice, the second damping term involving ∆ ¯̄K is negligible compared to the first, and can be
omitted in this level of modeling.

9 Gust Field

9.1 Formulation

The atmospheric gust field is specified in Earth coordinates and time: ~VEgust
(~rE, t), which for time-

domain calculations is arbitrary and is provided via a subroutine. The resulting velocity change
∆~V seen by a body-axes location ~r on the aircraft is evaluated by

∆~V (~r, t) = ¯̄T
T

E
~VEgust

(~rE, t) (66)

where ~rE(~r, t) = ~RE + ¯̄TE~r (67)

For the Bode analysis and mode-excitation analysis considered henceforth, the ~VEgust
(~rE, t) field is

treated via its spatial Fourier coefficients. It is also assumed to be sufficiently weak to be treatable
via linearization. Any zE variation in the gust field is also neglected for simplicity, although this
is not a hard requirement. We first define conveniently normalized forms of the streamwise and
spanwise coordinates xE, yE,

ξ = 2xE/c
′

ref (68)

η = 2 yE/b
′

ref (69)

where the streamwise and spanwise reference lengths c′ref ,b
′

ref are arbitrary. The streamwise and
spanwise Fourier series expansion of the gust field is then defined as follows.

~VEgust
(xE, yE, t) =

N
∑

n=0

M
∑

m=0

[

~Acmn cos(mπξ) cos(nπη) + ~Asmn sin(mπξ) cos(nπη)

+ ~Bc
mn cos(mπξ) sin(nπη) + ~Bs

mn sin(mπξ) sin(nπη)
]

(70)
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It should be noted that ~Amn represent the spanwise-symmetric part of the gust field, and ~Bmn
represent the spanwise-antisymmetric part. These series coefficients are in general functions of t,
and are defined by a standard Fourier analysis.

~Acmn(t) =
1

cmcn

∫ 1

−1

∫ 1

−1

~VEgust
cos(mπξ) cos(nπη) dξ dη (71)

~Asmn(t) =
1

cmcn

∫ 1

−1

∫ 1

−1

~VEgust
sin(mπξ) cos(nπη) dξ dη (72)

~Bc
mn(t) =

1

cmcn

∫ 1

−1

∫ 1

−1

~VEgust cos(mπξ) sin(nπη) dξ dη (73)

~Bs
mn(t) =

1

cmcn

∫ 1

−1

∫ 1

−1

~VEgust
sin(mπξ) sin(nπη) dξ dη (74)

ck =

{

2 if k = 0
1 if k > 0

Some of the coefficients in (70), specifically ~As0n,
~Bc
m0,

~Bs
00, have zero mode shapes and hence have

no effect. They are simply omitted from the expansion. The four basic modes in (70) are shown in
Figure 5 for m = 1 and n = 1.
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Figure 5: Four basic gust modes for m = 1 and n = 1.
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We define streamwise and spanwise wavenumbers by

kE = 2πm/c′ref (75)

ℓE = 2π n/b′ref (76)

so that the sinusoidal function arguments in (70) can be alternatively written as follows.

mπξ = kExE (77)

nπη = ℓEyE (78)

This allows specifying the mode shapes either by the mode indices m,n and corresponding reference
lengths c′ref , b

′

ref , or simply by kE, ℓE alone.

9.2 Translation to aircraft frame

For algebraic simplicity, it is assumed that the inertial coordinates ~rE = {xE, yE, zE}
T are oriented

so that xE is along the flight path, and hence ~UE = {UE, 0, 0}
T . Assuming the aircraft flies through

the field at a nearly uniform velocity, we have

~RE = ~UE t = {UEt , 0 , 0}
T (79)

~rE = ~UE t + ¯̄TE~r = {UEt , 0 , 0}
T + ¯̄TE~r (80)

mπξ = kExE = ~k · ~r + ωt (81)

nπη = ℓEyE = ~ℓ · ~r (82)

where ~k = ¯̄T
T

E
{kE, 0, 0}

T (83)

~ℓ = ¯̄T
T

E
{0, ℓE, 0}

T (84)

ω = kEUE = ~k · ~U (85)

9.3 Frozen gust assumption

A real gust field is typically unsteady, as expressed by the time dependence of the ~Amn and ~Bmn
coefficients. For the purpose of computing an aircraft’s linearized dynamic response, the gust will
be assumed to be “frozen” in time. This is justified if the time scales of the dynamic interaction
are much smaller than the time scales of the gust field itself, which is usually the case. Hence, the
~Amn and ~Bmn mode coefficients will be assumed constant. Together with relations (81) and (82),
the Fourier expansion (70) then becomes

~VEgust
(xE, yE) =

N
∑

n=0

M
∑

m=0

[

~Acmn cos(ωt+
~k ·~r) cos(~ℓ·~r) + ~Asmn sin(ωt+

~k ·~r) cos(~ℓ·~r)

+ ~Bc
mn cos(ωt+

~k ·~r) sin(~ℓ·~r) + ~Bs
mn sin(ωt+

~k ·~r) sin(~ℓ·~r)
]

(86)

The unsteadiness in the aircraft frame is then entirely due to its motion through the frozen gust, as
shown in Figure 6. Equation (85) relates the perceived frequency ω to the streamwise wavenumber
kE and flight speed UE.

17



2π/k
U

t

∆

EE

2π/ω
ω = 

E

E Ek  U 

∆ xo

oV(x )

V

Figure 6: Frozen sinusoidal gust, as seen at some observation point xo on aircraft flying through
the gust.

9.4 Bode Response Implementation

To compute the Bode response of the aircraft to atmospheric turbulence, each cartesian component
and each mode of the gust velocity in (86) is separately treated as the linearized complex forcing
quantity. For example, for a vertical gust we assume a small gust field of the form

~VEgust
= {0, 0, δWE}

T (87)

δWE = Ŵ exp(iωt) (88)

Ŵ = AZmn
exp(i~k ·~r) cos(~ℓ·~r) + BZmn

exp(i~k ·~r) sin(~ℓ·~r) (89)

with AZmn
and BZmn

being arbitrary amplitudes of the symmetric and antisymmetric modes. A
practical complication here is that this imposed Ŵ is a complex quantity, and hence it is not
immediately suitable for implementation in real arithmetic. Instead, we impose the real velocity
field

W̄E = ∆g1 cos(~k ·~r) cos(~ℓ·~r) + ∆g2 sin(~k ·~r) cos(~ℓ·~r)

+ ∆g3 cos(~k ·~r) sin(~ℓ·~r) + ∆g4 sin(~k ·~r) sin(~ℓ·~r) (90)

where ∆g1...4 are “gust control variables”. These are set to zero for evaluation of the residuals,
but the (real!) Jacobians to their perturbations are computed as usual. To correctly compute the
linearized response to the gust mode amplitude δWE, it will then be necessary to impose

∆g1 = AZmn
(91)

∆g2 = iAZmn
(92)

∆g3 = BZmn
(93)

∆g4 = iBZmn
(94)

so that the imposed W̄E given by (90) gives the physically correct δWE via (88).

9.5 Gust specification

For given gust wavenumbers ℓE,kE, or equivalently m,n, the gust field amplitude is specified by the
vectors ~Amn, ~Bmn (only their Z-components are shown in (89)). In the actual implementation,
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only one specified gust direction and one symmetry/antisymmetry pair is considered at one time,
e.g.

~Amn = { 0 , 0 , AZmn
}T ~Bmn = { 0 , 0 , BZmn

}T

Some number of indices n = 1 . . . nmax are sampled, which correspond to the spanwise wavenumbers
ℓ = 2π/b′ref . . . 2πnmax/b

′

ref . For each of these spanwise wavenumbers, some range of frequencies ω =
ωmin . . . ωmax is then sampled, which imply the streamwise wavenumbers k = ωmin/UE . . . ωmax/UE.
This in effect gives a 2-dimensional Bode gain and phase versus the two parameters n and ω. The
process can be repeated for streamwise and sideways gusts, if deemed appropriate.

10 Sensors

10.1 Sensor description

A sensor is an ASWING program feature which allows interrogation of the current solution state or
velocity field at a chosen point on a beam or in space. As shown in Figure 7, the sensor consists of
a rigid pylon, mounted on a beam. The intent is to mimic an actual sensor implementation, where

np

sp

cp

c

s

n^

^

^

r

rp

rp∆i

V^

α̂

^βaero, gyro,
accel, GPS

beam loads

Aspec

specV

Figure 7: Sensor on pylon cantilevered from beam. V̂ , β̂, α̂ are sensor axes.

the sensor’s output is affected by the movement of its location due to structural deformations, and
by the aerodynamic influence of nearby surfaces.

10.2 Sensor outputs

The pylon attachment point at discrete node i is where the beam’s relative location and velocity,
and structural loads are sampled:

~ri relative position
~ui relative velocity
~Fi beam forces
~M ′

i beam moments
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The tip of the pylon is imagined to contain an anemometer, alpha and beta vanes, position gyros,
rate gyros, accelerometers, and GPS sensors. It delivers the data listed below. The ()S subscript
denotes that the quantity is in sensor axes, described later.

VS local air velocity
αS local alpha
βS local beta

~ΩS absolute rotation rate
~aS absolute linear acceleration
~αS absolute angular acceleration

ΦS roll angle
ΘS elevation angle
ΨS heading angle

~rE position in earth axes (GPS)
~vE velocity in earth axes (GPS)

The sensor also delivers the following error-integral signals.

∫

(VS − Vc)dt
∫

(αS − αc)dt
∫

(βS − βc)dt
∫

(ΦS − Φc)dt
∫

(ΘS −Θc)dt
∫

(ΨS −Ψc)dt
∫

(~ΩS − ~Ωc)dt
∫

(~aS − ~ac)dt

10.3 Sensor location and sensor axes

The sensor position is specified in the same way as a point mass, with the anchor point location
~ri0 and sensor location ~rp0 are both specified for the undeformed geometry. This defines the csn
components of the connecting pylon ∆~rp0 which are subsequently held fixed as the geometry deforms.

∆~rp0 ≡ ~rp0 − ~ri0 (95)

{ cp sp np }
T = ¯̄T 0 ∆~rp0 (96)

As the beam deforms, the pylon will rotate along with the beam and become the new pylon vector

∆~rp = ¯̄T
T

{ cp sp np }
T = ¯̄T

T ¯̄T 0 ∆~rp0 (97)

with the original pylon attachment point ~rp0 also moving to a new location ~ri. The sensor will
therefore move to a new location

~rp = ~ri + ∆~rp

which is the same as equation (25) for the point mass. The sensor will likewise have a corresponding
absolute velocity ~vp given by equation (26), and absolute acceleration ~ap given by equation (27),
as derived for the point mass case.
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The initial flow sensor axes are conveniently defined by the two vectors ~Vspec and ~Aspec, shown in
Figure 7.

V̂0 = ~Vspec/
∣

∣

∣

~Vspec

∣

∣

∣

β̂0 = ~Aspec × ~Vspec/
∣

∣

∣

~Aspec × ~Vspec

∣

∣

∣

α̂0 = V̂0 × β̂0

Note that α̂0 is not necessarily parallel to ~Aspec, but instead is forced to lie in the plane defined by
~Vspec and ~Aspec. The sensor axes are analogous to the engine axes, except that here the orientation

of the off-axial vectors α̂ and β̂ is not arbitrary.

The rotation of the attachment point and pylon will also give the sensor axes a new orientation.

V̂ = ¯̄T
T ¯̄T 0 V̂0

β̂ = ¯̄T
T ¯̄T 0 β̂0

α̂ = ¯̄T
T ¯̄T 0 α̂0

These three unit vectors define a convenient sensor-axis transformation tensor,

¯̄TS ≡







− V̂ −

− β̂ −
− α̂ −






=







− V̂0 −

− β̂0 −
− α̂0 −













¯̄T
T ¯̄T 0







T

(98)

which depends on the specified ~Vspec and ~Aspec, and also on the local beam Euler angles ϕi, ϑi,
and ψi for the deformed and undeformed geometry.

An alternative “fixed” sensor definition is simply

~rp = ~rp0 (99)

V̂ = V̂0 (100)

β̂ = β̂0 (101)

α̂ = α̂0 (102)

so that the sensor stays at its original specified location and orientation. This may be more suitable
for some applications, although such a sensor might be difficult to physically implement on a real
flexible aircraft. In the program, a fixed sensor is specified by simply attaching its pylon at the
ground point. At the ground point we have ¯̄T

T ¯̄T 0 = ¯̄I, which simplifies all the previous sensor
quantities to the fixed-sensor case.

10.4 Sensor output definitions

At the sensor location, the relative air velocity seen by the sensor is

~V = ~Vind + ~Vgust − ~vp (103)

and the sensed velocity and flow angles are determined as follows.

{uS vS wS}
T = ¯̄TS

~V (104)

VS =
√

u2
S
+ v2

S
+w2

S
=
∣

∣

∣

~V
∣

∣

∣ (105)

αS = arctan (wS/uS) (106)

βS = arctan

(

−vS/
√

u2
S
+ w2

S

)

(107)
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The absolute rotation and accelerations of the sensor, reported as components along the sensor
axes, are

~ΩS = ¯̄TS

(

~Ω+ ~ωi
)

(108)

~aS = ¯̄TS (~ap − ~g) , ~g = ¯̄T
T

E
{ 0 0 −g}T (109)

~αS = ¯̄TS

(

~αo + ~̇ωi
)

(110)

where the absolute sensor acceleration ~ap is given by equation (27). Note that the sensor linear
acceleration ~aS includes gravity, in order to mimic the signal from an actual accelerometer. The
aircraft-frame’s linear acceleration ~ao (which is a component of ~ap), and the aircraft-frame’s angular
acceleration ~αo, are defined by equations (16) and (17).

The sensor axes in earth coordinates are given by







− V̂E −

− β̂E −
− α̂E −






≡







VX VY VZ
βX βY βZ
αX αY αZ






=







− V̂ −

− β̂ −
− α̂ −













¯̄TE







T

(111)

and the apparent aircraft Euler angles as seen by the sensor are then determined using its axes’
earth components as follows.

ΨS = arctan (−VY /VX) (112)

ΘS = arctan

(

−VZ/
√

V 2
X
+ V 2

Y

)

(113)

ΦS = arctan (−βZ/αZ) (114)

A GPS unit at the sensor location will report its earth-based position and velocity with no effect
from the sensor orientation.

~rE = ~RE + ¯̄TE ~rp (115)

~vE = ¯̄TE ~vp (116)

11 Equation system

11.1 Variables

The variables in the overall unsteady problem are

x =

(

~ri ~θi ~Mi
~Fi ~ui ~ωi

∆~rJ ∆~θJ ~MJ
~FJ A1 A2 . . . AK ~RE

~Θ ~U ~Ω ~ao ~αo

δF1
δF2

. . . ∆e1 ∆e2 . . . ∆g1 ∆g2 . . . e

)

ẋ =

(

~̇ri ~̇θi ~̇ui ~̇ωi

Ȧ1 Ȧ2 . . . ȦK ~̇RE
~̇Θ ~̇U ~̇Ω ė

)
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y =

(

VS αS βS ΦS ΘS ΨS . . .

)

u =

(

Vc αc βc Φc Θc Ψc (δF1
)c (δF2

)c . . .

)

where y(x, ẋ,u) are dependent sensor variables, and u are commanded variables. In principle,
any variable which can be evaluated as a function fc(x, ẋ), either directly or via y(x, ẋ,0), can
appear in u. The ones shown in u above are the ones most likely to be actually needed in order
to implement aircraft control laws (e.g. hold airspeed at Vc, hold heading at Ψc). The additional
vector e which augments x is the error-integral vector, defined as

e =

∫ t











V (x)− Vc
α(x)− αc

...











dt

for some or all of the components of u. It is used to implement PI or PID control laws.

It should be pointed out the state rate vector ẋ is smaller than the state vector x, simply because
not all the components in x appear as rates in the governing equations. For example, the governing

beam equations do not depend on the bending moment rates ~̇M i in any way, so these are omitted
from ẋ.

11.2 Governing equations

11.2.1 Beam and global equations

Most of the governing equations for the variables in x have been developed previously. The beam
variables ~ri ~θi ~Mi

~Fi , joint variables ∆~rJ ∆~θJ ~MJ
~FJ , and circulation variables A1 A2 . . . AK are

associated with their usual steady equations, but which now include inertia and unsteady aero
force terms. The beam node velocities and rates ~ui ~ωi, are associated with their simple definitions
(2). Similarly, the global position and rate variables ~RE

~Θ ~U ~Ω are associated with their kinematic
relations and definitions (13), (14), (16), (17). The absolute accelerations ~ao and ~αo are constrained
by either the direct forced-motion constraints (18) and (19), or the indirect free-flight constraints
(20) and (21), as appropriate for the case at hand.

11.2.2 Error-integral equations

The unsteady equations associated with the error-integral vector e follow directly from its definition.

ė −











V (x)− Vc
α(x) − αc

...











= 0 (117)

11.2.3 Control equations

The control variables in the state vector, namely δF ,∆e,∆g, are associated with control-law equa-
tions. A general form for these is the following nonlinear residual expression.

c(x,y;u) = 0 (118)
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The simplest example, with one control variable present, is a direct “commanded-stick” constraint,

c ≡ δ − δc(t) = 0 (119)

where δ represents any of the control variables in x. A more elaborate example might be a state-
feedback law, such as

c ≡ δ + f(y;u) = 0 (120)

where f() implements a controller which tries to make some output in y (e.g. sensed airspeed)
follow its commanded value in u.

For the gust variables ∆g, the current implementation uses the explicit contraint (119), which is
appropriate for prescribed-gust encounter simulations. For the remaining flap and engine control
variables δF and ∆e, one can select either the same explicit constraint (119), or the general form
(118). In the latter case, the control law function c(x,y;u) must be provided by the user in the form
of a black-box subroutine CONTROL, which returns numerical values of c, ∂c/∂x, and ∂c/∂y. The
derivatives are needed to construct the Jacobians for the overall Newton system, which includes the
linearized form of (118). The forcing vector u(t) is imposed interactively at runtime, for both types
of control equations. This allows rapid investigation of the system response to specified forcing
(e.g. step inputs, doublet inputs, etc), for both the open-loop and closed-loop cases.

11.3 Linearization

All the beam, global, and control equations discussed in the previous section can be written in
residual form as follows.

r(x, ẋ,u) = 0 (121)

In principle, r() also depends on the sensor variables y, via the control equations (118) which are
contained in r(). But this direct dependence on y is now treated as a dependence on x,u using the
y(x,u) definitions and the chain rule. The general perturbation of the residual is given via three
Jacobian matrix terms.

δr =

[

∂r

∂x

]

δx +

[

∂r

∂ẋ

]

δẋ +

[

∂r

∂u

]

δu (122)

This linearized form is used in a number of ways in the subsequent sections.

12 Time-Domain Calculation

12.1 Time discretization

A time-marching calculation consists of a sequence of solutions x0, x1 . . .xn−1, xn at discrete times
t0, t1 . . . tn−1, tn. The solution time derivative at any time level is then defined using a suitable
backward difference in time, e.g.

ẋn = k0 xn + k1 xn−1 + k2 xn−2 (123)

The differencing coefficients are

k0 =
1

tn − tn−1
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k1 =
−1

tn − tn−1
(124)

k2 = 0

for first-order differencing, and

k0 =
1

tn − tn−1
+

1

tn − tn−2

k1 =
−1

tn − tn−1
+

−1

tn − tn−2
−

tn − tn−1

(tn − tn−2)(tn−1 − tn−2)
(125)

k2 =
tn − tn−1

(tn − tn−2)(tn−1 − tn−2)

for second-order differencing. Note that setting

k0 = 0 k1 = 0 k2 = 0

recovers the steady-state case. This is also equivalent to taking an “infinite time step”, or tn → ∞.

12.2 Time-marching calculation

The objective at each time level is to find the xn which satisfies the residual equations (121).

r (xn, ẋn,un) = 0 (126)

This is accomplished by using Newton iteration via the linearized form (122). We first define δx to
be the change in xn from one Newton iteration to the next. Denoting the Newton iteration level
by a superscript i, we then have

xi+1
n = xin + δx

and determine δx so as to drive the residual vector at the next iteration to zero.

r(xi+1
n , ẋi+1

n ,un) ≃ ri +

[

∂r

∂x

]i

δx +

[

∂r

∂ẋ

]i

δẋ +

[

∂r

∂u

]i

δu = 0 (127)

From (123), we have δẋn = k0 δxn, which then allows combining of the unsteady term in (127)
with the steady term. Also, with the commanded state un being set to its prescribed value at each
time level, its correction is zero, or δu=0. Hence, we can discard the commanded-state Jacobian
term from (127). The final resulting Newton system is

[

∂r

∂x
+ k0

∂r

∂ẋ

]i

δx = −ri (128)

Using the state at the previous time level as the initial guess,

x0
n = xn−1

system (128) is set up and solved for δx, which is then used to obtain an improved guess for the
current state.

xi+1
n = xin + δx (129)

Convergence of the Newton iterates x0
n,x

1
n,x

2
n . . . xn is usually very rapid, requiring no more than

3 or 4 iterations for δx to reach machine zero for most cases. However, up to 10 or even 20 iterations
may be required if a very large time step is used, although temporal accuracy is likely to be suspect
in this case.
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13 Perturbation analyses

13.1 General perturbation form

We now assume that the Newton iteration has been performed to convergence, producing a quasi-
steady or unsteady (time-marched) state x, with some prescribed state u. These satisfy the gov-
erning residual equations, considered previously.

r(x, ẋ,u) = 0 (130)

Small unsteady perturbations δx, δẋ, δu about this state are now considered. These are governed
by the general linearizing relation (122). By requiring that the residuals remain at zero, or setting
δr = 0, all the governing equations remain satisfied, and hence the perturbations are physical.
Relation (122) then becomes

M δẋ = A δx + B δu (131)

where

M = −
∂r

∂ẋ
A =

∂r

∂x
B =

∂r

∂u
(132)

The system Jacobian matrices, evaluated at the converged state, are already available from the last
iteration of the Newton solver. They are renamed M,A,B to match traditional notation. We also
linearize the sensor output y(x, ẋ,u) relation,

δy = C δx + Q δẋ + D δu (133)

where

C =
∂y

∂x
Q =

∂y

∂ẋ
D =

∂y

∂u
(134)

The linearized governing equation system (131) and linearized sensor output relation (133) will be
the starting points for the subsequent analyses.

Strictly speaking, the perturbation δx computed from (131) is physically valid only if x itself is a
trimmed state, defined as a state which has time-invariant system matrices M,A,B. This requires
a steady vertical earth velocity UZ, and a constant turn radius as seen projected onto the earth
X-Y plane. The most general case of this type is a helical flight path at constant velocity, constant
climb rate, and constant bank angle. The simplest case of this type is straight and level flight, with
zero climb rate and zero bank angle.

Nevertheless, it is possible to compute δx(t) at any instant in time during a non-trimmed flight, but
this perturbation must be interpreted with care. In general, this perturbation will be meaningful
only for time scales significantly shorter than the time scale over which the M,A,B system matrices
are changing. Roughly speaking, the “trimmed condition” must be changing much more slowly than
the perturbation itself. A more rigorous treatment of this situation would require a WKB analysis,
which is beyond scope here.

13.2 Frequency-domain analysis

The commanded forcing vector δu and resulting response δx are now assumed to have infinitesimal
oscillatory perturbations of the form

δu = û exp(iωt) δx = x̂ exp(iωt) δẋ = iω x̂ exp(iωt)

26



with the response δx being obtained by solving the perturbed system (131).

[ iωM−A] x̂ = Bû (135)

Sensor output perturbations δy = ŷ exp(iωt) are then computed from (133).

ŷ = [C+ iωQ] x̂ + Dû (136)

In practice, only one component of û is chosen to be nonzero at a time, typically one of the control
vector variables, e.g.

û = {. . . 0 , 0 , δ̂F , 0 , 0 , 0 , 0 . . .}
T

û = {. . . 0 , 0 , 0 , ∆̂e, 0 , 0 , 0 . . .}
T

In each case, the magnitude of the single nonzero component is arbitrary, and can be conveniently
set to unity, e.g. δ̂F = 1 or ∆̂e = 1.

The case of the harmonic gust is slightly different, since this has a spatial influence which is
complex. As described in a previous section, this was implemented via the gust control variables
∆g1...4 which were assumed independent. Here they must be combined appropriately. Taking the
symmetric vertical gust mode as an example, the harmonic unsteady forcing quantity appearing in
the gust mode field (88) is

AZn
exp(iωt) = ÂZn

exp(iωt)

so that

û = {. . . 0 , 0 , 0 , 0 , ÂZn
, 0 , 0 . . .}T

with a unit amplitude ÂZn
= 1 set as usual. According to the constraints (91) – (94) we must then

set the gust control variable changes as follows.

δ∆g1 = ÂZn
exp(iωt) (137)

δ∆g2 = i ÂZn
exp(iωt) (138)

δ∆g3 = 0 (139)

δ∆g4 = 0 (140)

The gust then produces the residual perturbation

δr =
∂r

∂∆g1

δ∆g1 +
∂r

∂∆g2

δ∆g2 +
∂r

∂∆g3

δ∆g3 +
∂r

∂∆g4

δ∆g4 (141)

=

[

∂r

∂∆g1

+ i
∂r

∂∆g2

]

ÂZn
exp(iωt) (142)

By implication, the quantity in the brackets must be

∂r

∂AZn

=
∂r

∂∆g1

+ i
∂r

∂∆g2

(143)

This is the complex ÂZn
column in the B matrix in (132) and (135), given in terms of the real

∂r/∂∆g1 and ∂r/∂∆g2 vectors which are actually computed. The B columns for the other forcing
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variables such as δ̂F are normally real. Whether the matrices are real or complex doesn’t matter at
this stage, since the entire Bode system (135) is implemented in complex arithmetic anyway.

The dynamic control response versus frequency is concisely summarized for any x̂ component x̂i
by the gain and phase relative to the nonzero forcing variable ûj .

∣

∣

∣

∣

∣

x̂i
ûj

∣

∣

∣

∣

∣

, arg

(

x̂i
ûj

)

These are defined for each perturbed component ûj being considered. An alternative way to display
the frequency response is with broken-loop gain and phase, defined as follows.

∣

∣

∣

∣

1 −
ûj
x̂i

∣

∣

∣

∣

, arg

(

1 −
ûj
x̂i

)

The structure of the response vector x̂ is most readily displayed by using it to perturb the current
base solution x.

x′ = x + cℜ{x̂ exp(iφ)}

The scaling factor c and phase φ are provided by the user at runtime, with c = 1 corresponding to
a unity ûj forcing magnitude. Setting φ = ωt produces a real-time movie of the response.

13.3 Eigenmode analyses

We now consider (131) for the unforced case, with δu=0. We assume a perturbation solution of
the form

δx(t) = x̂ exp(λt)

which simplifies (131) to

Ax̂ = Mx̂ λ (144)

Eigenvalues and eigenvectors (or eigenmodes) are nontrivial solutions λk,vk to the unforced per-
turbed system (144),

Avk = Mvk λk (145)

where k=1, 2... is the solution mode index. For each eigenvalue λk, it is also useful to determine
the system’s left-eigenvector wk from

w∗

kA = w∗

kMλk (146)

where ( )∗ denotes the complex transpose operation (transpose together with complex conjugation).

13.3.1 Eigenmode computation

The eigenvalues λk and corresponding eigenvectors vk are generated by recasting system (145) in
the equivalent “shifted power-iteration” form.

Hvk = vk νk (147)

H ≡ [A− µM]−1
M (148)

νk ≡
1

λk − µ
(149)
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An Arnoldi iteration method using H will converge to the largest |νk|, which corresponds to the
λk which is closest to the shift µ in the complex plane. The corresponding eigenvector vk is also
obtained as a by-product. Hence, one can selectively choose µ to focus the search on any nearby
eigenvalues. Typically, one would choose µ ≃ 0 + 0i to search for low-frequency modes such as the
phugoid and spiral modes. Similarly, one would choose µ = 0 + iω to search weakly-damped or
weakly-unstable (e.g. flutter) modes at an anticipated frequency ω. ASWING currently employs
the ARPACK [3] sparse-system eigenvalue package to rapidly compute the eigenpairs. The matrix
inversion in (148) is implemented via LU factorization. This is performed only once, and only
back-substitution operations are required for all subsequent Arnoldi iterations.

The left-eigenvector wk corresponding to each λk,vk pair is obtained via inverse power iteration.
Starting with a random vector w̃0, one iteration step is executed as follows:

w′ = [AT − λ∗kM
T ]

−1
{

MT w̃i
}

(150)

w̃i+1 =
w′

w′∗ Mvk
(151)

The matrix inversion in (150) is implemented via a complex LU factorization, performed once and
then re-used for each iteration. The factored matrix is very nearly singular, making w′ typically
very large. But because of the normalization operation (151), the w̃0, w̃1 . . .wk sequence converges
stably. In fact, convergence is extremely rapid, with only 2 or 3 iterations being needed to reach
machine zero accuracy. The normalization operation (151) also makes the resulting set of vk,wk

pairs satisfy the following M-orthonormality condition.

w∗

kMvℓ =

{

1 , if k = ℓ
0 , if k 6= ℓ

(152)

13.3.2 Forced response analysis

The availability of eigenmodes allows deriving a concise expression for the solution to the Bode
forced-response system (135). Although direct solution of (135) is what’s actually employed in
ASWING, having an explicit form for the solution aids in physical interpretations. We define

V =







| |
v1 v2 . . .
| |






W =







| |
w1 w2 . . .
| |






Λ =







λ1
λ2

. . .






z =











z1
z2
...











(153)

so that all the eigensolutions can be combined into single matrix relations.

AV = MVΛ (154)

W∗A = ΛW∗M (155)

W∗MV = I (156)

We now expand the harmonic solution response vector δx in terms of the eigenvectors as follows.

δx = Vz (157)

x̂ = V ẑ (158)
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This allows the following manipulation of the forced-response system (135).

iωMVẑ − AVẑ = Bû (159)

MV[ iωI−Λ] ẑ = Bû (160)

This is then diagonalized by premultiplying by W∗ and using relation (156).

[ iωI−Λ] ẑ = W∗Bû (161)

ẑ = [ iωI−Λ]−1
W∗Bû (162)

ẑk =
1

iω − λk
w∗

kBû (163)

The gain and phase of each state vector component relative to a forcing vector component is then
given by summing of the eigenmodes in (158), using the ẑk solution (163).

x̂i
ûj

=
∑

k

ẑk
(vk)i
ûj

(164)

Resonance is expected whenever any of the eigenvalues λk is close to iω on the imaginary axis. In
equation (163) this will give a large 1/(iω−λk) and hence a large ẑk, which will then dominate the
modal summation in (164).

13.3.3 Stability analysis

Consider now the time-evolution equation (131) as an initial-value problem with no forcing.

M δẋ = A δx (165)

at t = 0 : δx = δx0 (166)

for all t : δu = 0 (167)

The resulting unsteady evolution is again expanded in terms of eigenmodes,

δx(t) = Vz(t) (168)

zk(t) = ẑk exp(λkt) (169)

which automatically satisfies the governing equation (165).

MVż = Az (170)

MVΛẑ = AV ẑ (171)

The final expression (171) is satisfied by virtue of (154).

The initial eigenmode amplitudes zk0 = zk(t=0) = ẑk are determined from the initial state δx0,
making use of the left eigenvectors and the normalizing condition (152).

δx0 = Vz0 (172)

W∗ M δx0 = W∗ MVz0 (173)

W∗ M δx0 = z0 (174)

w∗

kM δx0 = zk0 (175)
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The time evolution of the state perturbation can then be explicitly written as follows.

δx(t) = Vz(t) =
∑

k

vk zk(t) =
∑

k

vk zk0 exp(λkt) (176)

Dynamic instability of any eigenmode k is indicated if ℜ(λk) > 0. The corresponding eigenvector
vk indicates the nature of the instability. Unstable aircraft stability modes (e.g. spiral mode)
have their eigenvectors dominated by rigid-body motion components such as R̂E, Θ̂, etc. Unstable
structural modes (e.g. flutter) have their eigenvectors dominated by beam-variable components r̂,
θ̂, M̂ , F̂ . In highly flexible aircraft, unstable modes can easily have significant components of both
types, blurring the distinction between “aircraft instability” and “flutter instability”.

13.3.4 Reduced-order model construction

We now use the eigenmodes to simplify a control-law design problem. The state vector perturbation
is first expanded in terms of the eigenmodes.

x(t) = δx(t) + xo (177)

δx(t) = Vz(t) (178)

This is the same approach used in expansion (157), except that the z vector is now an arbitrary
function of time rather being assumed to be harmonic. The baseline state is also added separately,
and is now denoted by xo. With the eigenvector matrix V assumed frozen and of full rank, z(t)
can be considered as an alternative state vector equivalent to x(t).

In practice, the dimension of z can be made much smaller by ignoring most of the eigenmodes.
This mode truncation is one example of Reduced-Order Modeling (ROM). A rational choice is to
retain only those “slow” modes which have the smallest |λk|, since these are the ones most likely
to dominate the dynamics. One exception is fast modes which have very little damping or are
unstable (e.g. flutter modes). If these are to be actively stabilized, they would also be included
in expansion (157). With most of the modes ignored, the V and W matrices become rectangular,
with many fewer columns (eigenmodes) than rows (state vector components).

Substituting (178) into the linearized state equation (131) gives

MV ż = AVz + B δu (179)

which is then diagonalized by premultiplying by W∗.

W∗ MV ż = W∗ AVz + W∗ B δu (180)

ż = Λz + W∗ B δu (181)

It is also of interest to compute the perturbation of the output sensor vector y(x, ẋ,u).

δy = C δx + Q δẋ + D δu (182)

Recasting this using (178), we have

δy = CVz + QV ż + D δu (183)

δy = [CV + QVΛ] z + [D + QVW∗B] δu (184)
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Equations (181) and (184) can be put in the concise form

ż = Λz + B′ δu (185)

δy = C′ z + D′ δu (186)

where B′ = W∗ B (187)

C′ = CV + QVΛ (188)

D′ = D + QVW∗B (189)

which is a good starting point for designing a suitable control law u(x, ẋ) in order to obtain a
desirable output behavior y(t).

13.3.5 Forced response from reduced-order model

One application of the ROM is an approximate but very rapid computation of the Bode response x̂
from û for a range of forcing frequencies ω. This is simply the application of the response relations
(162),(163),(164) with only the chosen ROM modes included in the mode summation. This method
is fast because it eliminates the time-consuming inversion of the Bode coefficient matrix [iωM−A]
in (135) for each frequency ω. However, this ROM-based Bode calculation method requires special
care to compute the response of the accelerations ~ao and ~αo. Although these are components of
x, they typically are not properly captured by the eigenmode expansion (158). Specifically, each
mode vk in this expansion has the following form.

vk =
{

. . . Ûk, Ω̂k . . . âok , α̂ok . . .
}

T

(190)

The individual components satisfy the linearized form of the acceleration definitions (16) and (17),
restated as

~ao = ~̇U + ~Ω× ~U (191)

~αo = ~̇Ω (192)

and hence

âok = λk Ûk + ~Ω×Ûk + Ω̂k× ~U (193)

α̂ok = λk Ω̂k (194)

The accelerations extracted directly from the overall approximate ROM state (178) will then be

δ~ao =
∑

k

[

λk Ûk + ~Ω×Ûk + Ω̂k× ~U
]

ẑk exp(iωt) (195)

δ~αo =
∑

k

[

λk Ω̂k
]

ẑk exp(iωt) (196)

However, this is not the same as the following alternative response accelerations, computed from
(191) and (192) using only the Ûk and Ω̂k components.

δ~ao =
∑

k

[

iω Ûk + ~Ω×Ûk + Ω̂k× ~U
]

ẑk exp(iωt) (197)

δ~αo =
∑

k

[

iω Ω̂k
]

ẑk exp(iωt) (198)
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The alternative forms (195,196) and (197,198) are seen to be comparable only when iω is near one
of the λk’s and that mode dominates the summation, i.e. near resonance, which is what’s observed.
In general, the second forms (197,198) are observed to be much more accurate across a wide ω
range, and are what’s actually computed in ASWING’s ROM Bode implementation.

As with the accelerations, the Bode responses of the Earth position ~RE and the heading angle Ψ
are also not well captured by their components in the ROM mode set. Again, the reason is that
each eigenmode’s R̂E and Û components are related by a factor of λk, while in the actual frequency
response they are related by a factor of iω. The latter option is again chosen, using only the Û and
Ω̂ components in the eigenmode expansion.

δ~U =
∑

k

Ûk ẑk exp(iωt) (199)

δ~Ω =
∑

k

Ω̂k ẑk exp(iωt) (200)

These are then put into the linearized forms of the ~RE and Ψ evolution equations (13) and (14).

~̇Θ = ¯̄CE
~Ω (201)

iω δ~Θ = ¯̄CE δ~Ω +
∂ ¯̄CE

∂~Θ
δ~Θ ~Ω (202)

δ~Θ =

[

iω ¯̄I +
∂ ¯̄CE

∂~Θ
~Ω

]

−1

¯̄CE δ~Ω (203)

~̇RE = ¯̄T
T

E

~U (204)

iω δ ~RE = ¯̄T
T

E
δ~U +

∂ ¯̄T
T

E

∂~Θ
δ~Θ ~U (205)

δ ~RE =
1

iω

[

¯̄T
T

E
δ~U +

∂ ¯̄T
T

E

∂~Θ
δ~Θ ~U

]

(206)

14 Unsteady Propeller Model

14.1 Propeller axes

As described in the Steady ASWING document, three engine-axis unit vectors are defined, x̂e, ŷe,
ẑe. The x̂e vector is along the propeller axis, while ŷe, ẑe lie in the propeller disk. These define a
transformation tensor between the body axes and the engine axes.

¯̄T e ≡







− x̂e −
− ŷe −
− ẑe −






(207)

These axis vectors will in general vary as the engine moves due to structural deformation.

33



14.2 Propeller velocities and rotation rates

The center of the propeller sees local relative air velocity ~Vp, and rotates at some rate ~Ωp. The
corresponding vectors in the propeller axes are

~Ve = ¯̄T e ~Vp = {Veng , vy , vz}
T (208)

~Ωe = ¯̄T e ~Ωp = {ωeng , ωy , ωz}
T (209)

which are used in the propeller model to compute the thrust forces and moments. Note that ωeng

is the axial rotation rate of the propeller mount, and is not used here. Specifically, ωeng is not the
rotation rate of the propeller itself, which is denoted by Ωeng.

14.3 Primary propeller force and moment

The basic propeller axial thrust and torque are assumed to be the same as in the steady model,
and depend only on the axial velocity component Veng.

Feng = Feng(∆e, ρ, Veng) (210)

Meng = Meng(∆e,Ωeng) = −Peng/Ωeng (211)

A possible choice for the engine control variable is the engine shaft power ∆e ≡ Peng, or alternatively
throttle position or battery voltage. These distinctions are not important here.

The remaining velocity and rotation rate components vy, vz, ωy, ωz determine side loads and
moments on the propeller, commonly referred to a “P-factor” forces. These are derived in the
following sections.

14.4 Propeller blade element forces

Figure 8 shows a propeller blade element at some radius r, and its velocity and force triangles. The
velocity Vd is the axial velocity at the disk, which consists of the axial component of ~Vp, plus half of
the propeller’s slipstream velocity increment ∆Veng, developed in the Steady ASWING document.
Only the propeller rotation rate magnitude Ω will be considered for now, and the appropriate force
and moment signs will be assigned at the end.

Vd = Veng +
1

2
∆Veng (212)

Ω = |Ωeng| (213)

This Vd and the relative tangential velocity Ωr give the flow angle φ. With the profile drag force
neglected, the lift element dL has axial and tangential components dT , dS (Thrust, Sideforce)
whose perturbations are given as follows.

W =
√

V 2
d + (Ωr)2 (214)

φ = arctan
Vd
Ωr

(215)

dT = dL cosφ (216)

dS = dL sinφ (217)

∆ dT = ∆ dL cosφ − dL sinφ ∆φ (218)

∆ dS = ∆ dL sinφ + dL cosφ ∆φ (219)
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Figure 8: Blade element velocities and forces.

The blade lift perturbation is obtained via some assumed local lift-curve slope CLα
.

dL =
1

2
ρW 2 cℓ c dr (220)

∆cℓ = CLα
∆α = −CLα

∆φ (221)

∆ dL =
1

2
ρ∆

(

W 2 cℓ
)

c dr =
1

2
ρ
(

−W 2CLα
∆φ + 2W∆W cℓ

)

c dr (222)

Substituting these into (218), (219) gives the axial and tangential force perturbations in terms of
∆φ and ∆W .

∆ dT =
1

2
ρ
[

W 2 (−CLα
cosφ− cℓ sinφ)∆φ + 2W∆Wcℓ cosφ

]

c dr (223)

∆ dS =
1

2
ρ
[

W 2 (−CLα
sinφ+ cℓ cosφ)∆φ + 2W∆Wcℓ sinφ

]

c dr (224)

14.5 Propeller force and moment due to transverse velocity

Figure 9 shows the propeller blade element subjected to a transverse velocity v along either the ye
or ze direction, which adds an apparent tangential velocity Ωr → Ωr + v cosψ seen by the blade
element. This produces corresponding changes in the relative flow angle and velocity.

W 2∆φ = W 2 ∂φ

∂(Ωr)
v cosψ = −v Vd cosψ (225)

W∆W = W
∂W

∂(Ωr)
v cosψ = vΩr cosψ (226)

The axial and tangential velocity changes are then obtained from (223), (224).

∆ dT =
1

2
ρ [(CLα

cosφ+ cℓ sinφ)Vd + 2cℓ cosφ Ωr] v cosψ c dr (227)

∆ dS =
1

2
ρ [(CLα

sinφ− cℓ cosφ)Vd + 2cℓ sinφ Ωr] v cosψ c dr (228)

When ∆S and ∆T are appropriately averaged over the azimuthal angle ψ, and integrated over the
radius of B blades, the result is a sideforce Fv and moment Mv due to a unit v perturbation.

∆ dFv =
∆ dS

v
cosψ =

1

2
ρ [(CLα

sinφ− cℓ cosφ)Vd + 2cℓ sinφ Ωr] cos2 ψ c dr (229)

35



Ω

dr

r
ψ

r cosψ
Vd

W
∆α
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Figure 9: Effect of side velocity v on propeller blade element.

dFv =
1

2π

∫ 2π

0
∆ dFv dψ =

1

4
ρ [(CLα

sinφ− cℓ cosφ)Vd + 2cℓ sinφ Ωr] c dr (230)

Fv = B

∫ R

0

dFv
dr

dr =
1

4
ρR2 [(CLα

S0 − cℓ C0)Vd + 2cℓ S1 ΩR] (231)

∆ dMv =
−∆ dT

v
r cosψ = −

1

2
ρ [(CLα

cosφ+ cℓ sinφ)Vd + 2cℓ cosφ Ωr] cos2 ψ c r dr(232)

dMv =
1

2π

∫ 2π

0
∆ dMv dψ = −

1

4
ρ [(CLα

cosφ+ cℓ sinφ)Vd + 2cℓ cosφ Ωr] c r dr (233)

Mv = B

∫ R

0

dMv

dr
dr = −

1

4
ρR3 [(CLα

C1 + cℓ S1)Vd + 2cℓ C2 ΩR] (234)

The radial integrals S0, C0, S1 . . . will be defined at the end of the next section.

14.6 Propeller blade element forces due to pitch rate

Figure 10 shows the propeller blade element subjected to a pitch rate ω, which adds an apparent
axial velocity Vd → Vd−ωr cosψ seen by the blade element. This produces corresponding changes
in the relative flow angle and velocity.

W 2∆φ = W 2 ∂φ

∂Vd
(−ωr cosψ) = −ωr2Ω cosψ (235)

W∆W = W
∂W

∂Vd
(−ωr cosψ) = −ωr Vd cosψ (236)

The axial and tangential velocity changes are then obtained from (223), (224).

∆ dT =
1

2
ρ [(CLα

cosφ+ cℓ sinφ)Ωr − 2cℓ cosφ Vd]ωr cosψ c dr (237)

∆ dS =
1

2
ρ [(CLα

sinφ− cℓ cosφ)Ωr − 2cℓ sinφ Vd]ωr cosψ c dr (238)
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Figure 10: Effect of pitch rate ω on propeller blade element.

Integrating over the azimuth and radius as before, gives a sideforce Fω and moment Mω due to a
unit ω perturbation.

∆ dFω =
∆ dS

ω
cosψ =

1

2
ρ [(CLα

sinφ− cℓ cosφ) Ωr − 2cℓ sinφ Vd] r cos2 ψ c dr (239)

dFω =
1

2π

∫ 2π

0
∆ dFω dψ =

1

4
ρ [(CLα

sinφ− cℓ cosφ)Ωr − 2cℓ sinφ Vd] r c dr (240)

Fω = B

∫ R

0

dFω
dr

dr =
1

4
ρR3 [(CLα

S2 − cℓC2)ΩR − 2cℓ S1 Vd] (241)

∆ dMω =
−∆ dT

ω
r cosψ = −

1

2
ρ [(CLα

cosφ+ cℓ sinφ) Ωr − 2cℓ cosφ Vd] r
2 cos2 ψ c dr(242)

dMω =
1

2π

∫ 2π

0
∆ dMω dψ = −

1

4
ρ [(CLα

cosφ+ cℓ sinφ)Ωr − 2cℓ cosφ Vd] r
2 c dr (243)

Mω = B

∫ R

0

dMω

dr
dr = −

1

4
ρR4 [(CLα

C3 + cℓ S3)ΩR − 2cℓ C2 Vd] (244)

14.7 Propeller blade radial integrals

The radial integrals appearing in the force and moment perturbation expressions are defined as
follows, along with suitable approximations.

S0 = B

∫ 1

0

c

R
sinφ d

(

r

R

)

≃ 1.20B

(

c

R
sinφ

)

0.75R
(245)

C0 = B

∫ 1

0

c

R
cosφ d

(

r

R

)

≃ 0.80B

(

c

R
cosφ

)

0.75R
(246)

S1 = B

∫ 1

0

c

R
sinφ

(

r

R

)

d

(

r

R

)

≃ 0.70B

(

c

R
sinφ

)

0.75R
(247)

C1 = B

∫ 1

0

c

R
cosφ

(

r

R

)

d

(

r

R

)

≃ 0.45B

(

c

R
cosφ

)

0.75R
(248)

S2 = B

∫ 1

0

c

R
sinφ

(

r

R

)2

d

(

r

R

)

≃ 0.35B

(

c

R
sinφ

)

0.75R
(249)
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C2 = B

∫ 1

0

c

R
cosφ

(

r

R

)2

d

(

r

R

)

≃ 0.30B

(

c

R
cosφ

)

0.75R
(250)

S3 = B

∫ 1

0

c

R
sinφ

(

r

R

)3

d

(

r

R

)

≃ 0.20B

(

c

R
sinφ

)

0.75R
(251)

C3 = B

∫ 1

0

c

R
cosφ

(

r

R

)3

d

(

r

R

)

≃ 0.20B

(

c

R
cosφ

)

0.75R
(252)

14.8 Overall engine force and moment

Superposition of the primary and perturbation forces and moments gives the following total engine
force and moment, in engine axes. The sign factor s accounts for the direction of the prop rotation
rate Ω, defined positive about the x axis (a conventional right-handed prop has s = −1).

s = sign(Ω) (253)

~Fe =











−Feng

Fvvy + sFωωy
Fvvz + sFωωz











(254)

~Me =











−Meng

sMvvy +Mωωy
sMvvz +Mωωz











(255)

Using the inverse engine-axis transformation tensor

~Feng = ¯̄T
T

e
~Fe (256)

~Meng = ¯̄T
T

e
~Me (257)

then gives the corresponding body-axis force and moment which are applied as beam loads.

15 Real and Apparent Mass and Inertia

Although the total mass and inertias are not required to compute a solution in ASWING, knowing
these quantities is of considerable interest in applications. These are computed as described below.
The inertias will be derived from the fundamentals, which will clarify the somewhat unusual form
of the apparent inertia. The real mass and inertia quantities will be denoted by ( )rm, and the
apparent mass and inertia quantities will be denoted by ( )am.

15.1 Radius and inertia tensors

For the purpose of deriving the moment-of-inertia tensors, it’s convenient to first define an anti-
symmetric tensor ¯̄r which is formed from the three components of the corresponding vector ~r,

~r = xı̂ + ŷ + zk̂ (258)

¯̄r ≡ ~r × ¯̄1 =







0 −z y
z 0 −x

−y x 0






(259)
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where ¯̄1 is the identity matrix. This allows a cross product of ~r with any vector ~A to be expressed
as a matrix-vector product which is simpler to manipulate.

~r × ~A = ¯̄r ~A (260)

~A× ~r = −~r × ~A = −¯̄r ~A (261)

The negative square of the radius tensor is the familiar unit-mass inertia tensor.

−¯̄r ¯̄r =







y2 + z2 −xy −xz
−yx x2 + z2 −yz
−zx −zy x2 + y2






(262)

15.2 Integrated Force and Moment Equations

The real and apparent mass derivation begins with the discrete beam force equation, summed over
all the beam intervals.

∑

i

{

~Fi+1 − ~Fi + ~fa ∆s + ∆~F
}

= 0 (263)

∑

i

~fa ∆s +
∑

p

∆~F = 0 (264)

The second simplified form (264) results from the zero-force boundary conditions ~Fi=0 on all the
beam ends in free flight.

The discrete beam moment equation is also summed over all beam intervals.

∑

i

{

~Mi+1 − ~Mi + ~ma ∆s + ∆ ~M + ∆~r × ~Fa
}

= 0 (265)

The last force term is first expanded as

∆~r × ~Fa = 1
2
(¯̄ri+1 − ¯̄ri)

(

~Fi+1 + ~Fi
)

= ¯̄ri+1
~Fi+1 − ¯̄ri ~Fi − 1

2
(¯̄ri+1 + ¯̄ri)

(

~Fi+1 − ~Fi
)

= ¯̄ri+1
~Fi+1 − ¯̄ri ~Fi + ¯̄ra

(

~fa ∆s + ∆~F
)

(266)

which gives the following summed moment equation.

∑

i

(

~m + ¯̄r ~f
)

a
∆s +

∑

p

(

∆ ~M + ¯̄r∆~F
)

= 0 (267)

As before, beam-end boundary conditions ~Mi=0, ~Fi=0, have been applied to cancel the summed
difference terms.

15.3 Applied force

The applied force term ~fa appearing in (264) and (267) has the following contributions, treated
earlier. Drag contributions are neglected here.

~f = ~fS + ~fU + ~fam + ~facc (268)
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~fS = ρΓ ~V × ŝ (269)

~fU = ρ
∂Γ

∂t

c̄

|~V⊥|
~V × ŝ (270)

~fam =
π

4
ρ c̄2

[

~V ×
(

~Ω+ ~ωi
)

· n̂ − ~ac/2 · n̂

]

n̂ (271)

~facc = µ (~g − ~acg) (272)

~m = ~mS + ~mU + ~mam + ~macc (273)

~mS = ∆~rc/4 × ~fS +
1

2
ρ |~V⊥|

2 c̄2 cm ŝ (274)

~mU = ∆~rc/4 × ~fU (275)

~mam = −
π

4
ρ c̄2

c̄

4

[

~V ×
(

~Ω+ ~ωi
)

· n̂ +
c̄

8

(

~αo + ~̇ωi
)

· ŝ

]

ŝ + ∆~rc/2 × ~fam (276)

~macc = ∆~rcg × ~facc − ¯̄T
T

¯̄ι ¯̄T
(

~αo + ~̇ωi
)

−
(

~Ω+ ~ωi
)

×
{

¯̄T
T

¯̄ι ¯̄T
(

~Ω+ ~ωi
)}

(277)

The moment sum terms in (267) can be combined as follows.

~mS + ¯̄r ~fS = ¯̄rc/4 ~fS +
1

2
ρ |~V⊥|

2 c̄2 cm ŝ (278)

~mU + ¯̄r ~fU = ¯̄rc/4 ~fU (279)

~mam + ¯̄r ~fam =
π

4
ρ c̄2

{

−
c̄

4
. . .

}

(280)

~macc + ¯̄r ~facc = µ ¯̄rcg(~g − ~acg) − ¯̄I
(

~αo + ~̇ωi
)

−
(

~Ω+ ~ωi
)

×
{

¯̄I
(

~Ω+ ~ωi
)}

(281)
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