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Abstract 

 
  

        The power consumption becomes an important issue in circuit 

design technologies. The power dissipation in high-performance 

CMOS VLSI circuits like microprocessors is becoming an increasing 

problem. One reason for the high power dissipation is the almost 

universal design approach synchronous circuits, which imposes global 

synchrony across a chip. This is achieved by applying a common clock 

to all the functional units on a chip and has the undesirable side effect 

of causing those units to dissipate power whether or not they are doing 

useful work.  The main objective of designing the asynchronous 

circuits will be there is no master clock, the reduction in silicon by 

following domino logic with dual-rail logic and thus ensures the power 

consumption in designing the circuits.   

 

        We present a design technique for implementing asynchronous 

ALUs with CMOS domino logic and delay insensitive dual rail four-

phase logic. It ensures economy in silicon area and potentially for low 

power consumption. The design has been described and implemented 

to achieve high performance in comparison with the synchronous and 

available asynchronous designs. This implementation justifies the 

claimed performance through the SPICE simulation results. 

 
Keywords: Integrated Circuits, Design Styles, Domino Logic, Delay 

insensitive, 4-phase dual-rail logic, Arithmetic and Logic Structures. 
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Chapter 1 
 

 

Introduction 
 

 

 

The power consumption becomes an important issue in design 

technologies. The power dissipation in high-performance CMOS VLSI 

circuits like microprocessors is becoming an increasing problem. Even 

when battery power portability is not an issue the 20 or 30 Watt 

consumption of the latest high-end processors makes it difficult to 

keep the silicon at an acceptable operating temperature. At lower 

performance levels the designers of battery powered systems must 

make difficult trade-offs between the processing demands of, for 

example, hand-writing recognition software and the minimum 

acceptable battery life of their products. The process advances which 

have caused CMOS to progress from a low power technology to a high 

power technology show no signs of abating and, if new approaches are 

not developed, state-of-the-art performance in twelve years time will 

only be delivered at the cost of power dissipations one or two orders of 

magnitude higher than today’s. While there are developments that 

alleviate this problem, such as the trend towards 3 volt (and later 2 

volt) operation, these do not go far enough to remove the possibility 

that power dissipation might limit the performance that a chip can 

deliver. 

 

One reason for the high power dissipation is the almost universal 

design approach, which imposes global synchrony across a chip. This 

is achieved by applying a common clock to all the functional units on 

a chip and has the undesirable side effect of causing those units to 

dissipate power whether or not they are doing useful work. There is no 
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doubt that the synchronous approach to logic design has been very 

effective over the last two decades, and has enabled great advances to 

be made in the productivity of designers and their design tools and in 

the performance of machines. However there is now a resurgence 

opinion suggesting that it may be time to re-assess the merits of other 

design approaches. Higher speeds and larger chips are making the 

abstraction of global synchrony increasingly hard to sustain even on a 

single chip, with the power dissipation making this approach much 

less attractive. While it is possible to address power issue by gating 

clocks to individual units, this makes the clock skew problem much 

worse and is therefore needs for better solution. 

 

 The power consumption can be reduced by decreasing the 

supply voltage, load capacitance and frequency [1]. Several attempts 

are made to address this problem to reduce the switching activity of 

logic in redundant cycles [3] [21]. Xi et. a1 provides an optimization 

algorithm for buffer and device sizing under process variations [2]. 

Although it minimizes the skew, this methodology is limited when 

operating frequency is very high. On the other hand, Globally 

Asynchronous and Locally Synchronous (GALS) technique [10] [22] 

aims to eliminate the global clock, by partitioning the system into 

several synchronous blocks and communicating asynchronously 

among blocks. However, the global signaling protocol increases the 

total area-power penalty and affects performance of the system.   

 

Asynchronous design approaches are therefore attracting renewed 

interest. New approaches to asynchronous designs are overcoming 

some of the difficulties, which had previously been impediments to 

cost-effective designs. Asynchronous designs tend naturally (in 
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CMOS) to use power only when doing useful work and interfacing 

disciplines produce more modular designs with an inherent potential 

for component reuse[5].  

 

In asynchronous systems, idle parts of the chip consume negligible 

power [9] [12]. This feature is particularly valuable for battery –

powered equipment, but it can also cut the cost of larger systems by 

reducing the need for cooling fans and air-conditioning to prevent 

them from overheating. The amount of power saved depends on the 

machine’s pattern of activity. Systems with parts that act only 

occasionally benefit more than systems that act continuously.  

 

Most computers have components, such as the floating-point 

arithmetic unit, that often remain idle for long periods. Furthermore, 

asynchronous systems produce less radio interferences than 

synchronous machines do [39]. Because a clocked system uses a fixed 

rhythm, it broadcasts a strong radio signal at its operating frequency 

and at the harmonics of that frequency.  Such signals can interface 

with cellular phones, televisions and aircraft navigation systems that 

operate at the same frequencies. Asynchronous systems lack a fixed 

rhythm, so they spread their radiated energy broadly across the radio 

spectrum, emitting less at any one frequency. Yet another benefit of 

asynchronous design is that it can be used to build bridges between 

clocked computers running at different speeds. Many computing 

clusters, for instance, link fast PCs with slower machines [33]. These 

clusters can tackle complex problems by dividing the computational 

tasks among the PCs. Finally, although asynchronous design can be 

challenging, it can also be wonderfully flexible. Because the circuits of 

an asynchronous system need not share a common rhythm, designers 
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have more freedom in choosing the system’s parts and determining 

how they interact. Moreover, replacing any part with a faster version 

will improve the speed of the entire system. In contrast, increasing the 

speed of a clocked system usually requires upgrading every part. 

Several researchers propose asynchronous approaches to cope with 

performance and timing issue. Tang et. al.  design a 16-bit 

asynchronous ALU with asynchronous pipeline architecture [4]. In this 

approach, simple handshake cells embedded in pipeline stages make 

the ALU run fast. However, large power has consumed by this design 

while waiting for the incoming data. In contrast, by using Galois Field 

arithmetic logic and reduced switching activity in the latches, work 

proposed in [5] achieved low power in an asynchronous ALU design. 

Since the improper rotate-wire concept of data buses, the time required 

for each multiplication operation becomes larger and it results in 

degradation of the performance.  

 

In reducing the time dependency of an asynchronous design of 

Quantum dot Cellular Automata (QCA), Hemani et al. [6] used GALS 

with delay-insensitive data encoding scheme. Here each gate has 

locally synchronized by corresponding clocking zone(s). Appropriate 

data forwarding and synchronization guaranteed at the gate-level that 

reduces the number of clocking zones and increases the circuit speed. 

Nevertheless, the overall timing of the circuit depends upon the layout. 

An asynchronous bundled-data pipeline for the matrix–vector 

multiplication core of discrete cosine transforms achieved 30% higher 

average throughput [16] based on a bit-partitioned carry-save 

multiplier. Due to its bulky control overhead, the controller drops its 

speed gain. These methods intend to improve the power 

consumption/performance of IC’s using asynchronous methodology.       
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     The basic block structure of the asynchronous circuit is given in 

Fig.1.1. The data is processed to next step through register on demand 

of request signal. The next request signal issued only on acknowledge 

of the previous process completion. This way clock is eliminated by 

the acknowledge signal for each process of data.       

 

 

Fig.1.1 Basic block diagram of an Asynchronous Circuit. 

   

 

 1.1  Motivation of the work   

 

Nowadays it is essential that each application instrument of the 

electronic industry should be compact, consume less power and less 

delay performance. Researches are continuing to reduce the above 

three parameters especially in battery operated computing devices. The 

sources of energy consumption on a CMOS chip can be classified as 

static and dynamic power dissipation [18] [19]. The dominant 

component of energy consumption in CMOS is dynamic power 
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consumption caused by the actual effort of the circuit to switch. A first 

order approximation of the dynamic power consumption of CMOS 

circuitry [17] is given by the formula: 

P = C * V
2
 * f 

where P is the power, C is the effective switch capacitance, V is the 

supply voltage, and f is the frequency of operation. The power 

dissipation arises from the charging and discharging of the circuit node 

capacitances found on the output of every logic gate. Every low-to-

high logic transition in a digital circuit incurs a change of voltage, 

drawing energy from the power supply. 

A designer at the technological and architectural level can try to 

minimize the variables in these equations to minimize the overall 

energy consumption. However, power minimization is often a complex 

process of trade-offs between speed, area, and power consumption 

[23]. This difficulty can be overcome by choosing the asynchronous 

design methodology where the dynamic power is almost avoided since 

there is no global clock. Also the transistors will be used at the time of 

demand only, which is unlikely with synchronous designs. 

Most digital circuits designed and fabricated today are “ synchronous”. 

In essence, they are based on two fundamental assumptions that 

greatly simplify their design: (1) all signals are binary, and (2) all 

components share a common and discrete notion of time, as defined by 

a clock signal distributed throughout the circuit. 

 

Asynchronous circuits are fundamentally different; they also assume 

binary signals but there is no common discrete time. Instead the 

circuits use handshaking between their components in order to perform 
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the necessary synchronization, communication, and sequencing of 

operations. Expressed in ‘ synchronous terms’ this results in a 

behaviour that similar to systematic fine-grain clock gating and local 

clocks that are not in phase and whose period is determined by actual 

circuit delays-registers are only clocked where and when needed [4]. 

 

The difference gives asynchronous circuits inherent properties that can 

be exploited to advantage in the areas listed and motivated below. 

Further its having the following advantages. 

 

1. Lower power consumption, due to fine-grain clock gating and 

zero standby power consumption [11]  

2. High operating speed, since operating speed is determined by 

actual local latencies rather than global worst-case latency. [14] 

[39] 

3. Less emission of electro-magnetic noise, the local clocks tend 

to tick at random points in time. [39] [42] 

4. Robustness towards variations in supply voltage, temperature, 

and fabrication process parameters, since timing based on 

matched delay and it can be insensitive to circuit and wire 

delays[40]. 

5. Better composability and modularity, because of the simple 

handshake interfaces and the local timing [36]. 

6. No clock distribution and clock skew problems, since there is 

no global signal that needs to be distributed with minimal 

phase skew across the circuit[37]. 
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Fig 1.2(a) shows synchronous circuit. For simplicity the figure shows a 

pipeline, but intended to represent any synchronous circuit. When 

designing ASICs using hardware description languages and synthesis 

tools, designers focus mostly on tha data processing and assume the 

global clock. For example, a designer would express the fact that data 

clocked into register R3 is a function CL3 of the data clocked into R2 

at the previous clock as the following assignment of variable: R3 : = 

CL3(R2). Figure 1.2(a) represents this high-level view with a universal 

clock. 

 

When it comes to physical design, reality is different. Today’s ASICs 

use a structure of clock buffers resulting in a large number of(possibly 

gated) clock signals as shown in Fig. 1.2(b). It is well known that it 

takes CAD tools and engineering effort to design the clock gating 

circuitry and to minimize and control the skew between the many 

different clock signals. In synchronous designs the problem of 

guaranteeing the two-sided timing constraints-the set up to hold time 

window around the clock edge-in a world that is dominated by wire 

delays is not an easy task. The buffer-insertion-and-resynthesis process 

that is used in current commercial CAD tools may not converge and, 

even if it does, it relies on delay models that are often questionable 

accuracy. 
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Fig. 1.2 (a) A synchronous circuit, (b) a synchronous circuit with clock 

drivers and clock gating, (c) an equivalent asynchronous circuit, and 

(d) an abstract data-flow view of the asynchronous circuit. 

 

Asynchronous design provides an alternative solution to this 

limitation. In an asynchronous circuit the clock signal is replaced by 

some form of handshaking between neighbouring registers [4]; for 
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example the simple request-acknowledge based handshake protocol 

shown in Fig. 1.2(c). In the second chapter we look an alternative 

handshake protocols and data encoding, but before departing into those 

implementation details it is useful to take a more abstract view as 

illustrated in figure 1.2(d). 

 

� The data and handshake signals connecting one register to the 

next in Fig. 1.2(c) as a “ handshake channel” or “link,” 

� The data stored in the registers as tokens tagged with data 

values ( that may be changed along the way as tokens flow 

through combinational circuits), and 

� The combinational circuits as being transparent to the 

handshaking between registers; a combinatorial circuit simply 

absorbs a token on each of its input links, performs its 

computation, and then emits a token on each of its output links. 

 

Viewed this way, an asynchronous circuit is simply a static data-flow 

structure. Intuitively, correct operation requires that data token flowing 

in the circuit do not disappear, that one token does not overtake 

another, and that new tokens do not appear out of nowhere. A simple 

rule that can ensure this is the following [36]: 

 

A register may input and store a new data token from its predecessor if 

its successor has input and stored the data token that the register was 

previously holding. [ The states of the predecessor and successor 

registers are signaled by the incoming request and acknowledge 

signals respectively.] 
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Following this rule data is copied from one register to the next along 

the path through the circuit. In this process subsequent registers will 

often be holding copies of the same data value but the old duplicate 

data values will later be overwritten by new data values in a carefully 

ordered manner, and a handshake cycle on a link will always enclose 

the transfer of exactly one data-token. Understanding this “token flow 

game” crucial to the design of efficient circuits, and we will address 

these issues, extending the token-flow view to cover structures other 

than pipelines. 

 

An important thing is that the “handshake-channel and data-token 

view” represents a very useful abstraction that is equivalent to the 

register transfer level (RTL) used in the design of synchronous circuits 

[47]. This data-flow abstraction, as we call it, separates the structure 

and function of the circuit from the implementation details of its 

components. 

 

Another important consideration is that it is the handshaking between 

the registers that controls the flow of tokens, whereas the 

combinatorial circuit blocks must be fully transparent to this 

handshaking. Ensuring this transparency is not always trivial; it takes 

more than a traditional combinational circuit, so we will use the term 

“function block’ to denote a combinational circuit whose input and 

output ports are handshake-channels or links. The synchronous circuit 

shown in Fig. 1.2(b) is “controlled” by clock pulses that are in phase 

with a periodic clock signal, whereas the asynchronous circuit in Fig. 

1.2(c) is controlled by locally derived clock pulses are generated 

where and when needed. This tends to randomize the clock pulses over 

time, and is likely to result in less electromagnetic emission and a 
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smoother supply current without the large di/dt spikes that characterize 

a synchronous circuit.  

 

we consider an approach of asynchronous ALU design to reduce the 

transistors count, power consumption and delay. We propose the 

application of delay insensitive dual rail logic and bundled data 

bounded delay model in our design. Since the proposed approach will 

have the all advantages of asynchronous circuit earlier discussed will 

be very useful in power consumption and occupying less space with 

average delay in battery operated devices. 

 

1.2 Brief Overview of our Work 

 

   In the present work, we consider an approach of asynchronous ALU 

design to reduce the transistors count, power consumption and delay. 

We propose the application of delay insensitive dual rail logic and 

bundled data bounded delay model in our design. To achieve higher 

performance and lower power operation, we design the circuits   with 

CMOS domino logic. The use of domino logic reduces the transistor 

count, parasitic capacitances and ensures glitch-free circuit. The Muller 

C-element and Four-Phase Dual Rail Protocol are used for the 

completion detection.  

 

   This design uses conventional CMOS domino logic since its 

implementation supports the glitch free circuit and the capacitance of 

its output node is separating by interval and load capacitance [2]. Also 

it ensures the lower power consumption by reducing the parasitic 

capacitances and transistor count. Asynchronous circuits are 

fundamentally different from the synchronous counterpart and use 



 13 

handshaking among components to perform the necessary 

synchronization, communication and sequencing of operations. The 

handshaking implementation may follow any one of these protocols, 4-

phase bundled data, 2 –phase bundled data or 4-phase dual rail. In all 

protocols, Muller pipeline is used.  The 4-phase dual rail has designed 

to combine encoding of data and request. We apply it in our circuit, 

because 4- phase dual rail protocol provides reliable synchronization, 

lower power consumption with simple and faster signal transition than 

2-phase model [9]. 

 

    The asynchronous ALU is implemented with 4-phase dual rail 

protocol and CMOS domino logic for single bit operation. The 32 bit 

ALU can be extended on concatenation of the same circuit with 32 

blocks. The completion detection circuit detects each operation 

completion and sends back the necessary acknowledge signal. The 

power is consumed only at the time operation only, which is unique 

advantage of our asynchronous design than synchronous using master 

clock [43]. 

 

1.3 Organization of the Thesis 

 

The design architecture and results are presented in the dissertation in 

the following five chapters. 

Chapter 1:  Motivation and a brief overview of our work is 

presented.  

Chapter 2:    Introduction to asynchronous design methodologies, 

designing the low power circuits and C-Muller 

pipelines. 

Chapter 3:  We consider our work to design an efficient 

asynchronous VLSI architecture design of low power 

ALU with four-phase dual rail protocol. 
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Chapter 4:   In this chapter, simulation results through SPICE design 

tool are reported and compared with other published 

works. 

Chapter 5:  Summary of the work and future scope to extend our 

work is given. 
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Chapter 2 
 

CMOS logics and Asynchronous Design 
Methodologies 
 
In this chapter, we are discussing about the fundamentals of CMOS 

logic design styles namely static and dynamic CMOS design followed 

by the Asynchronous design methodologies available in detail. Our 

proposed Asynchronous ALU circuit is following the dynamic domino 

CMOS logic and 4-phase dual-rail protocol among the different logic 

styles available. Also in the final part of this section, the base of any 

asynchronous circuit C-Muller element and its pipeline, the 4-phase 

dual rail pipeline follows that are discussed.  

 

2.1 Static CMOS 

 

Although static CMOS logic is widely used for its high noise margins 

and relative ease of design, it is limited at running extremely high 

clock speeds. For applications requiring the fasted circuit speeds 

possible, dynamic CMOS logic has numerous advantages over static 

CMOS including not only higher speeds but also significantly reduced 

surface area. The advantages do not come without a cost however. Due 

to the nature of dynamic CMOS logic, undesired effects can occur 

within the circuit unless extra effort is put into the engineering design. 

Understanding the basic principles of Dynamic CMOS logic begins 

with first an understanding of the basic properties of MOSFET devices 

as well as the characteristics of static and pseudo-NMOS logic [23].  

 

Due to the internal structure of MOSFET devices, an effective 

capacitance can be associated across all possible terminal 
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combinations of the gate, drain, source, and body. When charge is 

applied to these capacitances, the corresponding terminal voltage rises, 

and when the charge is removed, the terminal voltage decays just as if 

the terminal were modeled as a capacitor. Modeling the MOSFET 

terminals as capacitors is useful to explain the voltages and currents 

associated with the MOSFETs in a complex circuit. MOSFETs are 

characterized by the three modes of operation: Cutoff, Linear, and 

Saturated [27].  

 

However, since current flows through the device for both the linear 

and saturated modes, it is useful to consider the MOSFET as ON in 

this conducting state or OFF when no current flows. For an NMOS, or 

n-channeled MOSFET, the device is only ON when the gate to source 

voltage, VSG, is greater than the device threshold voltage, VT.  

 

For a PMOS, or p-channeled MOSFET, the device is only ON when 

the source to gate voltage, VSG, is greater than the negative device 

threshold voltage, - VT. For the purposes of this analysis, the input to 

the gates of the MOSFETs will either be high or low, VDD or GND, 

respectively. Therefore, if the PMOS source is connected to VDD, the 

PMOS will only be ON if the gate voltage is low. Likewise, if the 

NMOS source is connected to GND, the NMOS will only be ON when 

the gate voltage is high. Observing how the NMOS and PMOS work 

in conjunction to form the CMOS inverter circuit, Fig. 2.1, is a useful 

example to understand how these devices might be used in more 

complex circuitry.  
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Fig.2.1 CMOS inverter circuit 

 

When the input is low, the PMOS turns ON and the NMOS turns OFF. 

The output is simultaneously cut off from GND and charged high due 

to the ‘pull-up’ path to VDD through the PMOS. Conversely, when the 

input is high, the PMOS turns OFF and the NMOS turns ON resulting 

in a ‘pull-down’ path to GND while the connection to VDD is cutoff. 

When utilized in this fashion, the NMOS device is considered a ‘pull-

down’ device, and the PMOS is considered a ‘pull-up’ device [23].  

 

 

Fig.2.2 CMOS inverter Circuits in stages 
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By connecting the output of this circuit to the input of similar logic, 

the voltage and current characteristics can be determined by 

considering the capacitive effects associated with the input of this 

second stage. As shown in Fig. 2.2, a low input to the CMOS inverter 

charges the input of the second stage high due to the current from VDD 

flowing out of the first-stage PMOS. A high input to the inverter 

removes any charge at the input of the second stage through the 

NMOS of the first stage.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.3 CMOS tristate inverter 

 

The capacitive effects of the MOSFET terminals can also be used to 

store charge across the terminals temporarily. Consider the tristate 

inverter in Fig. 2.3. When VPEN and VNEN are low (note VPEN is 

inverted), Vout is disconnected from both VDD and GND leaving Vout 

floating. In this ‘Z-state,’ Vout must retain its previous voltage level. 

Ideally, any charge associated with the Z-state would remain across 

the terminals of the MOSFET indefinitely; however, due to parasitic 
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charge leakage, an originally high voltage in the output Z-state will 

decay to zero with time. If the system were run at speeds higher than 

the time needed for the leakage current to cause a logic error, the 

characteristics of the output Z-state can be utilized to vastly increase 

circuit speeds. This is the essence of dynamic CMOS.  

 

Although there are many positive reasons for using static CMOS logic, 

there are also numerous drawbacks. Static devices inherently have 

more components and clocked transistors than dynamic devices. A full 

latch for example in the traditional static configuration may require 66 

transistors [21]. A dynamic configuration performing the same 

function may require only 36 transistors [21]. The number of 

transistors used to construct a flipflop is also significantly reduced by 

using dynamic logic as opposed to fully static logic. Reducing the total 

number of transistors not only allows the overall device to be 

significantly smaller, but also reduces the power requirements of the 

system [20].  

 

Most of the disadvantages of using static CMOS, however, are 

associated with the use of PMOS. Caused in part because hole 

mobilities are significantly slower than electron mobilities, PMOS 

devices must be much larger than NMOS devices for the two to have 

the same ability to transport a fixed amount of charge during a fixed 

time interval. The larger surface area needed to form a PMOS device 

than an NMOS device is not only a detriment to the overall chip size, 

but also increases the capacitance associated to the PMOS device. The 

larger capacitance and slower carrier mobilities associated with PMOS 

cause a greater time delay for the PMOS to charge up the capacitor 

associated with the next logic stage. This increased time delay 
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becomes a bottleneck when trying to design faster circuits. In standard 

CMOS logic, one PMOS device will always compliment an NMOS 

device. Altering this logic so that fewer PMOS devices are needed will 

vastly improve circuit performance.  

 

One method to decrease the number of PMOS devices in the circuit is 

to use what is called pseudo-NMOS logic. Instead of using one PMOS 

for every NMOS device, pseudo-NMOS logic utilizes only one PMOS 

device as a load to all other NMOS logic as shown in Fig.2.4.  

 

 

 

 

 

 

 

 

 

Fig. 2.4 pseudo- NMOS logic 

 

Since the voltage at the gate of the PMOS is always GND, the PMOS 

device is always ON. The output then of the pseudo-NMOS circuit is 

selectively discharged to GND through the NMOS logic block. Since 

the NMOS devices in the ON state forms a pull-down path to GND 

and the PMOS device is always ON, there will be times during circuit 

operation where a path is formed from VDD to GND. The pseudo-

NMOS logic must be ratio sensitive so as to minimize the loss in 

power dissipation. In other words, the PMOS must be ‘weak’ or small 

so as to have less capacitance associated with the device. In this 
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configuration, the charge will be pulled up much more slowly by the 

PMOS than it can be discharged through the NMOS devices. In this 

way, a pull-down path to ground through the NMOS logic block 

should easily pull down the output. When no pull-down path to ground 

exists via the NMOS logic, the output is then pulled high through the 

PMOS load. Although pseudo-NMOS logic can be utilized to reduce 

the number of PMOS components in the system, not only does the 

static power dissipation serve as a detriment, but the speed of the 

circuit is limited by the time necessary for the weak PMOS to charge 

up the output node [27].  

 

2.2 Dynamic CMOS 

 

           An alternative logic that reduces the number of PMOS devices 

while also solving most of the problems associated with pseudo-

NMOS logic is dynamic CMOS. The basic structure of dynamic 

CMOS logic is shown in Fig. 2.5. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Basic Structure of dynamic CMOS logic. 
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When the clock is low, the NMOS device is cut off while the PMOS is 

turned ON. This has the effect of disconnecting the output node from 

ground while simultaneously connecting the node to VDD. Since the 

input to the next stage is charged up through the PMOS transistor 

when the clock is low, this phase of the clock is known as the 

‘precharge’ phase. When the clock is high however, the PMOS is 

cutoff and the bottom NMOS is turned ON, thereby disconnecting the 

output node from VDD and providing a possible pull-down path to 

ground through the bottom NMOS transistor. This part of the clock 

cycle is known as the ‘evaluation’ phase, and so the bottom NMOS is 

called the ‘evaluation NMOS.’ When the clock is in the evaluation 

phase, the output node will either be maintained at its previous logic 

level or discharged to GND. In other words, the output node may be 

selectively discharged through the NMOS logic structure depending 

upon whether or not a path to GND is formed due to inputs of the 

NMOS logic block [23]. If a path to ground is not formed during the 

evaluation phase, the output node will maintain its previous voltage 

level since no path exists from the output to VDD or GND for the 

charge to flow away.  

 

As an example, the Pseudo-NMOS circuit shown in Fig. 2.4 can be 

made into a dynamic logic structure by adding an evaluation NMOS 

and connecting it to a clock with the PMOS as shown in Fig. 2.6. 

 

 

 

 

 



 23 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 example for dynamic CMOS logic 

 

During the precharge phase, the output is pulled high through the 

PMOS in the ON state. When the clock goes high in the evaluation 

stage, the output will be data-dependent. If the input signals A AND B 

are high OR if C is high, a path to ground through the evaluation 

NMOS will be formed and the output node will be pulled low. If these 

conditions are not met, then the output will remain high. Regardless of 

the resultant logic level of the output node at the end of the evaluation 

phase, the output node will be pulled high again when the clock goes 

low for the next precharge phase.  

 

There are many advantages of using dynamic CMOS logic over static 

CMOS logic or Pseudo NMOS logic. The elimination of the 

complimentary PMOS transistors significantly reduces the transistor 

count needed to implement the various logic functions not only 

because the number of transistors is nearly half, but because the 

physical size of the PMOS transistors tend to be much larger than the 

size of an NMOS transistor. The switching speeds are also increased 
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using the dynamic logic configuration since the speed bottleneck 

caused by the lengthier time the PMOS requires to pull-up the output 

node is eliminated. Since this node is already precharged high through 

the PMOS during the precharge phase, the output node needs only to 

be selectively discharged during the evaluation phase. Discharging the 

output node through the NMOS devices is significantly faster than the 

time needed to charge up the output node through the PMOS device 

[22]. 

 

Although increased speed over static or Pseudo NMOS logic is a 

significant achievement in the dynamic logic, there are several 

potential problems with the implementation of this design that need to 

be considered. Since the basic dynamic CMOS logic configuration 

causes the output node to be disconnected from VDD during the 

evaluation phase, even if the output is also disconnected from GND, 

the charge of the output node will begin to diminish due to the non-

ideal effects of the system. Parasitic capacitances, for example, may 

leak the charge away from the output node and eventually cause a 

logic error [8]. Since there is, however, a finite time needed for the 

charge to erroneously escape, the use of faster the clock speeds will 

eliminate this kind of error. This implies however, that there is a 

minimum clock speed at which dynamic CMOS logic structures may 

be operated. It also eliminates the possibility to idle the basic dynamic 

CMOS logic circuit.  

 

These drawbacks however, are not without a solution. In many cases, 

the specifications of the system do not require the circuit to ever idle 

or run at relatively slow clock speeds. In these cases, the fastest clock 

speed is desired, making the minimum clock speed of the dynamic  
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Fig. 2.7 Dynamic CMOS logic structure for minimum clock speed 

 

logic configuration a non-issue [13]. In other cases, some of the static 

benefits can be introduced to the dynamic logic configuration with the 

addition of a ‘weak’-PMOS device added between the output node and 

VDD as shown in Fig. 2.7. If the gate is connected to GND, this PMOS 

device will always be turned ON. Then, even in the evaluation phase, 

the output node will be connected in some capacity to VDD. This 

PMOS, the ‘keeper,’ has the effect of maintaining the output node 

charge even at slower clock speeds. The keeper transistor is designed 

to be weak enough so that a path to GND through the NMOS logic 

block during the evaluation phase will significantly overpower the 

effects of the keeper PMOS and easily pull the output node to GND. 

Although this configuration has advantages, it does introduce another 

PMOS device into each stage and also causes excess power dissipation 

due to possibility of the connection from VDD to GND through the 

NMOS devices and the PMOS keeper. When such a circumstance 

occurs, the NMOS and PMOS must ‘fight’ each other to pull-up or 

pull-down the output through VDD or GND respectively, and power is 

lost. For high-performance circuits, an alternative is clearly needed .  
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Fig. 2.8 Latching of weak PMOS in dynamic logic  

 

The use of a keeper PMOS in dynamic logic could be further 

improved by connecting the gate of the keeper not to GND, but to the 

output node of the inverter stage as shown in Fig. 2.8. The keeper 

would now function as a latch cutting off whenever the output of the 

inverter is high. In this way, power dissipation is significantly reduced 

whenever a pull-down path to GND has been formed in the NMOS 

logic block since this would make the input to the inverter low and 

thus the output of the inverter high. When the output of the inverter is 

low however, as would be the case if no pull-down path to ground was 

formed in the NMOS logic block, the keeper PMOS would turn on and 

maintain the output high charge on the precharge node even at reduced 

clock speeds or an idle [17].  

 

Other characteristics of dynamic CMOS logic that must be 

taken into consideration when designing dynamic logic are the 

problems that can occur when cascading the dynamic logic blocks 

[25]. Due to the finite pull down time of the NMOS logic block, 

during the very first portion of the evaluation phase, the output will 

always register an output high state for at least a brief moment in time 

before the output charge can be removed via the pull-down path to 

GND. This is considered a ‘racing’ problem since the logic is 

evaluated correctly only when the time to pull down the output node is 



 27 

faster than the time needed for the briefly high output caused by the 

precharge phase to propagate as an erroneous logic signal to the next 

stage. Since the output node of one dynamic CMOS logic block is 

connected to an input of the next dynamic CMOS stage, an output high 

state however brief could complete a pull-down path to GND in the 

following stage and erroneously cause a discharge in the output of this 

next stage. Since the charge on the output node cannot be recovered 

until the next precharge phase, the logic error would remain and 

propagate through the system. Dynamic CMOS logic blocks should 

therefore not be directly cascaded. Note that care must also be taken to 

insure that the input logic signals to the NMOS logic block are correct 

and stable for the complete duration of the evaluation stage or a similar 

logic error could occur [17].  

 

2.2.1 Domino Logic 

 

The errors occurring due to cascaded dynamic logic blocks can be 

overcome by adding an inverter stage between the output of one stage 

and the input of another as in Fig. 2.9.  

 

Fig. 2. 9 Dynamic CMOS domino logic structure 
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This inverter then would start out low at the very beginning of 

the evaluation phase. The output low state of the inverter would cutoff 

the NMOS logic gates in the next stage preventing any erroneous pull-

down path. If a pull-down path is formed by the NMOS logic block of 

the first stage, the output of the inverter buffer would conditionally 

charge from low to high. Only if the inputs to the first stage NMOS 

logic block warrant a discharge of the output node would the output 

inverter make the low to high transition. When the output of this 

inverter buffer goes high, the following stage of NMOS logic would 

conditionally form a pull-down path to ground. In this way, the 

addition of the inverter buffer eliminates any logic errors caused by the 

finite pull-down time of the NMOS logic block. This kind of design is 

referred to as Domino Logic since the pull-down of one stage can 

conditionally cause the pull-down of succeeding stages and so on like 

falling dominoes [26].  

 

The number of Domino logic stages that may be cascaded is 

limited only by the sum of the total pull-down times in all cascaded 

logic blocks, which must be contained within the evaluation clock 

phase. Drawbacks to this design are of course the addition of two 

additional components to each dynamic block. Extra design 

consideration must also be observed when using dynamic CMOS logic 

blocks in conjunction with static CMOS logic blocks. Since the final 

output to the Domino logic blocks is the inverted form of the original 

output due to the additional inverter buffer stage, only non-inverting 

logic may be used between the output and input of dynamic logic. That 

is, since the inverter must make only one conditional state change from 

logic low to high (not high to low) during the evaluation phase only an 
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even number of static logic blocks may be used in between dynamic 

logic blocks [24].  

 

2.2.2 NORA Logic 
 

An alternative to Domino Logic is NORA or Domino-Zipper 

Logic. NORA stands for ‘no-race,’ indicating another method to 

eliminate the ‘racing’ problem of directly cascaded dynamic logic 

blocks. Fig. 2.10 depicts the basic structure of NORA logic which is 

characterized by alternating the MOSFETs in the logic block from 

PMOS to NMOS logic gates and so on. Note that the function of the 

clocked n- and p- FETs in the PMOS logic stage are reversed 

compared to the NMOS logic stage [23]. 

 

 

Fig. 2.10 Dynamic CMOS NORA logic structure 

 
 

Although this structure eliminates the cascading problem, the excess 

use of PMOS in forming the logic gates reduces the maximum 

clocking speed and increases the surface area of the system. For this 

reason, it is preferable to use only the NMOS for the logic gates and 

leave the PMOS as precharge elements. Further design considerations 

for NORA logic are needed when combining the dynamic NORA 
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blocks with static blocks. As observed with Domino Logic, the output 

may only be allowed to change from low to high once during the 

evaluation phase of the NMOS logic and visa-versa for the PMOS, so 

only an even number of static blocks may be used in between two of 

the dynamic blocks.  

 

 

 

 

 

Fig. 2.11 clock skew representation 

 

Another significant drawback to this configuration is the use of the 

two-phase clock. For a circuit operating at high speeds, the clock 

characteristics become increasingly important. The signals of both 

clock phases must be delivered at nearly the same instant for the 

circuit to operate correctly. Routing a one phase clock to the millions 

of circuit elements such that the delay is minimized is a challenging 

design issue in and of itself. Routing a second clock phase to a similar 

quantity of circuit elements such that the delay is minimized compared 

not only to itself, but to the first clock phase becomes a serious 

problem. The time delay between the first and second clock phase is 

known as clock skew. The presence of clock skew in a circuit reduces 

the maximum operation speed of that circuit, since the logic cannot be 

correctly evaluated during this delay time [8]. Clock skew, as shown in 

Fig. 2.11, can be eliminated by using only one clock phase. 
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2.3 Handshake Basics 
 
 
In Fig 1.2(c) one particular handshake basic protocol has been 

explained, known as the 4-phase bundled-data protocol also called as 

return-to-zero handshake protocol [4]. The below sections explain the 

basic principles for designing the handshaking (asynchronous) circuits. 

 

2.3.1 Principles of Bundled-data protocols 

 
 

In bundled data protocols the data signals use normal Boolean levels to 

encode information and separate request and acknowledge wires are 

bundled with the data signals. In Fig. 2.12, a bundled data channel is 

shown in which data is bundled with request and acknowledge wires. 

 

 
Fig.2.12  A bundled-data channel 

 

The 4-phase protocol is illustrated in Fig. 2.13. Here the request and 

acknowledge wires   use normal Boolean levels to encode information, 

and the term 4-phase refers to the number of communication actions 

[4]:  
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Fig.2.13  A 4-phase bundled-data protocol 

 
 
 
(1) the sender issues/sends Data and sets Req High, 

(2) the receiver absorbs/receives the Data and sets Ack High, 

(3) the sender responds by taking Req Low and 

(4) the receiver acknowledges this by taking Ack Low. 

 The sender may initiate the next communication cycle once all above 

4 phases are over. 

 
Fig.2.14 A 2-phase bundled data protocol. 

 
The 2-phase bundled data protocol is shown in Fig. 2.14. The 

information on the request and acknowledge wires is now encoded as 

signal transitions on the wires and there is no difference between a 0 to 

1 and a 1 to 0 transition, they both represent a “signal event”. Ideally 

the 2-phase bundled-data protocol should lead to faster circuits than 

the 4-phase bundled-data protocol, but often the implementation of 

circuits responding to events is complex [54]. 
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 The term ‘bundled data’ hints at the timing relationship 

between the data signals, whereas the term  ‘single rail’ hints at the use 

of one wire to carry one bit of data [58]. The protocols introduced 

above all assume that the sender is the activity party that initiates the 

data transfer over the channel. This is known as a push channel. The 

opposite, the receiver asking for new data, is also possible and is called 

a pull channel. In this case the directions of the request and 

acknowledge signals are reversed, and the validity of the data is 

indicated in the acknowledge signal going from the sender to receiver. 

In the abstract diagram, the active end of the channel is marked with a 

dot. 

 

2.3.2 4-phase dual-rail protocol 

 

The 4-phase dual rail channel is shown in Fig.2.15.In this handshake 

protocol, it encodes the request signal into the data signal by using 2 

wires per bit of information that is to be communicated. This 4-phase 

dual-rail protocol uses two request wires per bit of information a; 

 

Fig.2.15 The 4-phase dual rail channel 

 

one wire a.t is used for signaling a logic 1(true), and another wire a.f is 

used for signaling logic 0(false). Thus in this 1 bit channel one can 

understand a cycle of 4-phase handshakes in which the “request” 

signal in any handshake cycle can always be at either a.t or a.f. Due to 
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its robustness and delay insensitive nature, two parties thus can 

reliably do communication regardless of delays in the wires 

connecting the two parties [49]. 

 

Fig.2.16 The 4-phase dual rail protocol handshaking 

 

For an information a, the {a.f,a.t} wire pair is a codeword; 

{a.f,a.t}={1,0} and {a.f,a.t}={0,1} represents “valid data” (logic Low 

and logic High respectively) and {a.f,a.t}={0,0} represents “empty” 

(“no data” or “NULL”). The codeword  {x.f,x.t}={1,1} is not used , 

and here the important is a transition from one valid codeword to 

another valid codeword is invalid and not allowed. Fig. 2.16 illustrates 

this protocol operations. Now, one can understand the 4-phase 

handshaking [56]: 

(1) the sender issues/sends a valid, 

(2) the receiver absorbs/receives the codeword and sets the Ack. High, 

(3) the sender responds by issuing the empty codeword, and 

(4) the receiver acknowledges this by taking acknowledge Low. 

Next communication cycle starts after this above cycle. In the abstract 

view, the channel is a data stream of valid codewords separated by 

empty codewords. 
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Thus, an N-bit data channel is done by concatenating N wire pairs, 

each using the encoding description above and a receiver which 

always be able to detect when all bits are valid i.e by it responds by 

giving acknowledge high. Also the receiver responds by giving 

acknowledge low for the condition when all bits are empty. The dual 

rail code has following unique properties [59]: 

 

(1) concatenation of dual-rail codewords is also a dual-rail codeword. 

(2)  the set of all possible codewords can be disjointly divided into 3 

sets, for a given N number of bit, 

     (a) the empty or null codeword where (all N )wire pairs are {0,0}. 

     (b) the intermediate codewords where some wire-pairs assume the 

empty state and  some wire pairs assume valid data(as protocol 

definition). 

     (c) 2N different valid codewords. 

 

Fig. 2.17. Illustration of 4-phase dual-rail channel handshaking 

  

Simple illustration of the handshaking of an N-bit channel is 

shown in Fig. 2.17. At receiver end one will see the empty codeword, 
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a sequence of intermediate codewords and eventually a valid 

codeword. On reception and acknowledging the codeword, the 

receiver will see a sequence of intermediate codewords, and eventually 

the empty codeword to which the receiver responds by setting 

acknowledge low and the cycle will move on. 

 

2.3.3 2-phase dual-rail protocol    

 

In this 2-phase dual-rail protocol just like 4-phase dual-rail protocol, it 

also uses 2 wires {a.t,a.f }per bit to communicate, but the information 

is encoded as transitions(events).In an N-bit channel a new codeword 

will be received if exactly one wire in each of the N wire pairs has 

made a transition(event). If there is no empty value then a valid 

message is acknowledged and followed by another message that is 

acknowledged. The below Fig. 2.18. shows simple illustration of the 

signal waveforms on a 2-bit channel for the 2-phase dual-rail protocol 

[4].       

 

Fig. 2.18. Illustration of 2-phase dual-rail protocol handshaking 

 

2.4 Indication Principle and the Muller C-element 
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 In synchronous circuits, valid and stable signals found at every 

clocking points. But in between the clock-ticks, the signals may not be 

stable and usually exhibits hazards and may make multiple transitions 

as the combinational circuits stabilize. But in the case of asynchronous 

circuits there is no clock. 

 

 

Fig. 2.19 OR gate 

 

    Table 2.1. Truth table-OR gate 

 

Thus the signals should be valid all the time and every signal transition 

should have a meaning. Consequently those hazards and races during 

the transitions must be avoided. Hence the concept of indication or 

acknowledgement plays vital role in designing asynchronous circuits.  

The simple 2-input OR gate and truth table are shown in Fig.2.19 and 

Table 2.1, respectively.  

 

On observing the output change from 1 to 0 one may conclude that 

both inputs are now at 0. However, when seeing the output change 

from 0 to 1 the observer is not able to make conclusions about both 

inputs. The observer only knows that at least one input is 1, but it does 

not know which. So the OR gate only indicates or acknowledges when 

both inputs are at 0. Through similar arguments it can be seen that an 

AND gate only indicates when both inputs are 1. Signal transitions that 

are not indicated or acknowledged in other signal transitions are the 

a b y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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source of hazards and should be avoided. A circuit that is better in this 

respect is the Muller C-element [53]. 

 

Fig. 2.20 Muller C-element symbol and implementation with 

specification 

 

The Muller C-element is a state-holding element much like an 

asynchronous set-reset latch [4] shown in Fig. 2.20. When both inputs 

are 0 the output is set to 0, and when both inputs are 1 the output is set 

to 1. For other input combinations the output does not change. 

Consequently on observing one can see the output change from 0 to 1 

may conclude that both inputs are now at 1; and similarly, an observer 

seeing the output change from 1 to 0 may conclude that both inputs are 

now 0. Combining this with the observation that all asynchronous 

circuits rely on handshaking [30] that involves cyclic transitions 

between 0 and 1, it is understood that the Muller C-element is indeed a 

fundamental component that is extensively used in asynchronous 

circuits. 

 

2.5 Design of Muller Pipeline  

 

The Muller pipeline or Muller distributor is shown in Fig. 2.21. 

It is a circuit that is built from C-elements and inverters. Simple 

variations and extensions of this circuit form the (control) backbone of 
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almost every asynchronous circuits. It may not always be obvious at a 

first glance, but if one strips off the cluttering details, the Muller 

pipeline [34] is always there as the crux. This muller pipeline circuit 

has a peculiar beautiful and symmetric behaviour. The Muller pipeline 

in Fig 2.21 is a mechanism that relays handshakes. After all of the C-

elements have been initialized to 0 the left environment may start 

handshaking. Lets consider the ‘i’th C-element, C[i]: It will propagate  

(i.e input and store) a 1 from its predecessor, C[i-1], only if its 

successor, C[i+1], is 0. In the same way, it will propagate a 0 from its 

predecessor if its successor is at 1. 

 

Fig 2.21 Illustration of Muller pipeline 

 

 It is often useful to think of the signals propagating in an 

asynchronous circuit as a sequence of waves, as illustrated at the 

bottom of Fig. 2.21. Viewed this way, the role of a C-element stage in 

the pipeline is to propagate crests and troughs of waves in a carefully 

controlled way that maintains the integrity of each wave [4]. 
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In all interface between C-element pipeline stages one can see 

correct handshaking, but the timing may differ from the timing of the 

handshaking on the left hand environment; once a wave has been 

injected into the Muller pipeline it will propagate with a speed that is 

determined by actual delays in the circuit. Eventually the first 

handshake (request) injected by the left hand environment does not 

respond to the handshake, the pipeline will eventually fill. If this 

happens the pipeline will stop handshaking with the left environment-

the Muller pipeline behaves like a ripple through FIFO[55] [58]. 

 

The Muller pipeline has a set of beautiful symmetries. First, it’s 

the same circuit and it does not matter whether one uses a 2-phase or 

4-phase handshaking. The difference is in how one interprets the 

signals and uses the circuit. Second, the circuit operates equally well 

from right to left. One may reverse the definition of signal polarities, 

reverse the role of request and acknowledge signals, and operate the 

circuit from right to left. It is analogous to electrons and holes in a 

semiconductor; when current flows in one direction it may be carried 

by electrons flowing in one direction or by holes flowing in the 

opposite direction. Also, the circuit has the interesting property, the 

Muller-pipeline is delay-insensitive and it works correctly regardless 

of delays in gates and wires [52]. 

 

 2.6  4-Phase Dual-rail Pipeline 

 

The Muller pipeline is the basic for 4-phase dual rail pipeline, but 

elaborately it has to do with the combined encoding of data and 

request. The implementation of a 1-bit wide and three stage deep 
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pipeline without data processing is shown in fig. Fig.2.22. As per 

circuit, it can be understood as two Muller pipelines connected in 

parallel, using a common acknowledge signal (Ack) per stage to 

synchronize operation. The pair of C-elements in a pipeline stage can  

 

 

Fig 2.22 Simple 1-bit wide 3-stage 4-phase dual-rail pipeline 

 

store the empty codeword {d.t,d.f}={0,0}, causing the acknowledge 

signal out of that stage to be 0, or it can store one of the two valid 

codewords {0,1} and {1,0}, causing the acknowledge signal out of that 

stage to be logic 1. Since the codeword {1,1} is illegal and does not 

occur, the acknowledge signal generated by the OR gate safely 

indicates the state of the pipeline stage as being “valid” or “empty” [4] 

[6]. So it is understood that an N-bit wide pipeline can be implemented 

by using a number of 1-bit pipelines in parallel. But this does not 

guarantee to a receiver that all bits in a word arrive at the same time 

and often the necessary synchronization is done in the function blocks.   

The individual acknowledge signals can be combined into one global 

acknowledge using a C-element for the need of bit-parallel 

synchronization.  
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Chapter 3 
 

Architecture and Implementation of ALU 
  

 

We have discussed so far about the importance efficient low 

power design by asynchronous technology for portable battery devices 

and motivation of our work in chapter one and the second chapter dealt 

about implementing styles of low power and asynchronous design 

methodologies. In this section, we are discussing about the 

fundamental features, building blocks and the completion detection of 

asynchronous circuits[16] architecture and implementing the 

architectures through the basic C-Muller element. 

 

3.1 Speed-independence basics 

 

On reviewing the basics of Muller’s model of a circuit and the 

conditions for it being independent, a circuit is modeled along with its 

environment as a closed network of gates, closed meaning that all 

inputs are connected to outputs and vice versa. In this circuit design all 

the gates are modeled as Boolean operators with arbitrary non-zero 

delays with wires as ideal [31]. Here in this environment the circuit 

can be described as a set of concurrent Boolean functions, for every 

gate output. Hence the state of the circuit is the set of all gate outputs. 

 

In Figure 3.1, it is illustrated Muller pipeline with an inverter 

and a buffer performing the handshaking behaviour of the left and 

right environments. A gate whose output is consistent with its inputs is 

defined to be stable; also its “next output” is the same as its “current 

output”, zi
�= zi . A gate whose inputs have changed in such a way that 
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an output change is called for is said to be excited; its ‘next output” is 

different from its “current output”, i.e zi
�

 � zi . After an arbitrary delay 

an excited gate may spontaneously change its output and become 

stable with new output values, other gates in turn become excited etc. 

Fig 3.1 Muller Model of a Muller pipeline stage with dummy gates 

             modelling 

 

On illustrating this, with the circuit in Fig.3.1 is in state 

(ri,yi,ci,ai+1) = (0,1,0,0). The inverter ri gets excited corresponding to 

the left environment being about to take request high in this state. 

After the firing of ri ✁ the circuit reaches state (ri,yi,ci,ai+1) = (1,1,0,0) 

and ci now becomes excited. In order to synthesis and analysis one can 

construct the complete state graph representing all possible sequences 

of gate firings. Generally it is possible that several gates are excited at 

the same time in a given state. If one of these gates, say zi, fires the 

interesting thing is what happens to the other excited gates which may 

have zi as one of their inputs: they may remain excited, or they may 

find themselves with a different set of input signals that no longer calls 

for an output change. Generally a circuit is said to be speed-

independent if the latter never happens. The practical implication of an 

excited gate becoming stable without firing is a potential hazard. Since 

delays are unknown the gate may or may not have changed its output, 

or it may be in the middle of doing so when the ‘counter order’ comes 
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calling for the gate output to remain unchanged. Because of the model 

involves a Boolean state variable for every gate and for each wire 

segments in the case of delay-insensitive circuits even for very simple 

circuits the state space becomes very large.  Now, we have a model for 

describing and reasoning about the behaviour of gate-level circuits in 

the following section.  

 

3.2 Asynchronous Circuits- A brief classification with delay 

 

Asynchronous circuits are classified as self-timed, speed-

independent or delay-insensitive depending on the delay assumptions 

that made in the gate level. The Fig. 3.2 shows three gates: A, B, and 

C. The output  signal from gate A is given as input signal on gates B 

and C. A speed-independent circuit as introduced above is a circuit 

that operates “correctly” assuming positive, bounded but unknown 

delays in gates and ideal zero-delay wires. On referring to this Fig.3.2 , 

this means arbitrary dA , dB , and dC, but d1 = d2 = d3 =0 . On assuming 

ideal zero-delay wires is not realistic in semiconductor processes. So 

by keeping arbitrary d1 and d2 and by requiring d2=d3 the wire delays  

 

 

Fig. 3.2 A circuit part with gate and wired delays 
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with gates, but theoretically the circuit is speed-independent [52] one. 

 

Asynchronous circuit which operates correctly with positive, 

bounded but with unknown delays in wires as well as in gates in delay-

insensitive (DI), on referring to above Fig. 3.2 this means arbitrary dA , 

dB , dC, d1, d2, and d3. These kind of circuits are always very robust. One 

of the ways to show that any circuit is delay-insensitive is to use 

Muller model of the circuit where wire segments are modeled as buffer 

components. If this equivalent circuit model is speed-independent, 

then usually the circuit is delay-insensitive. But the class of delay-

insensitive circuits is rather small unfortunately. As mentioned earlier, 

only circuits composed of C-element and inverters can be delay-

insensitive and the Muller pipeline in chapter two and in Fig. 3.2 is 

one important example. The circuits that are delay-insensitive with the 

exception of some carefully identified wire forks where d2 = d3 are 

called often as quasi-delay-insensitive (QDI). Such wire forks, where 

signal transitions occur at the same time at all end-points, are called 

isochronic [55] [4].  

 

These isochronic forks are used to found in gate-level 

implementations of basic building blocks for the designer can able to 

control wire delays. In high level of abstraction the composition of 

building blocks usually is delay-insensitive. Now it is clear that 

difference between DI, QDI and SI. Since the class of delay-

insensitive [57] circuits is very small, basically excluding all circuits 

that compute, most circuits that are referred to in the literature as 

delay-insensitive are only quasi-delay-insensitive. 
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3.3 Isochronic forks 

 

From the classification above one can understand that the 

specific difference between speed-independent circuits and delay-

insensitive circuits relates to wire forks and, more specifically, to 

whether the delays to all end-points of a forking wire are identical or 

not. If the delays are identical, the wire-fork is called isochronic. The 

need for isochronic forks is related to the concept of indication 

principle defined in chapter 2 with Muller C-element and indication. 

On viewing the situation in Fig. 3.2 where gate A has changed its 

output. Eventually this change in gate A output is observed on the 

inputs of gates B and C, and after sometime gates B and C may 

respond to the new input by responding a new output. If this sequence 

happens one can say that the output change on gate A is indicated by 

output changes on gates B and C. On the other hand, if only gate B 

responds to the new input and it is not possible to establish whether 

gate C has seen the input change as well. Then in this particular case it 

is necessary to strengthen the assumptions to d2 = d3 (the fork is 

isochronic) and conclude that because the indication of changing 

output gate B and C for the input signal change at A. 

 

3.4 Bundled-data circuit relations with speed-independence 

 

Normally the 2-phase and 4-phase bundled-data approaches the 

control circuits are speed-independent or in some cases even delay-

insensitive, but the data-path circuits with their matched delays are 

self-timed [11]. Circuits designed following the 4-phase dual-rail 

approach are generally quasi-delay-insensitive. In the 4-phase dual-rail 

pipeline circuits shown in chapter 2, the forks that connect to the 
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inputs of several C-elements must be isochronic, whereas the forks 

that connect to the inputs of several OR gates are delay-insensitive. 

 

The different circuit classes, DI, QDI, SI and self-timed, are 

not mutually exclusive ways to build complete systems, but useful 

abstractions that can be used at different levels of design. In most 

practical designs they are mixed. The choice of handshake protocol 

and circuit implementation style is among the factors to consider when 

optimizing an asynchronous digital system [46]. It is important to 

stress that speed-independence and delay-insensitivity are 

mathematical properties that can be verified for a given 

implementation. If an abstract component – such as a C-element or a 

complex And-Or-Invert gate – is replaced by its implementation using 

simple gates and possibly some wire-forks, then the circuit may no 

longer be speed-independent or delay-insensitive [7]. As illustrated in 

Muller pipelines in chapter 2, it is no longer delay-insensitive if the C-

element is replaced by the gate level implementation which uses 

simple AND and OR gates. Furthermore, even simple gates are 

abstractions; in CMOS the primitives are N and P transistors, and even 

the simplest gates include forks. As SI circuits ignore wire delays 

completely some care is needed when physically implementing these 

circuits [40]. 

 

 In general one might think that the zero wire-delay assumption 

is trivially satisfied in small circuits involving 10-20 gates, but this 

need not be the case: a normal place and route CAD tool might spread 

the gates of a small controller all over the chip. Even if the gates are 

placed next to each other they have different logic thresholds on their 

inputs, which in combination with slowly rising or falling signals can 
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cause circuits to malfunction. For static CMOS and for circuits 

operating with low supply voltages this is less of a problem, but for 

dynamic circuits using a larger VDD the logic thresholds can be very 

different [35]. 

 

3.5 Building Blocks of Asynchronous Circuits 

 

The below is a set of minimum components that is sufficient to 

implement asynchronous circuits is shown in Fig. 3.3. These 

components can be grouped in four categories as explained below.  

 

3.5.1 Latches 

 

Latches are one of the primary component in building  

asynchronous circuits which provides storage for variables and 

implements the handshaking that supports the token flow. In addition 

to the normal latch a number of degenerate latches (sink) are often 

needed; a latch with only an output channel is a source that produce 

tokens with the same constant value, and a latch with only an input 

channel is a sink that consumes tokens [50]. Fig.2.22 in chapter 2, 

explain the implementation of a 4-phase dual-rail latch. 

 

3.5.2 Function blocks 

 

The function blocks are basically the asynchronous equivalent 

of combinatorial circuits and which is another main component for 

building asynchronous circuits. They are transparent/passive from a 

handshaking point of view. A function block will wait for tokens on its 

inputs (an implicit join), then perform the required combinatorial 
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function, and finally issue tokens on its outputs. Both empty and valid 

tokens are handled in this way [33]. It may be necessary to use an 

explicit join component. Where some implementations assume that the 

inputs have been synchronized.    

 

Fig. 3.3 Building blocks for asynchronous circuits 

 

3.5.3 Unconditional flow control 

 

The flow control will be done with Fork and Join components. 

Fork and join are used to handle parallel threads of computation. In 

technical terms, forks are used in situation where the output from one 

component is input to more components, and join are used where data 

from several independent channels need to be synchronized-typically 

because they are independent inputs to a circuit. But often it is omitted 
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joins and forks from a circuit diagrams: in short , the fan out of a 

channel implies the definition of a fork, and the fan-in of several 

channel implies the definition of a join. A merge component generally 

has two or more input channels and only one output channel. On the 

input channels handshakes are assumed to be mutually exclusive and 

the merge relays input tokens/handshakes to the output. 

 

3.5.4 Conditional flow control 

 

MUX and DEMUX are important components which perform 

the usual functions of selecting among several inputs or steering the 

input to one of several outputs. The control input is a channel just like 

the data inputs and outputs available. A MUX will synchronize the 

control channel and the relevant input channel and send the input data 

to the data output. The other input channel is ignored. Similarly a 

DEMUX will synchronize the control and data input channels and 

steer the input to be selected output channel [45].  

 

3.6 4-phase dual-rail implementation of basic components 

 

The 4-phase dual-rail implementations of the basic fork, join 

and merge components are important to build complex circuits are 

shown in Fig. 3.4.  For easy understanding in this figure it shows a 

simple fork with two output channels and join and merge components 

with two input channels for simplicity. Also it is assumed that all 

channels are to be 1-bit channels. But of course, it is possible to 

generalize to three or more inputs and outputs respectively according 

to circuit requirements, and it is possible for extending to n-bit 

channels based on requirements [33]. 
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Fig. 3.4 The 4-phase dual rail implementation of fundamental 

components 

 

The basic component fork includes a C-element for combining 

the acknowledge signals on the output channels into a single 

acknowledge signal on the input channel. The basic component join 

does not involve any active components as the request signal is 

encoded into the data in 4-phase dual-rail design. The particular fork 

in figure 4 duplicates the input data, and the join concatenates the 

input data. From a control point of view the different alternatives are 

identical: a join synchronizes several input channels and a fork 
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synchronizes several output channels. In the 4-phase dual rail merge 

implementation includes C-element and here the request is encoded 

into the data signals and an OR gate is used for each of the two-output 

signals z.t and z.f. Acknowledge on an input channel 4-phase dual-rail 

is produced in response to an acknowledge on the output channel 

provided where the input channel has valid data [44] [41]. 

3.7 Completion detection implementation with Muller C-elements 

The Fig. 3.5 shows an N-bit wide latch. The OR gates and the 

C-element in the dashed box form a completion detector that indicates 

whether the N-bit dual-rail codeword stored in the latch is empty or 

valid. The figure also shows an implementation of a completion 

detector using only a 2-input C-element. 

 

Fig. 3. 5 Implementation of N-bit latch with completion detection 
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In combinational circuits the 4-phase dual-rail pipeline is 

implemented in such a way that the circuits must be transparent to the 

handshaking between latches. Therefore, all outputs of a 

combinational circuit must not become valid until after all inputs have 

become valid. Otherwise the receiving latch may prematurely set 

acknowledge low before all signals from the sending latch have 

become empty. Consequently a combinational circuit for the 4-phase 

dual-rail approach involves state holding elements and it exhibits a 

hysteresis-like behaviour in the empty-to-valid and valid-to-empty 

transitions [14] [45]. 

 

3.8 Simple AND gate implementation with Muller C-element 
 
 
          The AND gate is implemented in dual-rail logic with the Muller 

C-elements in Fig. 3.6. The circuit may be understood as a direct 

mapping from sum-of-minterms expression for each of the two output 

wires into hardware and the truth table for this implementation is given 

in Table 3.1. The circuit waits for all inputs to become valid. When 

this happens exactly one of the four C-elements goes high. This again 

causes the relevant output wire to go high corresponding to the gate 

producing the desired valid output. When all inputs become empty the 

C-elements are all set low, and the output of the dual-rail AND gate 

becomes empty again. Note that the C-elements provide both the 

necessary ‘and’ operator and the hysteresis in the empty-to-valid and 

valid-to-empty transitions that is required for transparent handshaking. 

Note also that the OR gate is never exposed to more than one input 

signal being high [32].  
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Table 3.1 Truth table for AND gate implementation 

 

 
 

Fig. 3.6 Dual-rail implementation of AND gate with Muller C-element 
 
 

Other dual-rail gates such as OR and EXOR can be implemented 

in a similar fashion, and a dual-rail inverter involves just a swap of the 

true and false wires. Given a set of basic dual-rail combinational 

circuits [28] [29] for arbitrary Boolean expressions using normal 

combinational circuit synthesis techniques. The transparency to 

handshaking is a property of the basic gates into larger combinational 

circuits. The transistor count in these basic dual-rail gates obviously 

high and it can be implemented efficiently with domino logic for 

reduced transistor count [53] [46]. 
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3.9  Hybrid Adder Function 
 
 

The basic structure of hybrid adder is shown in Fig. 3.7. Each full 

adder is composed of a carry circuit and a sum circuit. Here the 

concept is that the circuits precharged when signal Reqin =0,  and in 

evaluation state when Reqin =1, able to detect when all carry signals 

are valid and use this information  to indicate completion as 4-phase 

dual-rail protocol, i.e. Reqout �. There will be latency and if the latency 

of the completion detection does not exceed the latency in the sum 

circuit in a full adder then a matched delay element is needed to design 

as indicated in Fig. 3.7. Generally the latency of the completion 

detector may  significantly exceed the latency of the sum circuit. With 

the use of basic Muller C-element this can be implemented and it is 

shown in Fig. 3.8 explained  below section. The block diagram 

presented here shows the N-bit adder 4-phase bundled-data input 

output channels with internal dual-rail carry chain [17]. 

 

 

 

 

Fig. 3.7 N-bit Adder Block diagram dual-rail implementation 
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3.10 4-phase dual-rail adder implementation with Muller C- 
         element 
 
 

The implementation of an AND gate is explained in section 

3.8. Using the same basic design it is possible to implement every 

other gates such as OR, EXOR, etc. An inverter involves no active 

circuitry, as it is just a swap of the two wires. By combining gates any 

arbitrary functions can be implemented exactly the same way as when 

one designs combinatorial circuits for a synchronous circuit. But 

essentially the handshaking is implicitly taken care of and can be 

ignored when composing gates and implementing Boolean functions. 

This has the important implication that existing logic synthesis 

techniques and tools may be used, but the basic gates are implemented 

differently that is the only difference here. 

 

The 4-phase dual-rail AND gate implementation in section 3.8 

is found rather inefficient: In this design there are 4 C-elements and 1 

OR gate approximately has 30 transistors which is five greater than a 

normal AND gate whose implementation requires only 6 transistors. 

But if larger functions are implemented then the overhead can be 

reduced. This design is illustrated in fig 3.8. The circuit in fig 3.8 (b) is 

look like PLA design and it illustrates a principle for implementing 

arbitrary Boolean functions in general. This is implemented in DIMS- 

Delay-Insensitive Minterm Synthesis- since the circuits are delay-

insensitive and because the C-elements in the circuits generate all 

minterms of the input variables [4]. The truth table have 3 set of rows 
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specifying the output when the input is different and they are as 

follows: set (1): the empty or null codeword  to which the circuit  

responds by setting  the output empty/ null, set (2): no change for an 

intermediate codeword which does not affect the data output, set (3): a 

valid codeword to which the circuit responds by setting the output to 

the proper value for each input. 

 

Table 3.2 Truth table for 4-phase dual-rail adder 

 

Fig. 3.8 4-phase dual-rail adder (a) symbol and (b) implementation 
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For designing the asynchronous ALU, the basic circuit is to design an 

adder. The above Fig. 3.8 shows the implementation of asynchronous 

1-bit full adder circuit with C-elements. Fig.3.8 (a) shows the block 

level input and output signals. Since it is a 4-phase dual rail protocol, 

the information a, b and c uses 2 wires; a.t, b.t and c.t for signaling a 

logic 1 and other wires a.f, b.f and c.f for signaling logic 0. The Table 

3.2 shows the truth table for this 4-phase dual rail full adder and the 

same implemented with C-elements and OR gates, which is shown in 

fig. 3.8(b). 

 
3.11 4-phase Dual-rail Dynamic CMOS Asynchronous ALU 

Implementation  

 

Using the logics and principles outlined in chapter 2 and above 

basic components implementation, we design an ALU at the transistor 

level for single bit operation as shown in the Fig. 3.9 to demonstrate 

our design concept. A single bit-slice ALU uses only 53 transistors and 

its range of operations in Table 3.3. Since we emphasize on the design 

of asynchronous component, there is no hardware implementation for 

4-phase dual rail with Muller C. However, the proposed circuit 

assumes the signaling from such logic blocks. For example, C0out and 

C1out act as two wires of 4-phase logic, which makes reliable 

operation between its predecessor and successor blocks. 

 

 
We extend our 1-bit asynchronous ALU to design a 32-bit ALU, 

which requires 1696 transistors. The basic principle of Bundled data – 

Bounded delay model of Sutherland’s micro pipelines is used here 

[12]. The timing characteristics of all data busses of this architecture 

are bundled together. The statuses of the data busses are indicated 
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(acknowledged) by 4 phase-dual rail handshake signals. The clock 

power reduction at the architectural level is mainly due to pipeline 

technique. The dynamic logic of completion detection unit ensures 

precise internal operation, because of its 4-phase dual logic. It is also 

carrying the timing information because it uses common timing 

characteristics. 

 

 

 

 

 

Fig. 3.9.  Dynamic CMOS 4-phase dual-rail asynchronous ALU 1-bit  

                 circuit  

 

In this circuit diagram fig.3.9, the data signals are a.t, a.f, b.t, b.f, C0in 

and C1in. The precharging clk signal is used to precharge the required 

nodes as per dynamic logic. Depending upon the required logic 
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function to be done by the ALU, the ADD and X-OR signals will be 

given for corresponding logic operation as stated in the Table 3.3.  

 

 

 

Logic Funcion 
Basic  
Operation

a-input b-input 

and AND true True 
add AND true true 
add with carry AND true true 
subtract AND true complement 
reverse subtract AND complement  true 
subtract with carry AND true complement 
rev. subtract with 
carry 

AND complement true 

test bits AND true true 
compare AND true complement 
compare negative AND true true 

bit clear AND true complement 
xor XOR true true 
test equal XOR true true 
or OR true true 
move OR zero true 
move NOT OR zero complement 

 

Table 3.3 Functions available with the ALU 

 

Table 3.3 explains the operation available with the designed 

ALU where the data signals a and b requires 2 wires for each data bit. 

The data signals a.t, a.f and b.t, b.f are required as per the 4-phase 

dual-rail logic as explained in chapter 2. Here a.t and b.t used for 

representing logic 1 (true), similarly a.f and b.f represents logic 0 

levels (complement) as shown in Table 3.3. For the arithmetic 

operation ‘add’ and for the logical operations ‘xor’ control signals will 

be given logic 1 for the listed above listed operations. The 
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implemented ALU design can carry out all the 16 operations listed in 

Table 3.3 and the simulated results, performance analysis are 

discussed in the next chapter. 
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Chapter 4 

  

Performance Analysis and Simulation Results 
 
 
 

The implementation and the operations of designed 

asynchronous 4-phase dual-rail domino logic ALU are discussed in the 

previous chapter. In this chapter, the simulation results verify the 

correct operation of the functions defined and the performance are 

analyzed with latest related published works to claim the improved 

throughput of our proposed circuit ALU design and the methodology 

proposed. Also the SPICE tool, which used for the simulation purpose 

and the technology library used are discussed briefly. The simulation 

results are plotted for 1-bit operation and performance analysis 

 
4.1 SPICE Simulation tool   

 

 
The cadence HSPICE and Tanner T-SPICE tools were used for 

the entire analysis and the results were tabulated and plotted in this 

chapter. The simulation results for the power consumption of typical 

addition operation with different supply voltages are analyzed. Since 

the circuit designed at CMOS transistor level and asynchronous, the 

SPICE tools are used worldwide to prove the efficiency of the circuit 

before lay out. i.e the variation between the simulation results by 

SPICE tools and post lay out level of the circuit will be comparable. 

Also the SPICE tools are the basic simulation tool and if any circuit 

performs well with the SPICE simulation performance can be moved to 

next lay out level with the same performance. The 0.�✁✂m technology 

libraries were used for the simulations by the SPICE tools. 
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4.2 Analysis of Logic Operations 

 

For a single bit addition operation three inputs: the two operand bits 

and a carry input from the previous stage. The addition operation is 

limited by the speed of the propagation of the carry signal across the 

word. However the carry output from a single bit addition does not 

always depend on the carry input and in half of the possible input cases 

it may be generated before the input carry state is known. It is therefore 

unlikely that a carry signal will have to propagate across many bit 

positions before it reaches one where its state has already been 

correctly predicted. In synchronous ALUs all operations must take the 

same amount of time; a considerable effort has been expended in 

schemes such as carry look ahead and carry steering in order to speed 

up the addition operation; these approaches require a large quantity of 

circuitry to accommodate a few worst cases of operation. 

 

In an asynchronous ALU addition, operation may take different 

times depending on the input data, providing that some means of 

detecting completion is included. In our design the completion 

detection will be done x-or gate circuit as explained in previous 

chapter. If the cases with long carry propagation chains are relatively 

rare a simple adder may be used which-despite poor worst-case 

performance- can deliver typical results in in a reasonable time. This 

allows a reduction in size and complexity of the ALU, with a 

consequent reduction in power consumption, without radically altering 

the typical performance. The performance of our design is illustrated 

with different analysis in this section. 

 



 63 

The simulated output waveform for the addition operation 

performed by this ALU presented in Fig. 4.1. It is performed with 

VDD=1.8V, input sequence C1in=1111, C0in=0000, A=0011,B=0101 

and the simulated output sequence is output=1001, C0out=1000, 

C1out=0111 which coincides the expected specification. This 

simulation is done using HSPICE tool with 10ns local clock period at 

room temperature 30˚C. The input and output specification for this 

addition operation is given in the Table 4.1. 

 

Table 4.1 Input/output logic specification for addition operation by  

                ALU. 

 

In Table 4.1, the input data sequence a.t, a.f, b.t, b.f and C1in are 

presented in logic levels and since it is addition operation the control 

bit ‘add’ is given high logic 1 and ‘xor’ being kept at low logic 0.As the 

operation is full addition, the carry bit signal C1in is given high logic 1. 

In the output signal ‘sum’ of the addition operation is given by ‘Cout’ 

and the carry bit will be represented by ‘C1out’ signal as shown in the 

simulated waveform in Fig. 4.1.  

Signals Data 

a.f 1 1 0 0 

b.f 1 0 1 0 

C1in 1 1 1 1 

add 1 1 1 1 

xor 0 0 0 0 

a.t 0 0 1 1 

Input    

b.t 0 1 0 1 

Cout (sum) 1 0 0 1 

C0out 1 0 0 0 

Output

C1out 0 1 1 1 
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Fig. 4.1. Simulated waveforms for the ALU addition operation 

The above Fig. 4.1 shows the SPICE simulated waveform for 

the one bit ALU addition operation, which follows the specification 

given in Table 4.1. The X-OR logic operation input output  

signals Data 

a.f 1 1 0 0 

b.f 1 0 1 0 

C1in 0 0 0 0 

add 0 0 0 0 

xor 1 1 1 1 

a.t 0 0 1 1 

Input    

b.t 0 1 0 1 

OUT(xor) 0 1 1 0 

C0out 1 0 0 0 

Output 

C1out 0 0 0 1 
 

Table 4.2 Input /output logic specification for x-or operation by 

ALU 
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specification is for single bit operation is given in Table 4.2 and the 

simulated SPICE waveform for this logic operation is given in Fig. 

4.2. 

 
Fig. 4.2. Simulated waveforms for the X-OR operation 

 

In Table 4.2, the input data sequence a.t, a.f, b.t, and b.f are 

presented in logic levels and operation to be done is XOR the control 

bit ‘add’ is given low logic 0 and ‘xor’ being kept at high logic 1. In the 

output signal ‘xor’ of the addition operation is given by ‘OUT’ signal 

as shown in the simulated waveform in Fig. 4.2. 

 

4.3 Basic Addition Operation and Analysis 

 

Addition is one of the fundamental functions of an ALU. We start 

by analyzing the number of transistors used in the addition. About 80% 
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of the operations require some form of addition [13]. If we improve the 

processing time of addition operation, the performance of complete 

ALU can also be improved. The latency required by our design is 

depended upon the operation, the input data at that incident and the 

carry flow across the whole word length, i.e. it needs to propagate carry 

until it has predicted by the completion detection stage. The average 

length of the mean carry propagation distance is varying according to 

input data. In this 32-bit operation, a sum of 140 transistors has used for 

precharging (domino logic) and buffer purposes to meet the 

specifications at the layout. The 4-phase dual rail logic with CMOS 

dynamic implementation so far discussed ensures very simple circuitry 

than existing designs and provides three benefits compared to size, 

power consumption and performance as discussed in previous chapters. 
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Fig. 4.3. Simulation Results for power consumption at different VDD. 

 

The Fig. 4.3 shows the bar diagram representation of power 

consumption by the same circuit with different VDD ranging 1.6V to 

3.0V and keeping the temperature as constant room temperature. The  

performance of the ALU is good and working correctly to a wide range 

of VDD 1.6 V to 5V. The power consumption against different VDD is 
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listed in the Table 4.3 and it plotted as a graph for easy analysis in Fig. 

4.4. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 Power consumption for addition operation at different VDD 

 

Fig. 4.4. VDD Vs Power consumption of ALU for Adder operation 

 

Sl. No VDD (V) Power consumption 
(watts) 

1 
1.6 4.92E-05 

2 
1.8 1.02E-04 

3 
2 1.93E-04 

4 
2.2 1.48E-03 

5 
2.4 2.24E-03 

6 
2.6 9.27E-03 

7 
2.8 2.11E-02 

8 
3 3.65E-02 
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The simulation results of HSPICE-0.�✁✂m technology shows, the 

average power consumption for typical addition operation is 1.02e-4w 

under 1.8V supply with 1000 sample inputs at room temperature and 

average time delay is 3.5ns. The Fig. 4.5 shows the graph 

representation of power consumption by the same circuit with different 

temperatures and keeping the VDD=1.8V. The power consumption in 

different temperature is listed in the Table 4.4. 

 

Sl. No Temperature 

(˚C) 

Power consumption 
(watts) 

1 
-15 9.44E-05 

2 
0 9.68E-05 

3 
15 9.91E-05 

4 
30 1.02E-04 

5 
45 1.04E-04 

 
Table 4.4 Power consumption for adder operation at different    

                Temperatures 

 
Fig. 4.5. Temperature Vs Power consumption of ALU for Adder    
operation. 
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The Fig. 4.6 shows the graphical representation of delay 

performance by the ALU circuit with different VDD ranging 1.2V to 

2.6V and keeping the temperature as constant room temperature. 

 

Sl. No VDD (V) Delay (ps) 

1 
1.2 12250 

2 
1.4 7200 

3 
1.6 5250 

4 
1.8 3500 

5 
2 2000 

6 
2.2 1600 

7 
2.4 1280 

8 
2.6 1150 

9 
2.8 1000 

 

Table 4.5 Delay for addition operation with different supply voltages 
VDD.  

 

 

The delay get increased on reduction with VDD and it is found that the 

correct performance assured on reducing the VDD for a wide range of 

5V to 1.6V with increasing delay and the data are listed in Table 4.5.    
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Fig.4.6 Supply Voltages (VDD) Vs Delay performance for ALU 
addition operation 

 
 
 Simulation has been performed with our design to find the best 

and worst case performance, and the results are listed in table 4.6 A 

comparison of the simulated time performance of our design with 

other published works given in the below table which proves the better 

performance on worst case of 4ns and average case of 3.5ns. 

 

 
 

Time(ns) Comparison 
with other 
related 
works 

Best case Worst case Average 

Ref [14] 2.5 7.5             5 

Ref [15] 3 6 4.5 

Ref [16] 3 6 4.5 

Our design 3 4 3.5 

Synch - - 4 

 
Table 4.6 Simulation Results for ALU operation 
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CO-Correct Operation, SS-Slow Speed,  MS-Medium Speed 

 
Table 4.7 Performance Comparison with other published works 

 

A comparison of the simulated time performance and transistor 

count of this design with other published alternatives is shown in table 

4.7. Our design has much reduction in silicon area. In addition, this 

architecture enables to have reduced switching capacitance because of 

absence of master clock in the ALU circuit design. It gives reduced 

switching actions for every arithmetic operation. In summary, our 

proposed design gives a better throughput with minimum number of 

transistors. 

Existing Designs and Discussed Design 

Comparison  
Synchronous 

ARM ALU [14] 

Asynchronous 

ARM ALU [14] 
Our Design 

Technology 1.2um CMOS 1.2um CMOS 0.18um CMOS 

Supply 
voltage 

~ 5V (CO/SS) ~ 5V (CO/SS) 
~ 1.8V 

(CO/MS) 

Self Time 
Unit 

3000 
(# transistors) 

2300 
(# transistors) 

1696 
(# transistors) 

Timing 
Purpose 

-- 140 
(# transistors) 

140 
(# transistors) 

Data width 32 bit 32 bit 32 bit 
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Chapter 5 
 

Conclusions 

 
 

The Asynchronous chips are presently research prototypes and are not 

about to replace synchronous ARM cores in commercial production. 

However, there is a worldwide resurgence of interest in the potential of 

asynchronous design techniques to save power and to offer a more 

modular approach to the design of computing hardware.  

 

Our investigation shows that the proposed asynchronous ALU, which 

reduce both average-case and worst case operation delays over that 

previous asynchronous designs, can be designed in such a way that 

with less power and less area. Since we used the 4-phase dual-rail 

pipelines in designing our 32-bit ALU circuit, the complexity of 

implementation is reduced when compared to the 2-phase dual-rail and 

bundled-data protocol designs. Also this ALU design has following 

unique asynchronous design advantages. 

� Use little average power 

� Show small current peaks, and 

� Operate over a wide range of the power supply. 

 

Measurements and simulations showed the following advantages of 

this design when compared to a conventional synchronous one: 

� This asynchronous ALU design gives the maximum 

performance for the power received. This comes mainly from 

the fact that the asynchronous design needs less of what is the 

main limiting factor for the performance, namely power. 

Compared to a synchronous design, the asynchronous circuits 
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needs about 40% of the power for less. The proposed design 

having reduced transistor count in comparison with earlier 

designs on comparison and better power-delay characteristics. 

� This asynchronous design is more resilient to voltage drops, 

since it still operates correctly for voltages down to 1.8 V. 

� The current peaks of an asynchronous circuits are less 

pronounced , making the requirements with respect to the 

buffer capacitor more modest. 

 

The power savings which result from removing the global clock, 

leaving each subsystem to perform its own timing functions whenever 

it has useful work to perform, are clear in theory but there are few 

demonstrations that the benefits can be realized in practice with 

circuits of sufficient complexity to be commercially interesting. Our 

ALU design work is aimed directly at adding to the body of 

convincing simulation demonstrations of the merits of asynchronous 

technology. It is also clear that, should asynchronous technology gain 

acceptance as a low power design style, the ALU work places the 

ARM architecture in the vanguard of the asynchronous assault on the 

stronghold of the global clock. 

 

The objective of our work is to demonstrate that a self-timed delay 

insensitive processing system can deliver competitive performance in a 

very flexible way, simplifying power-efficient design and minimizing 

electromagnetic interference. Asynchronous designs are naturally 

miserly with power, since they are inactive until presented with work 

to do. The power benefits are expected to be particularly manifesting 

in systems with highly variable workloads, hence the emphasis on 

embedded applications. Additional reasons for looking at this 
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asynchronous ALU design include its lower emission of 

electromagnetic radiation due to less coherent internal activity, and its 

potential to deliver typical rather than worst-case performance since its 

timing adjusts to actual conditions whereas clocked circuit must be 

tolerance for worst-case conditions. 

 

5.1 Future Directions 

 

There is considerable resistance amongst industrial designers to 

the use of asynchronous design techniques, in part because of obsolete 

prospective that view asynchronous design as unreliable which has 

been now largely been overcome by new, more rigorous techniques 

and in part because of genuine difficulties with production testability 

which are only now beginning to be addressed by the asynchronous 

research community. 

 

However, clocked design is becoming ever more difficult as 

manufacturing process technology shrink. Wiring delay increasingly 

dominate logic delays on high performance chips, causing the global 

clock wiring to compromise the local logic performance. Clock 

generators consume an increasing share of the silicon resource and the 

power budget, and increasing clock frequencies cause worsening radio 

emissions and power consumption. 

 

The choice facing manufacturers of portable digital equipment 

will therefore be either to sacrifice performance or to abandon fully 

synchronous design. The pressure will be most apparent in physically 

small systems that include both radio receivers and high performance 

digital electronics, such as digital mobile telephones and pagers. 

PDAs, mobile email terminals and portable multimedia terminals will 
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also soon benefit from asynchronous design. In the longer term the 

modularity, composability and synthesis potential of asynchronous 

circuits will make them attractive to a wide range of applications, 

when dealing with a global clock signal on a 1000,000,000 transistor 

chip will become simply too difficult to manage. 

 

In addition to purely asynchronous technology, hybrid 

solutions appear to have future potential. Perhaps islands of 

synchronicity communicating asynchronously, or conventional data-

path functions timed using a maximum delay philosophy within an 

asynchronously controlled system, could be employed. Key, large 

volume applications like general-purpose processors will have to drive 

the technology and associated tools development. Only when well-

defined element libraries and high-level synthesizable design 

representations are available will asynchronous techniques challenge 

the contemporary synchronous approach. 

 

 

5.2 Publications/ Communications out of this work 

 

1) G. Sundar and C.R. Mandal,  “A Design Technique for the 

Implementation of Asynchronous ALUs “ in Proc. of 

VEDAS-2005, VLSI Society of India sponsored Conference, 

Salem, India, June1-2,2005. 

2)   G. Sundar and C.R. Mandal,  “Design Methodologies for 

the Implementation of Low Power Asynchronous Designs 

Circuits “ in Proc. of INCRUIS-2006 International 

Conference, Sona College of Technology, Erode, India, Jan7-

8,2006. 
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3) G.Sundar, C. R. Mandal, IIT Kharagpur, India and P. 

Manikandan, B. D. Liu, L. Y. Chiou , NCKU, Taiwan “ 

Asynchronous Design Methodology for an Efficient 

Implementation of Low Power ALU”  communicated to 

Proc. Of APCCAS 2006 (IEEE) International Conference, 

Singapore Dec. 4-7, 2006 (http://www.apccas.org/ ) 
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