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In this article, we survey the Lyapunov direct method for distributed-order nonlinear time-varying systems with the Prabhakar
fractional derivatives. We provide various ways to determine the stability or asymptotic stability for these types of fractional
differential systems. Some examples are applied to determine the stability of certain distributed-order systems.

1. Introduction

In recent years, distributed-order fractional calculus has
played a significant role in many areas of science, engineer-
ing, and mathematics [1–5]. For the first time in 1969, the
distributed-order fractional calculus with the Caputo frac-
tional derivatives was surveyed by Caputo [6]. Later, other
research on the distributed-order fractional derivatives
was presented. For example, Fernández-Anaya et al. [7]
studied asymptotic stability of distributed-order nonlinear
dynamical systems with the Caputo fractional derivative.
Moreover, Duong et al. [3] studied the deterministic analy-
sis of distributed-order systems using operational matrix. A
new method for obtaining the numerical solution of
distributed-order time-fractional-subdiffusion equations
(DO-TFSDE) of the fourth order is studied in [8], and solv-
ing a two-dimensional distributed-order time-fractional
fourth-order partial differential equation by using of the
space-time Petrov-Galerkin spectral method is studied
in [9]. The stability of distributed-order fractional differ-
ential systems with respect to the nonnegative density
function has also been studied [10, 11]. We define frac-
tional distributed-order nonautonomous systems of the
form

CDγ
,c μð Þ,ωx tð Þ = f x tð Þ, tð Þ, ð1Þ

where cðμÞ is an absolutely integrable function in the
interval μ ∈ ½0, 1� and CDγ

ρ,cðμÞ,ω is a distributed-order

fractional differential/integral operator in the sense of a
given fractional differential/integral operator of order cðμÞ
which discusses about the stability or asymptotic stability
for these systems. Our interest in choosing this type of
derivative is related to the three-parameter Mittag-Leffler
function. One useful application of the three-parameter
Mittag-Leffler function in mathematics has been related
to their importance in fractional calculus as a model of
complex susceptibility in the response of disordered mate-
rials and heterogeneous systems [12], in the response in
anomalous dielectrics of Havriliak-Negami type [13], in
fractional viscoelasticity [14], in the discussion of stochas-
tic processes [15], in probability theory [16], in the
description of dynamical models of spherical stellar sys-
tems [17], in the polarization processes in Havriliak-
Negami models [13, 18], and in fractional or integral
differential equations [19]. In this paper, we intend to sur-
vey the stability or asymptotic stability analysis of a
distributed-order fractional differential/integral operator
containing the Prabhakar fractional derivatives. This type
of fractional derivative was introduced by Garra et al.
[20] in that it is considered in terms of the generalized
Mittag-Leffler function and can be considered as a gener-
alization of the most popular definitions of fractional
derivatives. In the field of stability and asymptotic stability,
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several papers have been published as follows: in [21], the
Hyers-Ulam stability of the linear and nonlinear differen-
tial equations of fractional order with Prabhakar derivative
by using the Laplace transform method is studied and the
authors show that the fractional equation introduced is
Hyers-Ulam stable, and in [22], the authors obtained the
stability regions of differential systems of fractional order
with the Prabhakar fractional derivatives. For this purpose,
in Section 2, we recall some definitions and lemmas in
generalized fractional calculus. In Section 3, we introduce
the distributed-order nonlinear time-varying systems con-
taining the Prabhakar fractional derivative and discuss
about the stability analysis of these types of fractional dif-
ferential systems. In Section 4, we plot two examples in
order to show the performance and accuracy of the pro-
posed method.

2. Preliminaries

In this section, we recall some definitions and lemmas which
are used in the next sections.

0+I
α
t f tð Þ = 1

Γ αð Þ
ðt
0
f τð Þ t − τð Þα−1dτ, t > 0, 0 < α < 1,

0+D
α
t f tð Þ = 1

Γ 1 − αð Þ
d
dt

ðt
0
f τð Þ t − τð Þ−αdτ, t > 0, 0 < α < 1,

ð2Þ

where ΓðzÞ = Ð∞
0 xz−1e−xdx,RðzÞ > 0 is the gamma function.

Also, for the absolutely continuous function f , the Caputo
fractional derivatives of order α is defined as follows:

C
0+D

α
t f tð Þ= 0+I

1−α
t

d
dt

f tð Þ = 1
Γ 1 − αð Þ

ðt
0
t − τð Þ−α f ′ τð Þdτ:

ð3Þ

Eγ
ρ,μ,ω,0+ f

� �
tð Þ =

ðt
0
t − τð Þμ−1Eγ

ρ,μ ω t − τð Þρð Þf τð Þdτ, ð4Þ

where Eγ
ρ,μ is the generalized Mittag-Leffler function intro-

duced by Prabhakar in 1971 [25]:

Eγ
ρ,μ zð Þ = 1

Γ γð Þ〠
∞

n=0

Γ γ + nð Þ
n!Γ ρn + μð Þ z

n, R ρð Þ,R μð Þ > 0:

ð5Þ

Dγ
ρ,μ,ω,0+ f

� �
tð Þ = dm

dtm
E−γ
ρ,m−μ,ω,0+ f tð Þ, t > 0: ð6Þ

Definition 1. (see [23, 24]). Let 0 < α < 1 and f ∈ L1½0, b�, 0
< t < b ≤∞. Then, the Riemann-Liouville fractional integral
and derivative of order α are defined as

Definition 2. (see [20]). For m − 1 < μ ≤m and function f ∈
L1½0, b�, 0 < t < b ≤∞, the Prabhakar fractional integral is
defined as follows:

Definition 3. (see [20]). For the function f ∈ L1½0, b�, the
Prabhakar fractional derivative is defined as

Also, analogous formulas for the Caputo-Prabhakar frac-
tional derivative are given by

CDγ
ρ,μ,ω,0+ f

� �
tð Þ = E−γ

ρ,m−μ,ω,0+
dm

dtm
f tð Þ, t > 0, ð7Þ

where m − 1 <RðμÞ <m and ρ, μ, ω, γ ∈ℂ.

L Dγ
ρ,μ,ω,0+ f tð Þ ; s

n o
= sμ 1 − ωs−ρð ÞγF sð Þ

− 〠
m−1

k=0
sk Dγ

ρ,μ−k,ω,0+ f
� �

0+ð Þ,
ð8Þ

where FðsÞ is the Laplace transform of f ðtÞ

F sð Þ =
ð∞
0
e−st f tð Þdt: ð9Þ

L tμ−1E−γ
ρ,μ ωtρð Þ ; s

n o
= s−μ 1 − ωs−ρð Þγ, ∣

ω

sρ
∣ < 1,  R μð Þ > 0:

ð10Þ

d
dt

� �n

tμ−1Eγ
ρ,μ ωtρð Þ

� �
= tμ−n−1Eγ

ρ,μ−n ωtρð Þ: ð11Þ

L CDγ
ρ,μ,ω,0+ f tð Þ ; s

n o
= sμ 1 − ωs−ρð ÞγF sð Þ

− sμ−m 1 − ωs−ρð Þγ 〠
m−1

k=0
sm−k−1 f kð Þ 0+ð Þ,

ð12Þ

L CDγ
ρ,μ,ω,0+ f tð Þ ; s

n o
=L tm−μE−γ

ρ,μ ωtρð Þ ; s
n o

L
dm

dtm
f tð Þ ; s

� �
= sμ 1 − ωs−ρð ÞγF sð Þ

− 1 − ωs−ρð Þγ 〠
m−1

k=0
sμ−k−1 f kð Þ 0+ð Þ,

ð13Þ
and the proof is completed.

lim
t→∞

f tð Þ = lim
s→0

sF sð Þ: ð14Þ

CDγ
ρ,c μð Þ,ω,0+x tð Þ =

ðm
m−1

c μð ÞCDγ
ρ,μ,ω,0+x tð Þdμ, m − 1 < μ <m:

ð15Þ
Lemma 4. (see [20]). The Laplace transform of the Prabhakar
fractional derivative for m − 1 <RðμÞ <m is given by

Lemma 5. The Laplace transform of the generalized Mittag-
Leffler function tμ−1Eγ

ρ,μðωtρÞ is given by [20]
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Lemma 6. (see [23]). Let ρ, μ, γ, ω ∈ℂðRðρÞ > 0,RðμÞ > 0Þ.
Then, for any n ∈ℕ, the generalized Mittag-Leffler function
derivative is defined as

Lemma 7. The Laplace transform of (7) is given by

Proof. Using the definition of ðCDγ
ρ,μ,ω,0+ f ÞðtÞ and equation

(10), we obtain

Lemma 8. (see [26]). Let FðsÞ =Lf f ðtÞ ; sg: If all poles of s
FðsÞ are in the open left-half complex plane, then

Definition 9. The distributed-order fractional integral opera-
tor in the Caputo-Prabhakar sense with respect to an order
density function cðμÞ ≥ 0 is defined by

The Laplace transform of the Caputo-Prabhakar
distributed-order derivative is obtained as

L CDγ
ρ,c μð Þ,ω,0+x tð Þ ; s

n o
=
ðm
m−1

c μð Þ sμ 1 − ωs−ρð ÞγX sð Þ½

− 1 − ωs−ρð Þγ 〠
m−1

k=0
sμ−k−1x kð Þ 0+ð Þ

#
dμ

= C sð Þ 1 − ωs−ρð ÞγX sð Þ

− 1 − ωs−ρð Þγ 〠
m−1

k=0

1
sk+1

C sð Þx kð Þ 0+ð Þ,

ð16Þ

where XðsÞ is the Laplace transform of xðtÞ and CðsÞ = Ðm
m−1

cðμÞsμdμ:

f t, xð Þ − f t, yð Þj j ≤ L x − yj j, ð17Þ

for all ðt, xÞ, ðt, yÞ ∈D: The constant L is called a Lipschitz
constant for f ðt, xÞ with respect to x on D:

Definition 10. A real-valued continuous function f ðt, xÞ is
said to satisfy a Lipschitz condition with respect to x on
D = ½0,∞Þ provided there is a constant L such that

3. The Distributed-Order Fractional
Integral Operator

In this section, we state the stability and asymptotic stability
of the distributed-order nonlinear time-varying systems as

CDγ
ρ,c μð Þ,ω,0+x tð Þ = f x tð Þ, tð Þ, t ∈ 0,∞½ Þ, 0 < μ < 1,  x 0ð Þ = x0,

ð18Þ

where CDγ
ρ,cðμÞ,ω,0+xðtÞ <M, f ðxðtÞ, tÞ ∈ L1½0,∞� and f is a

real-value continuous function. Also. in the above, cðμÞ is
an absolutely integrable function and it satisfies

Ð 1
0 cðμÞsμdμ

≠ 0,RðsÞ > 0. Assuming the above conditions are satisfied
for the system (18), in this case, to prove the existence and
uniqueness of system (18), we can perform a process similar

to [4], and assuming that the system solution will be as fol-
lows, these solutions are obtained by taking the Laplace
transform from both sides of system ((18)):

x tð Þ = x 0ð Þ +
ðt
0
L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
f ξð Þdξ:

ð19Þ

1
2
C

Dγ
ρ,μ,ω,0+x

2 tð Þ ≤ x tð ÞCDγ
ρ,μ,ω,0+x tð Þ,  μ ∈ 0, 1ð Þ: ð20Þ

x tð ÞCDγ
ρ,μ,ω,0+x tð Þ − 1

2
C

Dγ
ρ,μ,ω,0+x

2 tð Þ ≥ 0, ð21Þ

using equation (7) in Definition 3 for (21), it can be written as
follows:

CDγ
ρ,μ,ω,0+x tð Þ =

ðt
0
t − τð Þ−μE−γ

ρ,1−μ ω t − τð Þρð Þ _x τð Þdτ, ð22Þ

and in the same way,

1
2
C

Dγ
ρ,μ,ω,0+x

2 tð Þ =
ðt
0
t − τð Þ−μE−γ

ρ,1−μ ω t − τð Þρð Þx τð Þ _x τð Þdτ:

ð23Þ

Lemma 11. Let x ∈ℝ be a continuous and derivable function.
Then, for any time instant t ≥ 0, we have:

Proof. Proving that expression (20) is true, to prove that

Relation (21) can be written as

ðt
0
t − τð Þ−μE−γ

ρ,1−μ ω t − τð Þρð Þ x tð Þ − x τð Þ½ � _x τð Þdτ ≥ 0: ð24Þ

Let us define the auxiliary variable yðτÞ = xðtÞ − xðτÞ; in
this way, expression (24) can be written as

ðt
0
t − τð Þ−μE−γ

ρ,1−μ ω t − τð Þρð Þy τð Þ _y τð Þdτ ≤ 0, ð25Þ

defining

du = y τð Þ _y τð Þdτ⇒ u = 1
2 y

2 τð Þ,

v = t − τð Þ−μE−γ
ρ,1−μ ω t − τð Þρð Þ⇒ dv

= − t − τð Þ−μ−1E−γ
ρ,−μ ω t − τð Þρð Þdτ,

ð26Þ
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and taking the integration by parts of (25) turns it into

−
y2 τð ÞE−γ

ρ,1−μ ω t − τð Þρð Þ
2 t − τð Þμ

" #�����
τ=t

+
y2 0ð ÞE−γ

ρ,1−μ ω tð Þρð Þ
2tμ

" #

+ 1
2

ðt
0

y2 τð ÞE−γ
ρ,2−μ ω t − τð Þρð Þ
t − τð Þμ+1 dτ ≥ 0:

ð27Þ

Let us check the first term of relation (27) which has an
indetermination at τ = t, so let us analyze the correspond-
ing limit. Now, we show that there exists limτ→t − ½y2ðτÞ
E−γ
ρ,1−μðωðt − τÞρÞ/2ðt − τÞμ� and its value is zero, then we

have

lim
τ→t

−
y2 τð ÞE−γ

ρ,1−μ ω t − τð Þρð Þ
2 t − τð Þμ

" #
= −

1
2Γ 1 − μð Þ limτ→t

x tð Þ − x τð Þ½ �2
t − τð Þμ ,

ð28Þ

since it results in 0/0, by applying the L’Hôpital rule on
(3-10), we obtain

−
1

2Γ 1 − μð Þ limτ→t

−2 _x τð Þx tð Þ + 2x τð Þ _x τð Þ½ �
−μ t − τð Þμ−1

= −
1

2Γ 1 − μð Þ limτ→t

−2 _x τð Þx tð Þ + 2x τð Þ _x τð Þ½ � t − τð Þ1−μ
−μ

= 0:

ð29Þ

Thus, relation (27) is reduced to

y2 0ð ÞE−γ
ρ,1−μ ω tð Þρð Þ
2tμ

" #
+ 1
2

ðt
0

y2 τð ÞE−γ
ρ,2−μ ω t − τð Þρð Þ
t − τð Þμ+1 dτ ≥ 0,

ð30Þ

y2 0ð Þ
2Γ −γð Þ〠

∞

n=0

Γ −γ + nð Þωn

n!Γ ρn + 1 − μð Þ t
ρn−μ

+ 1
2Γ −γð Þ〠

∞

n=0

Γ −γ + nð Þωn

n!Γ ρn + 1 − μð Þ
ðt
0
y2 τð Þ t − τð Þρn−μ−1 ≥ 0:

ð31Þ
Due to t ≥ τ, t ≥ 0 and features of the gamma function,

equation (31) is clearly true, and this concludes the proof.

1
2
C

Dγ
ρ,μ,ω,0+x

T tð Þx tð Þ ≤ xT tð ÞCDγ
ρ,μ,ω,0+x tð Þ, μ ∈ 0, 1ð Þ:

ð32Þ

1
2
C

Dγ
ρ,c μð Þ,ω,0+x

T tð Þx tð Þ ≤ xT tð ÞCDγ
ρ,c μð Þ,ω,0+x tð Þ, μ ∈ 0, 1ð Þ:

ð33Þ
CDγ

ρ,c μð Þ,ω,0+x tð Þ= CDγ
ρ,c μð Þ,ω,0+y tð Þ +M tð Þ: ð34Þ

Remark 12. Lemma 11 is valid for xðtÞ ∈ℝn

Lemma 13. Let xðtÞ be defined as in Remark 12. Then, for any
t ≥ t0, the following relationship holds:

Proof.Multiplying both sides of (20) by cðμÞ ≥ 0 and integrat-
ing with respect to μ in the interval (0,1), the desired result is
obtained.

Lemma 14. Let μ ∈ ð0, 1Þ and cðμÞ is such that the operatorÐ t
0 L

−1f1/ð1 − ωs−ρÞγCðsÞ ; t − ξgð:Þdξ takes nonnegative
functions into nonnegative functions. If CDγ

ρ,cðμÞ,ω,0+xðtÞ≥C

Dγ
ρ,cðμÞ,ω,0+yðtÞ and xð0Þ = yð0Þ, then xðtÞ ≥ yðtÞ.

Proof. Adding up a nonnegative function MðtÞ to the right-
hand side of the inequality CDγ

ρ,cðμÞ,ω,0+xðtÞ≥CDγ
ρ,cðμÞ,ω,0+yðtÞ,

we have

Using formula (16) and taking the Laplace transform of
(34), we have

1 − ωs−ρð ÞγC sð Þx sð Þ − 1 − ωs−ρð ÞγC sð Þ
s

x 0ð Þ

= 1 − ωs−ρð ÞγC sð Þy sð Þ − 1 − ωs−ρð ÞγC sð Þ
s

y 0ð Þ +M sð Þ:
ð35Þ

Thus,

x sð Þ = y sð Þ + M sð Þ
1 − ωs−ρð ÞγC sð Þ : ð36Þ

At this point, by applying the inverse of the Laplace
transform on both sides of the above relation (36) and using
the convolution theorem, we then obtain

x tð Þ = y tð Þ +
ðt
0
L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
M ξð Þdξ:

ð37Þ

The second term of the right-hand side of (37) is nonneg-
ative, because L−1f1/ð1 − ωs−ρÞγCðsÞ ; t − ξg,MðξÞ are non-
negative, then xðtÞ ≥ yðtÞ:

According to Lemma 14, the following corollary is
obtained.

α1∥x∥
a ≤V x tð Þ, tð Þ ≤ α2∥x∥

ab, ð38Þ

CDγ
ρ,c μð Þ,ω,0+V x tð Þ, tð Þ ≤ −α3∥x∥

ab, ð39Þ
where μ ∈ ð0, 1Þ, a, b, α1, α2, α3 > 0: The distributed-order
fractional system of (18) is asymptotically stable in x = 0 if
the roots of ð1 − ωs−ρÞγCðsÞ + α3/α2 are in the open left-half
complex plane, and cðμÞ is such that L−1f1/ðð1 − ωs−ρÞγC
ðsÞ + α3/α2Þ ; t − ξg ≥ 0,∀t ≥ 0.

CDγ
ρ,c μð Þ,ω,0+V x tð Þ, tð Þ ≤ −

α3
α2

V x tð Þ, tð Þ: ð40Þ
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Corollary 15. Let μ ∈ ð0, 1Þ, and the features of Lemma 14
and Lemma 13 are established. Then, the origin of system
(18) is stable in that the origin is the equilibrium point, if
xT f ðxðtÞ, tÞ ≤ 0.

Theorem 16. Let x = 0 be an equilibrium point for system
(18). Let that there exists a Lyapunov function VðxðtÞ, tÞ
satisfying

Proof. Using equations (38) and (39), we can get

Adding up a nonnegative function MðtÞ to the left-hand
side of the last inequality, we have

CDγ
ρ,c μð Þ,ω,0+V x tð Þ, tð Þ +M tð Þ = −

α3
α2

V x tð Þ, tð Þ: ð41Þ

By applying the Laplace transform on both sides of (41),
we have

1 − ωs−ρð ÞγC sð ÞV x sð Þ, sð Þ − 1 − ωs−ρð ÞγC sð Þ
s

V 0ð Þ +M sð Þ

= −
α3
α2

V x sð Þ, sð Þ,

ð42Þ

and solving for VðsÞ:

V sð Þ = C sð Þ 1 − ωs−ρð ÞγV 0ð Þ
s 1 − ωs−ρð ÞγC sð Þ + α3/α2ð Þ −

M sð Þ
1 − ωs−ρð ÞγC sð Þ + α3/α2

:

ð43Þ

By applying the inverse of the Laplace transform on both
sides of the above relation (43), we obtain

V tð Þ =L−1 C sð Þ 1 − ωs−ρð ÞγV 0ð Þ
s 1 − ωs−ρð ÞγC sð Þ + α3/α2ð Þ

� �

−L−1 M sð Þ
1 − ωs−ρð ÞγC sð Þ + α3/α2

� �
:

ð44Þ

We can rewrite the second term of the right-hand side of
(44) as

L−1 M sð Þ
1 − ωs−ρð ÞγC sð Þ + α3/α2

� �
=M tð Þ ∗ g tð Þ

=
ðt
0
M ξð Þg t − ξð Þdξ,

ð45Þ

where gðtÞ =L−1f1/ðð1 − ωs−ρÞγCðsÞ + α3/α2Þ ; tg: Consid-
ering that CðsÞ is such that gðtÞ ≥ 0,  ∀t ≥ 0, and MðtÞ, ∀t ≥
0, then

V tð Þ ≤L−1 C sð Þ 1 − ωs−ρð ÞγV 0ð Þ
s 1 − ωs−ρð ÞγC sð Þ + α3/α2ð Þ

� �
: ð46Þ

Using Lemma 8 and the hypothesis for the function, we
get

lim
t→∞

V tð Þ ≤ lim
t→∞

L−1 C sð Þ 1 − ωs−ρð ÞγV 0ð Þ
s 1 − ωs−ρð ÞγC sð Þ + α3/α2ð Þ

� �

= lim
s→0

s
C sð Þ 1 − ωs−ρð ÞγV 0ð Þ

s 1 − ωs−ρð ÞγC sð Þ + α3/α2ð Þ
� �

= 0:
ð47Þ

Using equations (38) and (3-28) and considering that V
ðtÞ ≥ 0, ∀t ≥ 0, we can get

lim
t→∞

α1∥x tð Þ∥a ≤ lim
t→∞

V x tð Þ, tð Þ = 0, ð48Þ

since α1, a > 0, then we obtain limt→∞∥xðtÞ∥ = 0: The proof is
complete.

The following lemma allows us to determine asymptotic
stability by analyzing the integer order derivative of an
appropriate Lyapunov function.

∥
ðt
0
L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
f x ξð Þ, ξð Þdξ∥ ≤

≤
ðt
0
L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
∥f x ξð Þ, ξð Þ∥dξ:

ð49Þ

x tð Þ =
ðt
0
L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
f x ξð Þ, ξð Þdξ,

ð50Þ
norming both sides of (50)

∥x tð Þ∥ = ∥
ðt
0
L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
f x ξð Þ, ξð Þdξ∥,

ð51Þ

and applying inequality properties, we get

∥x tð Þ∥ ≤
ðt
0
∥L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
∥∥f x ξð Þ, ξð Þ∥dξ,

ð52Þ

since L−1f1/ð1 − ωs−ρÞγCðsÞ ; t − ξg ≥ 0, then we have

∥x tð Þ∥ ≤
ðt
0
L−1 1

1 − ωs−ρð ÞγC sð Þ ; t − ξ

� �
∥f x ξð Þ, ξð Þ∥dξ,

ð53Þ

setting (51) in (53) and we get inequality (49).

γ1∥x tð Þ∥a ≤V x tð Þ, tð Þ ≤ γ2∥x tð Þ∥, ð54Þ

dV x tð Þ, tð Þ
dt

≤ −γ3∥x tð Þ∥, t ≥ 0, ð55Þ
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where a, γ1, γ2, γ3 > 0, ðCDγ
ρ,−ð1−cðμÞÞ,ω,0+xðtÞÞt=0 = 0: And the

distribution function 1 − cðμÞ satisfies the conditions of The-
orem 16, then system (18) is asymptotically stable.

CDγ
ρ,1−c μð Þ,ω,0+x tð Þ= CDγ

ρ,−c μð Þ,ω,0+
dV x tð Þ, tð Þ

dt
: ð56Þ

Lemma 17. If L−1f1/ð1 − ωs−ρÞγCðsÞ ; t − ξg ≥ 0 then

Proof. We define xðtÞ as follows:

Theorem 18. Assume that f ðxðtÞ, tÞ satisfies a Lipschitz con-
dition with respect to x on D. If xð0Þ = 0,L−1f1/ð1 − ωs−ρÞγ
CðsÞ ; t − ξg ≥ 0 and there exists a Lyapunov function VðxðtÞ,
tÞ that satisfies

Proof. By properties of the distributed derivative

Setting (56) in (55), we have

CDγ
ρ,1−c μð Þ,ω,0+V x tð Þ, tð Þ ≤ −γ3

CDγ
ρ,−c μð Þ,ω,0+∥x tð Þ∥: ð57Þ

Let L be a Lipschitz constant for f ðt, xÞ with respect to
x on D, and using the Lipschitz condition, then we have
from (57)

CDγ
ρ,1−c μð Þ,ω,0+V x tð Þ, tð Þ ≤ −γ3

L

C
Dγ

ρ,−c μð Þ,ω,0+∥f x tð Þ, tð Þ∥, ð58Þ

using Lemma 17 and considering that Dγ
ρ,−cðμÞ,ω,0+ f ðxðtÞ,

tÞ = xðtÞ we have

CDγ
ρ,1−c μð Þ,ω,0+V x tð Þ, tð Þ ≤ −γ3

L
∥CDγ

ρ,−c μð Þ,ω,0+ f x tð Þ, tð Þ∥

≤
−γ3
L

∥x tð Þ∥:
ð59Þ

Considering cðμÞ = 1 − cðμÞ, α3 = γ3/L, b = a−1, it fol-
lows from Theorem 16 that the system is asymptotically
stable.

4. Numerical Results

In this section, two numerical examples for the distributed-
order linear and nonlinear systems are presented to verify
the efficiency of the proposed method.

CDγ
ρ,c μð Þ,ω,0+x1 tð Þ = −5 x1 tð Þ + exp tð Þx2 tð Þð Þ, ð60Þ

CDγ
ρ,c μð Þ,ω,0+x2 tð Þ = −5 x2 tð Þ − exp tð Þx1 tð Þð Þ: ð61Þ

Example 19. Consider the following system of a fractional
distributed order, when μ ∈ ð0, 1Þ

To use Theorem 16, first we show that L−1f1/ðð1 −
ωs−ρÞγCðsÞ + α3/α2Þg ≥ 0, for all t ≥ 0 is hold, then letting

α1 = 1/4,α2 = 1, and α3 = 4, we obtain

1 − ωs−ρð ÞγC sð Þ + α3
α2

= 4 − s2/3 1 − ωs−ρð Þγ, ð62Þ

1
4 − s2/3 1 − ωs−ρð Þγ = 1

4〠
∞

n=0

s2/3 1 − ωs−ρð Þγ
4

� �n

,  ∣s2/3 1 − ωs−ρð Þγ∣ < 1:

ð63Þ
Using Lemma 5 on equation (63), we obtain

L−1 1
4 − s2/3 1 − ωs−ρð Þγ

� �
= 1
4〠

∞

n=0
L−1 s2/3 1 − ωs−ρð Þγ

4

� �n� �

= 1
4〠

∞

n=0

1
4n t

− 2/3ð Þn−1E−nγ
ρ,− 2/3ð Þn ωtρð Þ, t ≥ 0:

ð64Þ

For each t ≥ 0, inequality ð1/4Þ∑∞
n=0 ð1/4nÞt−ð2/3Þn−1

E−nγ
ρ,−ð2/3ÞnðωtρÞ ≥ 0 is hold. Then, the first part is estab-

lished. Also, all the roots of this function 4 − s2/3

ð1 − ωs−ρÞγ = 0 are located in the open left-half complex
plane and this roots can be obtained by s = reiθ. Now, let
us consider the following Lyapunov candidate function:

α1∥x tð Þ∥2 ≤V x1 tð Þ, x2 tð Þð Þ = 1
2 x

2
1 tð Þ + 1

2 x
2
2 tð Þ ≤ ∥x tð Þ∥2:

ð65Þ

Using Lemma 13 for (65), we obtain

CDγ
ρ,c μð Þ,ω,0+V x1 tð Þ, x2 tð Þð Þ = 1

2
C

Dγ
ρ,c μð Þ,ω,0+x

2
1 tð Þ

+ 1
2
C

Dγ
ρ,c μð Þ,ω,0+x

2
2 tð Þ

≤ x1 tð ÞCDγ
ρ,c μð Þ,ω,0+x1 tð Þ

+ x2 tð ÞCDγ
ρ,c μð Þ,ω,0+x2 tð Þ:

ð66Þ

Substituting system (60) in (66), then we obtain

CDγ
ρ,c μð Þ,ω,0+V x1 tð Þ, x2 tð Þð Þ ≤ −5 x1 tð Þ2 + x2 tð Þ2	 


≤ −α3∥x tð Þ∥2:
ð67Þ

By Theorem 16, we can conclude that the origin of
(60) is asymptotically stable. Figures 1 and 2 demonstrate
the behavior of system (60) for a short time scale.

CDγ
ρ,c μð Þ,ω,0+x1 tð Þ = −2 x1 tð Þx22 tð Þ + x1 tð Þ	 


, ð68Þ

CDγ
ρ,c μð Þ,ω,0+x2 tð Þ = −2 −x2 tð Þx21 tð Þ + x2 tð Þ	 


: ð69Þ
Example 20. In this example, we consider the following
nonlinear system of fractional distributed order when μ
∈ ð0, 1Þ:
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With the same process as Example 19, we consider the
following Lyapunov candidate function:

α1∥x tð Þ∥2 ≤ V x1 tð Þ, x2 tð Þð Þ = 1
2 x

2
1 tð Þ + 1

2 x
2
2 tð Þ ≤ ∥x tð Þ∥2:

ð70Þ

Using Lemma 13 for (70), we obtain

CDγ
ρ,c μð Þ,ω,0+V x1 tð Þ, x2 tð Þð Þ = 1

2
C

Dγ
ρ,c μð Þ,ω,0+x

2
1 tð Þ

+ 1
2
C

Dγ
ρ,c μð Þ,ω,0+x

2
2 tð Þ

≤ x1 tð ÞCDγ
ρ,c μð Þ,ω,0+x1 tð Þ

+ x2 tð ÞCDγ
ρ,c μð Þ,ω,0+x2 tð Þ:

ð71Þ

Substituting system (68) in (71), we then have

CDγ
ρ,c μð Þ,ω,0+V x1 tð Þ, x2 tð Þð Þ ≤ −2x1 tð Þ x1 tð Þx22 tð Þ + x1 tð Þ	 


− 2x2 tð Þ −x2 tð Þx21 tð Þ + x2 tð Þ	 

≤ −α3∥x tð Þ∥2:

ð72Þ

By Theorem 16, we can conclude that the origin of (68) is
asymptotically stable. Figures 3 and 4 demonstrate the behav-
ior of system (68) for a short time scale.

5. Conclusion

In this paper, we focus on the distributed-order linear and
nonlinear time-varying systems containing Caputo-
Prabhakar fractional derivative of order cðμÞ. With the
expansion the Lyapunov direct method to the distributed-
order case, we state that stability and asymptotic stability
results in this kind of systems. Also, in this paper, Lemma
11 is a generalization of Lemma 1 in [27], Theorem 16 is a
generalization of Theorem 3 in [7], Lemma 17 is a generaliza-
tion of Lemma 4 in [7], and Theorem 18 is a generalization of
Theorem 4 in [7]. In order to demonstration the validity and
applicability of the obtained results in this paper, two exam-
ples are shown.
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Figure 1: The numerical results for system (60) at cðμÞ = −δðμ − 2
/3Þ for Example 19.
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Figure 2: Stability diagram of Example 19 for x1ðtÞ and x2ðtÞ.
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Figure 3: The numerical results for system (60) at cðμÞ = −δðμ − 2
/3Þ for Example 20.
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Figure 4: Stability simulation of Example 20 for x1ðtÞ and x2ðtÞ.
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Data Availability

The [MATLAB] data used to support the findings of this
study are included within the article. The idea of this article
is taken from the article [https://scholar.google.com.ua/
scholar?hl=en~~~~~~~~~^~^~^~^~~~~~~~~~~~amp;as
_sdt=0%2C5q=Asymptotic+stability+of+distributed+order
+nonlinear+dynamical+systems~~~~~~~~~^~^~^~^~~~
~~~~~~~~amp;btnG=], and it is similar to the data in this
article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] T. M. Atanackovic, M. Budincevic, and S. Pilipovic, “On a frac-
tional distributed-order oscillator,” Journal of Physics A: Math-
ematical and General, vol. 38, no. 30, pp. 6703–6713, 2005.

[2] H. Aminikhah, A. Refahi Sheikhani, and H. Rezazadeh, “Sta-
bility analysis of distributed order fractional Chen system,”
The Scientific World Journal, vol. 2013, 13 pages, 2013.

[3] P. L. T. Duong, E. Kwok, and M. Lee, “Deterministic analysis
of distributed order systems using operational matrix,”
Applied Mathematical Modelling, vol. 40, no. 3, pp. 1929–
1940, 2016.

[4] N. J. Ford and M. L. Morgado, “Distributed order equations as
boundary value problems,” Computers & Mathematics with
Applications, vol. 64, no. 10, pp. 2973–2981, 2012.

[5] A. N. Kochubei, “Distributed order calculus and equations of
ultraslow diffusion,” 2007, http://arxiv.org/abs/math-ph/
0703046.

[6] M. Caputo, Elasticita e dissipazione, Zanichelli, Italian, Bolo-
gna, 1969.

[7] G. Fernández-Anaya, G. Nava-Antonio, J. Jamous-Galante,
R. Muñoz-Vega, and E. G. Hernández-Martínez, “Asymptotic
stability of distributed order nonlinear dynamical systems,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 48, pp. 541–549, 2017.

[8] M. A. Abdelkawy, M. M. Babatin, and A. M. Lopes, “Highly
accurate technique for solving distributed-order time-frac-
tional-sub-diffusion equations of fourth order,” Computa-
tional and Applied Mathematics, vol. 39, no. 2, pp. 1–22, 2020.

[9] M. Fei and C. Huang, “Galerkin-Legendre spectral method for
the distributed-order time fractional fourth-order partial dif-
ferential equation,” International Journal of Computer Mathe-
matics, vol. 97, no. 6, pp. 1183–1196, 2020.

[10] H. S. Najafi, A. R. Sheikhani, and A. Ansari, “Stability analysis
of distributed order fractional differential equations,” in
abstract and applied analysis (Vol. 2011), Hindawi, 2011.

[11] A. Refahi, A. Ansari, H. S. Najafi, and F. Merhdoust, “Analytic
study on linear systems of distributed order fractional differen-
tial equations,” Le Matematiche, vol. 67, no. 2, pp. 3–13, 2012.

[12] P. Miskinis, “The Havriliak-Negami susceptibility as a nonlin-
ear and nonlocal process,” Physica Scripta, vol. 2009, no. T136,
article 014019, 2009.

[13] R. Garrappa, F. Mainardi, and M. Guido, “Models of dielectric
relaxation based on completely monotone functions,” Frac-
tional Calculus and Applied Analysis, vol. 19, no. 5,
pp. 1105–1160, 2016.

[14] A. Giusti and I. Colombaro, “Prabhakar-like fractional visco-
elasticity,” Communications in Nonlinear Science and Numer-
ical Simulation, vol. 56, pp. 138–143, 2018.

[15] M. D’Ovidio and F. Polito, “Fractional diffusion-telegraph
equations and their associated stochastic solutions,” 2013,
http://arxiv.org/abs/1307.1696.

[16] K. Górska, A. Horzela, L. Bratek, K. A. Penson, and G. Dattoli,
“The probability density function for the Havriliak-Negami
relaxation,” 2016, http://arxiv.org/abs/1611.06433.

[17] J. An, E. Van Hese, and M. Baes, “Phase-space consistency of
stellar dynamical models determined by separable augmented
densities,” Monthly Notices of the Royal Astronomical Society,
vol. 422, no. 1, pp. 652–664, 2012.

[18] A. Stanislavsky and K. Weron, “Atypical case of the dielectric
relaxation responses and its fractional kinetic equation,” Frac-
tional Calculus and Applied Analysis, vol. 19, no. 1, pp. 212–
228, 2016.

[19] A. Liemert, T. Sandev, and H. Kantz, “Generalized Langevin
equation with tempered memory kernel,” Physica A: Statistical
Mechanics and its Applications, vol. 466, pp. 356–369, 2017.

[20] R. Garra, R. Gorenflo, F. Polito, and Ž. Tomovski, “Hilfer-
Prabhakar derivatives and some applications,” Applied Mathe-
matics and Computation, vol. 242, pp. 576–589, 2014.

[21] M. H. Derakhshan, M. Ahmadi Darani, A. Ansari, and
R. Khoshsiar Ghaziani, “On asymptotic stability of Prabhakar
fractional differential systems,” Computational Methods for
Differential Equations, vol. 4, no. 4, pp. 276–284, 2016.

[22] M. H. Derakhshan and A. Ansari, “OnHyers–Ulam stability of
fractional differential equations with Prabhakar derivatives,”
Analysis, vol. 38, no. 1, pp. 37–46, 2018.

[23] A. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations (Vol. 204),
Elsevier Science Limited, North-HollandMathematics Studies,
Amsterdam, London and New York, 2006.

[24] I. Podlubny, Fractional Differential Equations: An Introduction
to Fractional Derivatives, Fractional Differential Equations, to
Methods of their Solution and Some of Their Applications, Else-
vier, Academic Press Inc, San Diego, CA, USA, 1998.

[25] T. R. Prabhakar, A singular integral equation with a general-
ized Mittag Leffler function in the kernel, 1971.

[26] D. G. Duffy, TransformMethods for Solving Partial Differential
Equations, Chapman and Hall/CRC, New York, 2004.

[27] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Galle-
gos, “Lyapunov functions for fractional order systems,” Com-
munications in Nonlinear Science and Numerical Simulation,
vol. 19, no. 9, pp. 2951–2957, 2014.

8 Abstract and Applied Analysis

https://scholar.google.com.ua/scholar?hl=en<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;as_sdt=0%2C5q=Asymptotic+stability+of+distributed+order+nonlinear+dynamical+systems<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;btnG=
https://scholar.google.com.ua/scholar?hl=en<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;as_sdt=0%2C5q=Asymptotic+stability+of+distributed+order+nonlinear+dynamical+systems<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;btnG=
https://scholar.google.com.ua/scholar?hl=en<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;as_sdt=0%2C5q=Asymptotic+stability+of+distributed+order+nonlinear+dynamical+systems<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;btnG=
https://scholar.google.com.ua/scholar?hl=en<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;as_sdt=0%2C5q=Asymptotic+stability+of+distributed+order+nonlinear+dynamical+systems<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;btnG=
https://scholar.google.com.ua/scholar?hl=en<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;as_sdt=0%2C5q=Asymptotic+stability+of+distributed+order+nonlinear+dynamical+systems<<<<<<<<<^<^<^<^<<<<<<<<<<<amp;btnG=
http://arxiv.org/abs/math-ph/0703046
http://arxiv.org/abs/math-ph/0703046
http://arxiv.org/abs/1307.1696
http://arxiv.org/abs/1611.06433

	Asymptotic Stability of Distributed-Order Nonlinear Time-Varying Systems with the Prabhakar Fractional Derivatives
	1. Introduction
	2. Preliminaries
	3. The Distributed-Order Fractional Integral Operator
	4. Numerical Results
	5. Conclusion
	Data Availability
	Conflicts of Interest

