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A P P E N D I X 

Stable and Unstable Manifolds. 

In this section, we state the basic properties of the stable and unstable man
ifolds of an hyperbolic equilibrium point of an abstract evolutionary equation. 
Indications of the proofs also will be given. To simplify the presentation and in 
order not to obscure the fundamental ideas, we concentrate on ordinary differ
ential equations in finite dimensions and then give references for the appropriate 
modifications in infinite dimensional cases. 

Consider the system of differential equations 

(A.l) x = Ax + f(x), 

where x E Rn, A is an n x n constant matrix whose eigenvalues have nonzero 
real parts, / : Rn —> Rn is a Lipschitz continuous function satisfying 

(A.2) /(°> = °' 
l/(*)-/(»)l<"!M(*-») "f III, l»l<», 

where 77: [0,00) —• [0,00) is a continuous function with 77(0) = 0. 
For any xo £ i ? n , let </>(t, xo) be the solution of (A.l) through XQ. The unstable 

set Wu(0) and the stable set W8{0) of 0 are defined as 

Wu{0) = {x0 e Rn : 4>{t, xo) is defined for t < 0 
and <i>(t, xo) —• 0 as t —• —00}, 

Ws{0) = {x0 e Rn : <t>(t, x0) is defined for t > 0 

and 0(£, xo) —> 0 as t —• + 00}. 

For a given neighborhood U of 0, we can also define 

Wu(0,U) = {xoeWu(0): <j>{t,x0)eU, t<0}, 
Pys(0,C/) = { x 0 G ^ 5 ( 0 ) : (j>{t,x0)eU, t>0}. 

These latter sets also are called local unstable and stable sets and are designated 
by WJU{0),W{^(0). 

Since the eigenvalues of A have nonzero real parts, there is a projection oper
ator P: Rn - • Rn such that PRn and QRn, Q = / - P , are invariant under A 
and the spectrum cr{AP) of AP has positive real parts and cr(AQ) has negative 
real parts. 

A basic lemma is the following. 

179 



180 STABLE AND UNSTABLE MANIFOLDS 

LEMMA A . l . If(j)(t,xo), t < 0, is a bounded solution of (A.l), then 4>(t,xo) 
satisfies the integral equation 

f eA^-^Pf(y(s)) ds+ f eA^-^Qf(y(s)) ds. 
JO J -oo 

(A.3) y(t) = eAtPx0 + 

/ / (f>(t,xo)i t > 0, is a bounded solution of (A.l), then <j>(t,xo) satisfies the 
integral equation 

rt /»00 
(A.4) z(t) = eAtQx0 + / eA^-s^Qf{z{s)) ds - eA^-8^Pf{z(s)) ds. 

Conversely, if y(t), t < 0 [or t > 0], is a bounded solution of (A.3) [or (A.4)], 
then y(t) satisfies (A.l). 

PROOF: Let y(t) = <j)(t,x0), t < 0, be a bounded solution of (A.l). Then, for 
any r in (—oo,0], 

(A.5) Qy(t) = eA^Qy(r) + j eA^Qf(y(s)) ds. 

There are positive constants A:, a such that 

(A.6) l e ^ - ^ Q I < ke-*^-^, t > r. 

If we let r —• —oo in (A.5) using the fact that y{s) is bounded in s, we obtain 

Qy(t) = f eA{t-s)Qf{y{s))ds. 
J — oo 

Since 

Py(t) = eAtPx0 + f eA^-s^Pf(y(s)) ds, 
Jo 

we see that y(t) must satisfy (A.3). The proof for the case when xo G W5(0) is 
similar and therefore omitted. 

The converse statement is proved by direct computation. 
We say that VFu(0, U) is a Lipschitz graph over PRn if there is a neighborhood 

V of 0 in PRn such that Wu{0,U) = {y G Rn:y = g{x), x G V, where g is a 
Lipschitz continuous function}. The set Wu(0, U) is said to be tangent to PRn at 
0 if \Qx\/\Px\ -+ 0 as x -+ 0 in Wu{0, U). Similar definitions hold for Ws{0, U). 

A classical theorem on local unstable and stable sets which can be traced 
initially to the work of Lyapunov and Poincare is contained in the following 
result. 

THEOREM A . 2 . Suppose f satisfies (A.2) and Rea(A) ^ 0. There is a 
neighborhood UofO in Rn such that Wu(0, U) [or WS(Q, U)] is a Lipschitz graph 
over PRn [or QRn] which is tangent to PRn [or QRn] at 0. 

PROOF: The proof is a standard application of the contraction mapping prin
ciple (for example, see Hale [1969] or [1980]) and gives exponential decay rates 
of the solutions to the origin. Suppose fc, a are chosen so that (A.6) is satisfied 
and also so that 

(A.7) \eAtP\ < kea\ t < 0. 
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Choose 6 > 0 so that 4krj(6) < a, &k2r)(6) < a. For x0 e PRn with 
|a;o| < <5/2fc, define S(xo,£) &s the set of continuous functions x: (—oo,0] —• i?n 

such that |x| = s u p - 0 O < t < 0 |a:(i)| < 6 and Px(0) = XQ. The set S(xo,6) is a 
closed bounded subset of the Banach space of all continuous functions taking 
(-oo,0] into Rn with the uniform topology. For any x in S(xo,6), define 

(A.8) (Tx){t) = eAtx0 + / eA^-9^Pf(x{s)) ds + f eA^-s)Qf{x(s)) ds 
JO J-oo 

for t < 0. 
It is easy to show that T:S(XQ>,6) —• S(xo,8) is a contraction mapping with 

contraction constant XQ and therefore has a unique fixed point X*{-,XQ). This 
fixed point satisfies (A.3) and thus is a solution of (A.l) from Lemma A.l. 

The function X*{-,XQ) is continuous in xo- Also, 
f° 

\x*(t,x0)\ < keat\x0\ + kr){6) / ea^"5)|x*(s,a:o)| ds 

+ kri(6) f e-a^-^\x*(s,xo)\ds. 
«/—oo 

From this inequality, one can prove that (see, for example, Lemma 6.2, p. 110 
of Hale [1980]) that 

(A.9) |z*(t,*o)| < 2keat/2\x0l t < 0. 
This estimate shows that x*(-,0) = 0 and also that a;*(0,2:0) £ WU(Q). 

The same type of computations show that 

(A.10) \x*(t,x0) ~ x*(t,x0)\ < 2keat/2\x0 - x0 | , * < 0. 
In particular, z*(-,zo) is Lipschitzian in XQ. 

One next observes that 

|x*(0,xo) - a :* (0 ,^ o ) | > \x0-x0\- / krj(6)eas\x*{s,x0) - x*(s,x0)\ ds 
J—00 

4fc277(<5)" 
> \xQ - S o l 1 -

1. _ . 
> - | x 0 -XQ\ 3a 

Thus, the mapping XQ H-> X*(0, XQ) is one-to-one with a continuous inverse. 
These estimates together with the fact that <j)(t, xo), t < 0, XQ G W U ( 0 ) must 

satisfy (A.3) imply that ^""(O, £/) for some U satisfies the conclusions of the 
theorem. The same type of argument applied to (A.4) will yield a complete 
proof of the theorem. 

It is more difficult to obtain more regularity of the manifolds Wfcc(0), Wfoc{0). 
If we assume that the vector field is Ck, then a standard application of the 
contraction mapping principle to (A.8) will not show that the above manifolds 
are Ck. However, with considerable effort, one can show that they are C* - 1 , 1 ; 
that is, they are represented by a function which is Ck~l with the k — 1 first 
derivatives being Lipschitz (see, for example, Carr [1981], Sijbrand [1985]). One 
must then use some other method to show that the manifolds actually are Ck. A 
convenient way is to use the following lemma of Henry [1983] based on a remark 
in Hirsch, Pugh, and Shub [1977, p. 35]. 



182 STABLE AND UNSTABLE MANIFOLDS 

LEMMA A. 3 . Let X, Y be Banach spaces, Q c X an open set, and g:Q —• Y 
locally Lipschitzian. Then g is continuously differentiable if and only if, for each 
x0 EQ, 

(A.ll) \g(x + h) - g{x) - g{x0 + ft) + g(x0)\ = o(\h\x) 

as (x,ft) —• (xo,0). 

PROOF. It is easy to see that (A.ll) holds if g is a (^-function. Without 
loss in generality, we take Q to be a ball and g to be Lipschitzian in Q. If the 
derivative gf of g exists at each point of Q and (A.l l ) is satisfied, then g' is 
continuous. Thus, it is enough to prove that g1 exists at each point of Q. 

Case 1. Let us first suppose that X = Y = R. Since g is absolutely continuous, 
it is differentiable almost everywhere. For any XQ G Q, e > 0, there is a 6 > 0 
such that 

\g(x + ft) - g{x) - g{x0 + ft) + g(x0)\ < e\h\ if |x - x0\ + |ft| < 6. 

There is an x* in (XQ — <5, xo + 6) such that g'{x*) exists. Thus, for h ^ 0 
sufficiently small, 

I g(x0 + h) - 0(xo) 
ft -*V) <2e, 

0 < { I S ^ l i m } ^ Q 4 - ^ - ^ o ) < 4 g . 

Since £ is arbitrary, this implies that gf{xo) exists. 
Case 2. Now suppose that X = R and Y is a Banach space with Y* being 

the dual space. If rj G Y*, then Case 1 implies that 770 is a C1-function and 
\(rigy(x)\ < \rj\ • Lipg. If D(x):rj —* (rjg)'(x), then £>(x) G Y** is continuous in 
x from (A.l l ) . 

For xo G Q, r? G Y*, .|r/| < 1, we have 

, (»<»+ »>-»<»>) - D W , _ i £ ° + V W - z>W)„ - 0 
as ft —• 0 uniformly for \ri\ < 1. Let r: Y —* Y* be the canonical inclusion. Then 
T[Q{XO + ft) — 0(zo)]A -+ ^(2^0) as ft —* 0. Since r is an isometry, this implies 
that [g(xo + ft) — g(xo)]/h —• a limit in Y as ft —• 0; that is, ^(xo) exists. 

Case 3. Finally, let X, Y be arbitrary Banach spaces. From Case 2, for any 
x G Q , ft G X, the map £ H-> g(x -f £ft) taking i? to Y is C 1 if £ is small. Thus, 
the Gateaux derivative dg(x,h) = dg(x + th)/dt\t=o exists. Condition (A.ll) 
implies that dg(x,h) —• dg(xo,h) in Y as x —• xo G Q, uniformly for \rj\ < 1. 
This implies that ft H-* dg(x, ft) is linear and continuous. Thus, dg(x, ft) is the 
Frechet derivative at ft of g and the proof is complete. 

THEOREM A . 4 . Suppose Recr(A) ^ 0, / satisfies (A.2) and es a/50 a C 1 -
function. Then the sets Wu(0, U), W3(0, U) of Theorem A.2 are C1 -manifolds. 

PROOF. Let x*{t, XQ) be the fixed point of the map T in (A.8) which was used 
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to define Wftc(0) = Wu{0,U). Define y{x,x0,h){t) = x*(*,x + /i) -x*{t,x) -
x*(£, xo + h) + x*(£, xo). From Lemma (A.3), it is sufficient to show that 

(A.12) Em V(x,x0 ,/i)W = 0 

uniformly for —oo < t < 0. 
From the definition of x*(t, XQ) and the fact that / is a C1-function, we have, 

for t < 0, 

y*(x,x0,h)(t) 

= f eA^-^Pfx(x*(s,xo))y^(x,xo,h){s)ds 
Jo 

+ f eA^-^Qfx(x*(S,x0))y'(x,x0,h)(s)ds 
J—oo 

+ f eA<-*—)p\fs{x'{8,x)) - fx(x'{8,xo))][x*{8,xo + h) -x*{8,x0)]d8 
Jo 

+ f eA^-^Q[fx(x*(s,x)) - fx(x*(s,x0))}{x*(s,x0 + h) - x*(s,x0)]ds 
J — OO 

+ o{h) 

as \h\ —<• 0. Using the estimates (A.6), (A.7), (A.2), and (A.10), we have 

\y'(z,xo,h)(t)\ < kr,{S)J c**<*—>|y*(a:, «o, fc)(*)| d« 

+ kr,(6) I e-a^-^\y*{x,x0,h){s)\ds 
J —OO -oo 

+ __|fc|ea*/a sup |/x(x*(«, x))" - /x(x*(*, x0))| 

+ o(h) 

as h —• 0. 
One can now show that there is a constant K > 0 such that (see, for example, 

Lemma 6.2, p. 110 of Hale [1980]) 

7j-Ay*faxovh)(t)\ <#sup | / x (x*(s ,x) ) - / x (x*(s ,x 0 ) ) | 

for t < 0. Since the function x*(-,x) is continuous in x and / is a C1-function, 
we have (A.12) is satisfied and the theorem is proved. 

Let us now suppose that / = /(x, A) depends on a parameter A varying in an 
open subset V of a Banach space A, 0 6 V. Also, suppose that /(x, A) is continu
ous in (x, A) and there is a continuous function 77: [0,00) x A —* [0,00), 77(0,0) = 0, 
such that 

l / (x ,A)- / (y,A) |<r / (a ,A) |x~y| if |x | , |y |<a , AeA 
/ ( 0 , 0 ) = 0 . 
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The equilibrium points of the equation are the solutions of x = —A_1/(a:, A). 
An application of the uniform contraction principle shows that there is a unique 
fixed point <j>x of the map —A~lf{x,X) for (x,A) in a neighborhood of zero. 
Furthermore, cf>0 = 0 and 4>\ is continuous in A. If x »—• x + <j>\, then one can 
use the proof of Theorem A.2 and the uniform contraction principle to see that 
there are neighborhoods U of zero in Rn and V\ of zero in A such that the local 
unstable manifold W%(4>\,U) of (j>\ and the local stable manifold Wl{4>x,U) of 
<t>\, A £ Vi, are continuous in A. 

If we suppose in addition that /(x, A) is a C1-function in (x,A), then the 
Implicit Function Theorem implies that c/)\ is C1 in A. From Theorem A.4, we 
also know that W^(0A, U), W^{(j)\,U) are C1-manifolds for each A G V\. To show 
that these manifolds are C1 in A, let x*{t, xo, A) be the fixed point of the operator 
T = T\ in (A.8) [we have made the transformation above: x *-> <j>\ + x\. The 
same type of argument used in the proof of Theorem A.2 shows thatf x*(t, xo, A) 
is Lipschitz continuous in A. One now may apply Lemma A.3 and the argument 
in the proof of Theorem A.4 to obtain the C1 -dependence on A. 

We have proved 

THEOREM A.5. Suppose Rea(A) ^ 0, f = f\ depends on a parameter A in 
an open subset V in a Banach space A, a E V, and f\{x) is a Cl-function of A, x 
with /(0,0) = 0, DxfA(0,0) = 0. Then the manifolds W^(<f>x,U),Wfl((f>x,U) are 
represented by a C1-function o/x,A. 

One can extend Theorems A.4 and A.5 to the following 

THEOREM A.6. Suppose Rea(A) ^ 0, / satisfies (A.2) and is a ^-func
tion, fc > 1. Then the sets Wu{0, (7), W8(0, U) of Theorem A.2 are Ck-manifolds. 
In addition, if f = fx depends on a parameter A in an open subset V of a Banach 
space A,0 € V and fx(x) is a Ck-function of x, A with /o(0) = 0,Dxfo(0) = 0, 
then the manifolds Wx(</>x,U), W^{<j)x,U) are represented by a Ck-function of 
x, A. 

We do not prove this theorem. A complete proof can be found in Hirsch, 
Pugh,and Shub [1977] where they used the graph transform (in contrast to fixed 
points of T in Formula (A.8)) to show the existence of the unstable and stable sets 
and they used a fiber contraction theorem to obtain the smoothness. Another 
proof is contained in Henry [1983] Chow and Lu[ 1988a] where they use (A.8) for 
existence, Lemma A.3, and a Cr-section theorem similar to the one in Hirsch, 
Pugh, and Shub [1977, p. 31] for the smoothness. Another proof has been given 
by Vanderbauwhede and van Gils [1987] using (A.8) and a fixed point theorem 
in weighted Banach spaces. Recently, Chow and Lu [1988b] have given a proof 
using (A.8), weighted Banach spaces and the contraction theorem. We should 
remark that the results in Hirsch, Pugh, and Shub [1977] deal with the more 
general problem of stable and unstable sets (as well as the persistence under 
perturbations) of normally hyperbolic invariant sets. 
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For infinite dimension problems, there are analogues of Theorem A.6 for some 
situations. These include all of the examples discussed in this book except the 
nonlinear diffusion problem of §4.9.6. The analogue of Theorem A.2 can be 
found in Ball [1973] and the presentation in Henry [1977], as well as in Vander-
bauwhede and van Gils [1987], Chow and Lu[ 1988a], [1988b], is given for infinite 
dimensional problems. 

We state the result in the infinite dimensional case. Let X C Y be Banach 
spaces with the embedding being continuous. Let S(t):Y —• Y,t > 0, and the 
spaces X, Y satisfy the following properties: 

(Hi) S(t) is a strongly continuous linear semigroup. 
(H2) There is a decomposition Y = Y\ © Y% with continuous projections 

Pi.Y -+Yi such that 
PiS(t) = S{t)Pi, t > 0. 

(H3) PiX C X and S(t)Y C X for t> 0. 
(H4) S(t) can be extended to a group on Yi. 
(H5) There exist constants M > 0, N > 0, a > 0, /? > 0, 0 < 7 < 1 such that 

\S{t)P!x\x < MeQt\x\x for t < 0, x G X, 
\S(t)P2x\x < Me-pt\x\x for t > 0, x G X, 

\S{t)P2y\x < {Mt-i + N)e-0t\y\Y for t > 0, ye Y. 

Let F: X —• Y be a given function and consider the integral equation in X: 

(A.13) x(t) = S(t)x0 + [ S(t- T)F(X(T)) dr. 
Jo 

For the linear semigroup S(t), the subspace X\ of X is the unstable manifold 
of zero and the subspace X2 is the stable manifold of zero. If we suppose that 
FeCk(X,Y), k>0, and 

(A.14) F(0) = 0, DF{0) = 0, 

then one can use the contraction mapping principle as in the proof of Theorem 
A.2 to obtain the Lipschitz local unstable manifold W^c(0) and local stable 
manifold Wfoc(Q) of the zero solution of the integral equation (A.13). These 
manifolds are actually Ck as stated in the following result. 

THEOREM A . 7 . Suppose (H1)-(H5) and (A.14) are satisfied. If f G 
Ck{X,Y),fc > 1, then Wfcc(0),Wfoc(0) are Ck-manifolds. If, in addition, F = 
F\ depends on a parameter X in an open subset V of a Banach space A and 
Fx{x) is Ck in x, A with Fx{0) = 0, DxFx{0) = 0, then the manifolds W£c A(0), 
Wfoc A(0) are represented by a Ck-function of x, A. 

As mentioned earlier, Theorem A.6 can be applied to the equations considered 
in this book (except for §4.9.6). For example, for the case in which S(t) is an 
analytic semigroup with generator —A (see §4.2), the two Banach spaces X, Y are 
respectively X Q , X in the notation of §4.2. For the damped hyperbolic equations 
considered in §§4.7 and 4.8, X = Y = ^ ( f i ) x L2(fi). 
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For applications, one must also consider center manifolds and the manifolds 
near an equilibrium point which have a specified exponential behavior either as 
t —• -Hoc or as t —• -oo. Such results are obtained by splitting the spectrum 
of the linear semigroup eAt by the circle \z\ = e11* and then using weighted 
supremum norms so that the equilibrium point appears to be a saddle point for 
the linear operator in this norm (see Ball [1973a], Henry [1983], Vanderbauwhede 
and van Gils [1987], and Chow and Lu [1987b]). 

As a final remark, we mention that results similar to the above ones are valid 
for fixed points of maps. In this case, the integrals in (A.8) are replaced by sums. 
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