
The Thesis Entitled

Asynchronous Design Methodology for an

Efficient Implementation of Low Power ALU

Submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in

Computer Science and Engineering

by

G. Sundar

Under the guidance of

Dr. Chitta Ranjan Mandal

Department of Computer Science & Engineering

Indian Institute of Technology Kharagpur

India

July 2006

 i

Certificate

 This is to certify that the dissertation entitled Asynchronous

Design Methodology for an Efficient Implementation of Low

Power ALU, submitted by G. Sundar, a student in the Department of

Computer Science and Engineering, Indian Institute of Technology

Kharagpur, India, for the award of the degree of Master of Science, is

a record of an original work carried out by him under my supervision

and guidance. This dissertation fulfills all requirements as per the

regulations of this Institute and in my opinion has reached the standard

needed for submission. Neither this dissertation nor any part of it has

been submitted for any degree or any academic award elsewhere.

 Dr. Chitta Ranjan Mandal

 Department of Computer Science & Engineering

 Indian Institute of Technology Kharagpur

 West Bengal, India 721302

 iii

Abstract

 The power consumption becomes an important issue in circuit

design technologies. The power dissipation in high-performance

CMOS VLSI circuits like microprocessors is becoming an increasing

problem. One reason for the high power dissipation is the almost

universal design approach synchronous circuits, which imposes global

synchrony across a chip. This is achieved by applying a common clock

to all the functional units on a chip and has the undesirable side effect

of causing those units to dissipate power whether or not they are doing

useful work. The main objective of designing the asynchronous

circuits will be there is no master clock, the reduction in silicon by

following domino logic with dual-rail logic and thus ensures the power

consumption in designing the circuits.

 We present a design technique for implementing asynchronous

ALUs with CMOS domino logic and delay insensitive dual rail four-

phase logic. It ensures economy in silicon area and potentially for low

power consumption. The design has been described and implemented

to achieve high performance in comparison with the synchronous and

available asynchronous designs. This implementation justifies the

claimed performance through the SPICE simulation results.

Keywords: Integrated Circuits, Design Styles, Domino Logic, Delay

insensitive, 4-phase dual-rail logic, Arithmetic and Logic Structures.

 ii

Acknowledgement

This thesis would not have been a reality if my advisor Dr. C.

R. Mandal hadn’t given the best of moral support to me from the day I

started my work here. His constant support coupled with his well-

timed advices has helped me at every step of my work. I express my

deep gratitude and indebtedness to him for giving me this golden

opportunity.

 I am particularly thankful to Prof. A. K. Majumdar, Prof. B.

Majumdar, Prof. S. Ghosh, , Prof. I. Sengupta, Prof. B. D. Liu and Prof

D. Sarkar for their constant encouragement and support. I would like

to express my devout thanks to Dr. D. Samanta, who inspite of his

busy schedule selflessly helped me throughout my project work.

I am also deeply indebted to Dr. Gunasekaran, the Registrar of

the Institute and all my tamil friends for their constant help and

encouragement throughout this period. I sincerely thank Dr. D. K.

Nanda for his valuable support. Special thanks to Monalisaji and her

family for the unstinted support by making me mentally tough enough

to face and overcome difficult situations which came by.

I am grateful to Jayanto da, Anupam da, Prasenjit da and all

the computer and Informatics Centre staff members for their help at

times of need.

I am thankful to Ramesh, and my beloved sister Vijayakumari

for their continuous inspiration and support throughout this period.

Last but not the least I express my gratitude to my mother and

father for their sacrifice and patience in spite of many lost hours in

their covetable association with me.

 G. Sundar.

Dedicated to

My beloved Parents

 iv

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Motivation of the Work 5

1.2 Brief Overview of our Work 12

1.3 Organization of the Thesis 13

2 CMOS Logics and Asynchronous Design

 Methodologies 15

2.1 Static CMOS 15

2.2 Dynamic CMOS 21

2.2.1 Domino Logic 27

2.2.2 NORA Logic 29

2.3 Handshake protocols 31

2.3.1 Bundled data protocols 31

2.3.2 4-phase dual rail protocol 33

2.3.3 2-phase dual-rail protocol 36

2.4 Indication Principle and the Muller C-element 36

2.5 Muller pipeline 38

2.6 4-phase dual-rail pipeline 40

3 Architecture and Implementation of ALU 42

3.1 Speed-independence basics 42

3.2 Asynchronous circuits- a brief classification

 with delay 44

3.3 Isochronic forks 46

 v

3.4 Circuit relations with speed-independence 46

3.5 Building blocks of Asynchronous circuits 48

3.5.1 Latches 48

3.5.2 Function blocks 48

3.5.3 Unconditional flow control 49

3.5.4 Conditional flow control 50

3.6 The 4-phase dual-rail implementation of

 basic components 50

3.7 Completion detection implementation with

 Muller C-elements 52

3.8 Simple AND gate implementation with

 Muller C-element 53

3.9 Hybrid Adder Function 55

3.10 4-phase dual-rail adder implementation

with Muller C-elements 56

3.11 4-phase dual-rail Dynamic CMOS Asynchronous

 ALU Implementation 58

4. Performance Analysis and Simulation Results 61

4.1 Spice simulation tool 61

4.2 Analysis of Logic operations 62

4.3 Basic Addition Operation Analysis 65

5. Conclusions 72

 5.1 Future Directions 74

 5.2 Publications/Communications out of this work 75

 vi

List of Figures

1.1 Basic block diagram of an Asynchronous Circuit 5

1.2 (a) A synchronous circuit, (b) a synchronous circuit

 with clock drivers and clock gating, (c) an equivalent

 asynchronous circuit, and (d) an abstract data-flow

 view of the asynchronous circuit. 9

2.1 CMOS inverter circuit 17

2.2 CMOS inverter circuits in stages 17

2.3 CMOS tristate inverter 18

2.4 Pseudo-NMOS logic 20

2.5 Basic Structure of dynamic CMOS logic 21

2.6 Example for dynamic CMOS logic 23

2.7 Dynamic CMOS logic structure for minimum clock speed 25

2.8 Latching of weak PMOS in dynamic logic 26

2.9 Dynamic CMOS domino logic structure 28

2.10 Dynamic CMOS NORA logic structure 29

2.11 Clock skew representation 30

2.12 A bundled-data channel 31

2.13 A 4-phase bundled-data protocol 32

2.14 A 2-phase bundled data protocol 32

2.15 The 4-phase dual-rail channel 33

2.16 The 4-phase dual-rail protocol handshaking 34

2.17 Illustration of 4-phase dual-rail channel handshaking 35

2.18 Illustration of 2-phase dual-rail protocol handshaking 36

2.19 OR gate 37

2.20 Muller C-element symbol and implementation with

Specification 38

2.21 Illustration of Muller pipeline 39

2.22 Simple 1-bit wide 3-stage 4-phase dual-rail pipeline 41

 vii

3.1 Muller Model of a Muller pipeline stage with

Dummy gates modeling 43

3.2 A circuit part with gate and wired delays 44

3.3 Building blocks for asynchronous circuits 49

3.4 The 4-phase dual-rail implementation of fundamental

Components 51

3.5 Implementation of N-bit latch with completion detection 52

3.6 Dual-rail implementation of AND gate with Muller

C-element 54

3.7 N-bit Adder Block diagram dual-rail implementation 55

3.8 4-phase dual-rail adder (a) symbol (b) implementation 57

3.9 Dynamic CMOS 4-phase dual-rail asynchronous ALU

1-bit circuit 59

4.1 Simulated waveforms for the ALU addition operation 64

4.2 Simulated waveforms for the X-OR operation 65

4.3 Simulation Results for power consumption at

Different VDD 66

4.4 VDD Vs Power consumption of ALU for Adder operation 67

4.5 Temperature Vs Power consumption of ALU for Adder

Operation 68

4.6 Supply Voltages (VDD) Vs Delay performance for ALU

Addition operation 70

 viii

List of Tables

2.1 Truth table OR gate 37

3.1 Truth table for AND gate implementation 54

3.2 Truth table for 4-phase dual rail adder 57

3.3 Functions available with the ALU 60

4.1 Input/output logic specification for addition by

ALU 63

4.2 Input/output logic specification for X-OR

Operation by ALU 64

4.3 Power consumption for addition operation at

Different VDD 67

4.4 Power consumption for adder operation at different

Temperatures 68

4.5 Delay for addition operation with different supply

voltages VDD 69

4.6 Simulation Results for ALU operation 70

4.6 Performance Comparison with other published

Works 71

 1

Chapter 1

Introduction

The power consumption becomes an important issue in design

technologies. The power dissipation in high-performance CMOS VLSI

circuits like microprocessors is becoming an increasing problem. Even

when battery power portability is not an issue the 20 or 30 Watt

consumption of the latest high-end processors makes it difficult to

keep the silicon at an acceptable operating temperature. At lower

performance levels the designers of battery powered systems must

make difficult trade-offs between the processing demands of, for

example, hand-writing recognition software and the minimum

acceptable battery life of their products. The process advances which

have caused CMOS to progress from a low power technology to a high

power technology show no signs of abating and, if new approaches are

not developed, state-of-the-art performance in twelve years time will

only be delivered at the cost of power dissipations one or two orders of

magnitude higher than today’s. While there are developments that

alleviate this problem, such as the trend towards 3 volt (and later 2

volt) operation, these do not go far enough to remove the possibility

that power dissipation might limit the performance that a chip can

deliver.

One reason for the high power dissipation is the almost universal

design approach, which imposes global synchrony across a chip. This

is achieved by applying a common clock to all the functional units on

a chip and has the undesirable side effect of causing those units to

dissipate power whether or not they are doing useful work. There is no

 2

doubt that the synchronous approach to logic design has been very

effective over the last two decades, and has enabled great advances to

be made in the productivity of designers and their design tools and in

the performance of machines. However there is now a resurgence

opinion suggesting that it may be time to re-assess the merits of other

design approaches. Higher speeds and larger chips are making the

abstraction of global synchrony increasingly hard to sustain even on a

single chip, with the power dissipation making this approach much

less attractive. While it is possible to address power issue by gating

clocks to individual units, this makes the clock skew problem much

worse and is therefore needs for better solution.

 The power consumption can be reduced by decreasing the

supply voltage, load capacitance and frequency [1]. Several attempts

are made to address this problem to reduce the switching activity of

logic in redundant cycles [3] [21]. Xi et. a1 provides an optimization

algorithm for buffer and device sizing under process variations [2].

Although it minimizes the skew, this methodology is limited when

operating frequency is very high. On the other hand, Globally

Asynchronous and Locally Synchronous (GALS) technique [10] [22]

aims to eliminate the global clock, by partitioning the system into

several synchronous blocks and communicating asynchronously

among blocks. However, the global signaling protocol increases the

total area-power penalty and affects performance of the system.

Asynchronous design approaches are therefore attracting renewed

interest. New approaches to asynchronous designs are overcoming

some of the difficulties, which had previously been impediments to

cost-effective designs. Asynchronous designs tend naturally (in

 3

CMOS) to use power only when doing useful work and interfacing

disciplines produce more modular designs with an inherent potential

for component reuse[5].

In asynchronous systems, idle parts of the chip consume negligible

power [9] [12]. This feature is particularly valuable for battery –

powered equipment, but it can also cut the cost of larger systems by

reducing the need for cooling fans and air-conditioning to prevent

them from overheating. The amount of power saved depends on the

machine’s pattern of activity. Systems with parts that act only

occasionally benefit more than systems that act continuously.

Most computers have components, such as the floating-point

arithmetic unit, that often remain idle for long periods. Furthermore,

asynchronous systems produce less radio interferences than

synchronous machines do [39]. Because a clocked system uses a fixed

rhythm, it broadcasts a strong radio signal at its operating frequency

and at the harmonics of that frequency. Such signals can interface

with cellular phones, televisions and aircraft navigation systems that

operate at the same frequencies. Asynchronous systems lack a fixed

rhythm, so they spread their radiated energy broadly across the radio

spectrum, emitting less at any one frequency. Yet another benefit of

asynchronous design is that it can be used to build bridges between

clocked computers running at different speeds. Many computing

clusters, for instance, link fast PCs with slower machines [33]. These

clusters can tackle complex problems by dividing the computational

tasks among the PCs. Finally, although asynchronous design can be

challenging, it can also be wonderfully flexible. Because the circuits of

an asynchronous system need not share a common rhythm, designers

 4

have more freedom in choosing the system’s parts and determining

how they interact. Moreover, replacing any part with a faster version

will improve the speed of the entire system. In contrast, increasing the

speed of a clocked system usually requires upgrading every part.

Several researchers propose asynchronous approaches to cope with

performance and timing issue. Tang et. al. design a 16-bit

asynchronous ALU with asynchronous pipeline architecture [4]. In this

approach, simple handshake cells embedded in pipeline stages make

the ALU run fast. However, large power has consumed by this design

while waiting for the incoming data. In contrast, by using Galois Field

arithmetic logic and reduced switching activity in the latches, work

proposed in [5] achieved low power in an asynchronous ALU design.

Since the improper rotate-wire concept of data buses, the time required

for each multiplication operation becomes larger and it results in

degradation of the performance.

In reducing the time dependency of an asynchronous design of

Quantum dot Cellular Automata (QCA), Hemani et al. [6] used GALS

with delay-insensitive data encoding scheme. Here each gate has

locally synchronized by corresponding clocking zone(s). Appropriate

data forwarding and synchronization guaranteed at the gate-level that

reduces the number of clocking zones and increases the circuit speed.

Nevertheless, the overall timing of the circuit depends upon the layout.

An asynchronous bundled-data pipeline for the matrix–vector

multiplication core of discrete cosine transforms achieved 30% higher

average throughput [16] based on a bit-partitioned carry-save

multiplier. Due to its bulky control overhead, the controller drops its

speed gain. These methods intend to improve the power

consumption/performance of IC’s using asynchronous methodology.

 5

 The basic block structure of the asynchronous circuit is given in

Fig.1.1. The data is processed to next step through register on demand

of request signal. The next request signal issued only on acknowledge

of the previous process completion. This way clock is eliminated by

the acknowledge signal for each process of data.

Fig.1.1 Basic block diagram of an Asynchronous Circuit.

 1.1 Motivation of the work

Nowadays it is essential that each application instrument of the

electronic industry should be compact, consume less power and less

delay performance. Researches are continuing to reduce the above

three parameters especially in battery operated computing devices. The

sources of energy consumption on a CMOS chip can be classified as

static and dynamic power dissipation [18] [19]. The dominant

component of energy consumption in CMOS is dynamic power

 6

consumption caused by the actual effort of the circuit to switch. A first

order approximation of the dynamic power consumption of CMOS

circuitry [17] is given by the formula:

P = C * V
2
 * f

where P is the power, C is the effective switch capacitance, V is the

supply voltage, and f is the frequency of operation. The power

dissipation arises from the charging and discharging of the circuit node

capacitances found on the output of every logic gate. Every low-to-

high logic transition in a digital circuit incurs a change of voltage,

drawing energy from the power supply.

A designer at the technological and architectural level can try to

minimize the variables in these equations to minimize the overall

energy consumption. However, power minimization is often a complex

process of trade-offs between speed, area, and power consumption

[23]. This difficulty can be overcome by choosing the asynchronous

design methodology where the dynamic power is almost avoided since

there is no global clock. Also the transistors will be used at the time of

demand only, which is unlikely with synchronous designs.

Most digital circuits designed and fabricated today are “ synchronous”.

In essence, they are based on two fundamental assumptions that

greatly simplify their design: (1) all signals are binary, and (2) all

components share a common and discrete notion of time, as defined by

a clock signal distributed throughout the circuit.

Asynchronous circuits are fundamentally different; they also assume

binary signals but there is no common discrete time. Instead the

circuits use handshaking between their components in order to perform

 7

the necessary synchronization, communication, and sequencing of

operations. Expressed in ‘ synchronous terms’ this results in a

behaviour that similar to systematic fine-grain clock gating and local

clocks that are not in phase and whose period is determined by actual

circuit delays-registers are only clocked where and when needed [4].

The difference gives asynchronous circuits inherent properties that can

be exploited to advantage in the areas listed and motivated below.

Further its having the following advantages.

1. Lower power consumption, due to fine-grain clock gating and

zero standby power consumption [11]

2. High operating speed, since operating speed is determined by

actual local latencies rather than global worst-case latency. [14]

[39]

3. Less emission of electro-magnetic noise, the local clocks tend

to tick at random points in time. [39] [42]

4. Robustness towards variations in supply voltage, temperature,

and fabrication process parameters, since timing based on

matched delay and it can be insensitive to circuit and wire

delays[40].

5. Better composability and modularity, because of the simple

handshake interfaces and the local timing [36].

6. No clock distribution and clock skew problems, since there is

no global signal that needs to be distributed with minimal

phase skew across the circuit[37].

 8

Fig 1.2(a) shows synchronous circuit. For simplicity the figure shows a

pipeline, but intended to represent any synchronous circuit. When

designing ASICs using hardware description languages and synthesis

tools, designers focus mostly on tha data processing and assume the

global clock. For example, a designer would express the fact that data

clocked into register R3 is a function CL3 of the data clocked into R2

at the previous clock as the following assignment of variable: R3 : =

CL3(R2). Figure 1.2(a) represents this high-level view with a universal

clock.

When it comes to physical design, reality is different. Today’s ASICs

use a structure of clock buffers resulting in a large number of(possibly

gated) clock signals as shown in Fig. 1.2(b). It is well known that it

takes CAD tools and engineering effort to design the clock gating

circuitry and to minimize and control the skew between the many

different clock signals. In synchronous designs the problem of

guaranteeing the two-sided timing constraints-the set up to hold time

window around the clock edge-in a world that is dominated by wire

delays is not an easy task. The buffer-insertion-and-resynthesis process

that is used in current commercial CAD tools may not converge and,

even if it does, it relies on delay models that are often questionable

accuracy.

 9

Fig. 1.2 (a) A synchronous circuit, (b) a synchronous circuit with clock

drivers and clock gating, (c) an equivalent asynchronous circuit, and

(d) an abstract data-flow view of the asynchronous circuit.

Asynchronous design provides an alternative solution to this

limitation. In an asynchronous circuit the clock signal is replaced by

some form of handshaking between neighbouring registers [4]; for

 10

example the simple request-acknowledge based handshake protocol

shown in Fig. 1.2(c). In the second chapter we look an alternative

handshake protocols and data encoding, but before departing into those

implementation details it is useful to take a more abstract view as

illustrated in figure 1.2(d).

� The data and handshake signals connecting one register to the

next in Fig. 1.2(c) as a “ handshake channel” or “link,”

� The data stored in the registers as tokens tagged with data

values (that may be changed along the way as tokens flow

through combinational circuits), and

� The combinational circuits as being transparent to the

handshaking between registers; a combinatorial circuit simply

absorbs a token on each of its input links, performs its

computation, and then emits a token on each of its output links.

Viewed this way, an asynchronous circuit is simply a static data-flow

structure. Intuitively, correct operation requires that data token flowing

in the circuit do not disappear, that one token does not overtake

another, and that new tokens do not appear out of nowhere. A simple

rule that can ensure this is the following [36]:

A register may input and store a new data token from its predecessor if

its successor has input and stored the data token that the register was

previously holding. [The states of the predecessor and successor

registers are signaled by the incoming request and acknowledge

signals respectively.]

 11

Following this rule data is copied from one register to the next along

the path through the circuit. In this process subsequent registers will

often be holding copies of the same data value but the old duplicate

data values will later be overwritten by new data values in a carefully

ordered manner, and a handshake cycle on a link will always enclose

the transfer of exactly one data-token. Understanding this “token flow

game” crucial to the design of efficient circuits, and we will address

these issues, extending the token-flow view to cover structures other

than pipelines.

An important thing is that the “handshake-channel and data-token

view” represents a very useful abstraction that is equivalent to the

register transfer level (RTL) used in the design of synchronous circuits

[47]. This data-flow abstraction, as we call it, separates the structure

and function of the circuit from the implementation details of its

components.

Another important consideration is that it is the handshaking between

the registers that controls the flow of tokens, whereas the

combinatorial circuit blocks must be fully transparent to this

handshaking. Ensuring this transparency is not always trivial; it takes

more than a traditional combinational circuit, so we will use the term

“function block’ to denote a combinational circuit whose input and

output ports are handshake-channels or links. The synchronous circuit

shown in Fig. 1.2(b) is “controlled” by clock pulses that are in phase

with a periodic clock signal, whereas the asynchronous circuit in Fig.

1.2(c) is controlled by locally derived clock pulses are generated

where and when needed. This tends to randomize the clock pulses over

time, and is likely to result in less electromagnetic emission and a

 12

smoother supply current without the large di/dt spikes that characterize

a synchronous circuit.

we consider an approach of asynchronous ALU design to reduce the

transistors count, power consumption and delay. We propose the

application of delay insensitive dual rail logic and bundled data

bounded delay model in our design. Since the proposed approach will

have the all advantages of asynchronous circuit earlier discussed will

be very useful in power consumption and occupying less space with

average delay in battery operated devices.

1.2 Brief Overview of our Work

 In the present work, we consider an approach of asynchronous ALU

design to reduce the transistors count, power consumption and delay.

We propose the application of delay insensitive dual rail logic and

bundled data bounded delay model in our design. To achieve higher

performance and lower power operation, we design the circuits with

CMOS domino logic. The use of domino logic reduces the transistor

count, parasitic capacitances and ensures glitch-free circuit. The Muller

C-element and Four-Phase Dual Rail Protocol are used for the

completion detection.

 This design uses conventional CMOS domino logic since its

implementation supports the glitch free circuit and the capacitance of

its output node is separating by interval and load capacitance [2]. Also

it ensures the lower power consumption by reducing the parasitic

capacitances and transistor count. Asynchronous circuits are

fundamentally different from the synchronous counterpart and use

 13

handshaking among components to perform the necessary

synchronization, communication and sequencing of operations. The

handshaking implementation may follow any one of these protocols, 4-

phase bundled data, 2 –phase bundled data or 4-phase dual rail. In all

protocols, Muller pipeline is used. The 4-phase dual rail has designed

to combine encoding of data and request. We apply it in our circuit,

because 4- phase dual rail protocol provides reliable synchronization,

lower power consumption with simple and faster signal transition than

2-phase model [9].

 The asynchronous ALU is implemented with 4-phase dual rail

protocol and CMOS domino logic for single bit operation. The 32 bit

ALU can be extended on concatenation of the same circuit with 32

blocks. The completion detection circuit detects each operation

completion and sends back the necessary acknowledge signal. The

power is consumed only at the time operation only, which is unique

advantage of our asynchronous design than synchronous using master

clock [43].

1.3 Organization of the Thesis

The design architecture and results are presented in the dissertation in

the following five chapters.

Chapter 1: Motivation and a brief overview of our work is

presented.

Chapter 2: Introduction to asynchronous design methodologies,

designing the low power circuits and C-Muller

pipelines.

Chapter 3: We consider our work to design an efficient

asynchronous VLSI architecture design of low power

ALU with four-phase dual rail protocol.

 14

Chapter 4: In this chapter, simulation results through SPICE design

tool are reported and compared with other published

works.

Chapter 5: Summary of the work and future scope to extend our

work is given.

 15

Chapter 2

CMOS logics and Asynchronous Design
Methodologies

In this chapter, we are discussing about the fundamentals of CMOS

logic design styles namely static and dynamic CMOS design followed

by the Asynchronous design methodologies available in detail. Our

proposed Asynchronous ALU circuit is following the dynamic domino

CMOS logic and 4-phase dual-rail protocol among the different logic

styles available. Also in the final part of this section, the base of any

asynchronous circuit C-Muller element and its pipeline, the 4-phase

dual rail pipeline follows that are discussed.

2.1 Static CMOS

Although static CMOS logic is widely used for its high noise margins

and relative ease of design, it is limited at running extremely high

clock speeds. For applications requiring the fasted circuit speeds

possible, dynamic CMOS logic has numerous advantages over static

CMOS including not only higher speeds but also significantly reduced

surface area. The advantages do not come without a cost however. Due

to the nature of dynamic CMOS logic, undesired effects can occur

within the circuit unless extra effort is put into the engineering design.

Understanding the basic principles of Dynamic CMOS logic begins

with first an understanding of the basic properties of MOSFET devices

as well as the characteristics of static and pseudo-NMOS logic [23].

Due to the internal structure of MOSFET devices, an effective

capacitance can be associated across all possible terminal

 16

combinations of the gate, drain, source, and body. When charge is

applied to these capacitances, the corresponding terminal voltage rises,

and when the charge is removed, the terminal voltage decays just as if

the terminal were modeled as a capacitor. Modeling the MOSFET

terminals as capacitors is useful to explain the voltages and currents

associated with the MOSFETs in a complex circuit. MOSFETs are

characterized by the three modes of operation: Cutoff, Linear, and

Saturated [27].

However, since current flows through the device for both the linear

and saturated modes, it is useful to consider the MOSFET as ON in

this conducting state or OFF when no current flows. For an NMOS, or

n-channeled MOSFET, the device is only ON when the gate to source

voltage, VSG, is greater than the device threshold voltage, VT.

For a PMOS, or p-channeled MOSFET, the device is only ON when

the source to gate voltage, VSG, is greater than the negative device

threshold voltage, - VT. For the purposes of this analysis, the input to

the gates of the MOSFETs will either be high or low, VDD or GND,

respectively. Therefore, if the PMOS source is connected to VDD, the

PMOS will only be ON if the gate voltage is low. Likewise, if the

NMOS source is connected to GND, the NMOS will only be ON when

the gate voltage is high. Observing how the NMOS and PMOS work

in conjunction to form the CMOS inverter circuit, Fig. 2.1, is a useful

example to understand how these devices might be used in more

complex circuitry.

 17

Fig.2.1 CMOS inverter circuit

When the input is low, the PMOS turns ON and the NMOS turns OFF.

The output is simultaneously cut off from GND and charged high due

to the ‘pull-up’ path to VDD through the PMOS. Conversely, when the

input is high, the PMOS turns OFF and the NMOS turns ON resulting

in a ‘pull-down’ path to GND while the connection to VDD is cutoff.

When utilized in this fashion, the NMOS device is considered a ‘pull-

down’ device, and the PMOS is considered a ‘pull-up’ device [23].

Fig.2.2 CMOS inverter Circuits in stages

 18

By connecting the output of this circuit to the input of similar logic,

the voltage and current characteristics can be determined by

considering the capacitive effects associated with the input of this

second stage. As shown in Fig. 2.2, a low input to the CMOS inverter

charges the input of the second stage high due to the current from VDD

flowing out of the first-stage PMOS. A high input to the inverter

removes any charge at the input of the second stage through the

NMOS of the first stage.

Fig.2.3 CMOS tristate inverter

The capacitive effects of the MOSFET terminals can also be used to

store charge across the terminals temporarily. Consider the tristate

inverter in Fig. 2.3. When VPEN and VNEN are low (note VPEN is

inverted), Vout is disconnected from both VDD and GND leaving Vout

floating. In this ‘Z-state,’ Vout must retain its previous voltage level.

Ideally, any charge associated with the Z-state would remain across

the terminals of the MOSFET indefinitely; however, due to parasitic

 19

charge leakage, an originally high voltage in the output Z-state will

decay to zero with time. If the system were run at speeds higher than

the time needed for the leakage current to cause a logic error, the

characteristics of the output Z-state can be utilized to vastly increase

circuit speeds. This is the essence of dynamic CMOS.

Although there are many positive reasons for using static CMOS logic,

there are also numerous drawbacks. Static devices inherently have

more components and clocked transistors than dynamic devices. A full

latch for example in the traditional static configuration may require 66

transistors [21]. A dynamic configuration performing the same

function may require only 36 transistors [21]. The number of

transistors used to construct a flipflop is also significantly reduced by

using dynamic logic as opposed to fully static logic. Reducing the total

number of transistors not only allows the overall device to be

significantly smaller, but also reduces the power requirements of the

system [20].

Most of the disadvantages of using static CMOS, however, are

associated with the use of PMOS. Caused in part because hole

mobilities are significantly slower than electron mobilities, PMOS

devices must be much larger than NMOS devices for the two to have

the same ability to transport a fixed amount of charge during a fixed

time interval. The larger surface area needed to form a PMOS device

than an NMOS device is not only a detriment to the overall chip size,

but also increases the capacitance associated to the PMOS device. The

larger capacitance and slower carrier mobilities associated with PMOS

cause a greater time delay for the PMOS to charge up the capacitor

associated with the next logic stage. This increased time delay

 20

becomes a bottleneck when trying to design faster circuits. In standard

CMOS logic, one PMOS device will always compliment an NMOS

device. Altering this logic so that fewer PMOS devices are needed will

vastly improve circuit performance.

One method to decrease the number of PMOS devices in the circuit is

to use what is called pseudo-NMOS logic. Instead of using one PMOS

for every NMOS device, pseudo-NMOS logic utilizes only one PMOS

device as a load to all other NMOS logic as shown in Fig.2.4.

Fig. 2.4 pseudo- NMOS logic

Since the voltage at the gate of the PMOS is always GND, the PMOS

device is always ON. The output then of the pseudo-NMOS circuit is

selectively discharged to GND through the NMOS logic block. Since

the NMOS devices in the ON state forms a pull-down path to GND

and the PMOS device is always ON, there will be times during circuit

operation where a path is formed from VDD to GND. The pseudo-

NMOS logic must be ratio sensitive so as to minimize the loss in

power dissipation. In other words, the PMOS must be ‘weak’ or small

so as to have less capacitance associated with the device. In this

 21

configuration, the charge will be pulled up much more slowly by the

PMOS than it can be discharged through the NMOS devices. In this

way, a pull-down path to ground through the NMOS logic block

should easily pull down the output. When no pull-down path to ground

exists via the NMOS logic, the output is then pulled high through the

PMOS load. Although pseudo-NMOS logic can be utilized to reduce

the number of PMOS components in the system, not only does the

static power dissipation serve as a detriment, but the speed of the

circuit is limited by the time necessary for the weak PMOS to charge

up the output node [27].

2.2 Dynamic CMOS

 An alternative logic that reduces the number of PMOS devices

while also solving most of the problems associated with pseudo-

NMOS logic is dynamic CMOS. The basic structure of dynamic

CMOS logic is shown in Fig. 2.5.

Fig. 2.5 Basic Structure of dynamic CMOS logic.

 22

When the clock is low, the NMOS device is cut off while the PMOS is

turned ON. This has the effect of disconnecting the output node from

ground while simultaneously connecting the node to VDD. Since the

input to the next stage is charged up through the PMOS transistor

when the clock is low, this phase of the clock is known as the

‘precharge’ phase. When the clock is high however, the PMOS is

cutoff and the bottom NMOS is turned ON, thereby disconnecting the

output node from VDD and providing a possible pull-down path to

ground through the bottom NMOS transistor. This part of the clock

cycle is known as the ‘evaluation’ phase, and so the bottom NMOS is

called the ‘evaluation NMOS.’ When the clock is in the evaluation

phase, the output node will either be maintained at its previous logic

level or discharged to GND. In other words, the output node may be

selectively discharged through the NMOS logic structure depending

upon whether or not a path to GND is formed due to inputs of the

NMOS logic block [23]. If a path to ground is not formed during the

evaluation phase, the output node will maintain its previous voltage

level since no path exists from the output to VDD or GND for the

charge to flow away.

As an example, the Pseudo-NMOS circuit shown in Fig. 2.4 can be

made into a dynamic logic structure by adding an evaluation NMOS

and connecting it to a clock with the PMOS as shown in Fig. 2.6.

 23

Fig. 2.6 example for dynamic CMOS logic

During the precharge phase, the output is pulled high through the

PMOS in the ON state. When the clock goes high in the evaluation

stage, the output will be data-dependent. If the input signals A AND B

are high OR if C is high, a path to ground through the evaluation

NMOS will be formed and the output node will be pulled low. If these

conditions are not met, then the output will remain high. Regardless of

the resultant logic level of the output node at the end of the evaluation

phase, the output node will be pulled high again when the clock goes

low for the next precharge phase.

There are many advantages of using dynamic CMOS logic over static

CMOS logic or Pseudo NMOS logic. The elimination of the

complimentary PMOS transistors significantly reduces the transistor

count needed to implement the various logic functions not only

because the number of transistors is nearly half, but because the

physical size of the PMOS transistors tend to be much larger than the

size of an NMOS transistor. The switching speeds are also increased

 24

using the dynamic logic configuration since the speed bottleneck

caused by the lengthier time the PMOS requires to pull-up the output

node is eliminated. Since this node is already precharged high through

the PMOS during the precharge phase, the output node needs only to

be selectively discharged during the evaluation phase. Discharging the

output node through the NMOS devices is significantly faster than the

time needed to charge up the output node through the PMOS device

[22].

Although increased speed over static or Pseudo NMOS logic is a

significant achievement in the dynamic logic, there are several

potential problems with the implementation of this design that need to

be considered. Since the basic dynamic CMOS logic configuration

causes the output node to be disconnected from VDD during the

evaluation phase, even if the output is also disconnected from GND,

the charge of the output node will begin to diminish due to the non-

ideal effects of the system. Parasitic capacitances, for example, may

leak the charge away from the output node and eventually cause a

logic error [8]. Since there is, however, a finite time needed for the

charge to erroneously escape, the use of faster the clock speeds will

eliminate this kind of error. This implies however, that there is a

minimum clock speed at which dynamic CMOS logic structures may

be operated. It also eliminates the possibility to idle the basic dynamic

CMOS logic circuit.

These drawbacks however, are not without a solution. In many cases,

the specifications of the system do not require the circuit to ever idle

or run at relatively slow clock speeds. In these cases, the fastest clock

speed is desired, making the minimum clock speed of the dynamic

 25

Fig. 2.7 Dynamic CMOS logic structure for minimum clock speed

logic configuration a non-issue [13]. In other cases, some of the static

benefits can be introduced to the dynamic logic configuration with the

addition of a ‘weak’-PMOS device added between the output node and

VDD as shown in Fig. 2.7. If the gate is connected to GND, this PMOS

device will always be turned ON. Then, even in the evaluation phase,

the output node will be connected in some capacity to VDD. This

PMOS, the ‘keeper,’ has the effect of maintaining the output node

charge even at slower clock speeds. The keeper transistor is designed

to be weak enough so that a path to GND through the NMOS logic

block during the evaluation phase will significantly overpower the

effects of the keeper PMOS and easily pull the output node to GND.

Although this configuration has advantages, it does introduce another

PMOS device into each stage and also causes excess power dissipation

due to possibility of the connection from VDD to GND through the

NMOS devices and the PMOS keeper. When such a circumstance

occurs, the NMOS and PMOS must ‘fight’ each other to pull-up or

pull-down the output through VDD or GND respectively, and power is

lost. For high-performance circuits, an alternative is clearly needed .

 26

Fig. 2.8 Latching of weak PMOS in dynamic logic

The use of a keeper PMOS in dynamic logic could be further

improved by connecting the gate of the keeper not to GND, but to the

output node of the inverter stage as shown in Fig. 2.8. The keeper

would now function as a latch cutting off whenever the output of the

inverter is high. In this way, power dissipation is significantly reduced

whenever a pull-down path to GND has been formed in the NMOS

logic block since this would make the input to the inverter low and

thus the output of the inverter high. When the output of the inverter is

low however, as would be the case if no pull-down path to ground was

formed in the NMOS logic block, the keeper PMOS would turn on and

maintain the output high charge on the precharge node even at reduced

clock speeds or an idle [17].

Other characteristics of dynamic CMOS logic that must be

taken into consideration when designing dynamic logic are the

problems that can occur when cascading the dynamic logic blocks

[25]. Due to the finite pull down time of the NMOS logic block,

during the very first portion of the evaluation phase, the output will

always register an output high state for at least a brief moment in time

before the output charge can be removed via the pull-down path to

GND. This is considered a ‘racing’ problem since the logic is

evaluated correctly only when the time to pull down the output node is

 27

faster than the time needed for the briefly high output caused by the

precharge phase to propagate as an erroneous logic signal to the next

stage. Since the output node of one dynamic CMOS logic block is

connected to an input of the next dynamic CMOS stage, an output high

state however brief could complete a pull-down path to GND in the

following stage and erroneously cause a discharge in the output of this

next stage. Since the charge on the output node cannot be recovered

until the next precharge phase, the logic error would remain and

propagate through the system. Dynamic CMOS logic blocks should

therefore not be directly cascaded. Note that care must also be taken to

insure that the input logic signals to the NMOS logic block are correct

and stable for the complete duration of the evaluation stage or a similar

logic error could occur [17].

2.2.1 Domino Logic

The errors occurring due to cascaded dynamic logic blocks can be

overcome by adding an inverter stage between the output of one stage

and the input of another as in Fig. 2.9.

Fig. 2. 9 Dynamic CMOS domino logic structure

 28

This inverter then would start out low at the very beginning of

the evaluation phase. The output low state of the inverter would cutoff

the NMOS logic gates in the next stage preventing any erroneous pull-

down path. If a pull-down path is formed by the NMOS logic block of

the first stage, the output of the inverter buffer would conditionally

charge from low to high. Only if the inputs to the first stage NMOS

logic block warrant a discharge of the output node would the output

inverter make the low to high transition. When the output of this

inverter buffer goes high, the following stage of NMOS logic would

conditionally form a pull-down path to ground. In this way, the

addition of the inverter buffer eliminates any logic errors caused by the

finite pull-down time of the NMOS logic block. This kind of design is

referred to as Domino Logic since the pull-down of one stage can

conditionally cause the pull-down of succeeding stages and so on like

falling dominoes [26].

The number of Domino logic stages that may be cascaded is

limited only by the sum of the total pull-down times in all cascaded

logic blocks, which must be contained within the evaluation clock

phase. Drawbacks to this design are of course the addition of two

additional components to each dynamic block. Extra design

consideration must also be observed when using dynamic CMOS logic

blocks in conjunction with static CMOS logic blocks. Since the final

output to the Domino logic blocks is the inverted form of the original

output due to the additional inverter buffer stage, only non-inverting

logic may be used between the output and input of dynamic logic. That

is, since the inverter must make only one conditional state change from

logic low to high (not high to low) during the evaluation phase only an

 29

even number of static logic blocks may be used in between dynamic

logic blocks [24].

2.2.2 NORA Logic

An alternative to Domino Logic is NORA or Domino-Zipper

Logic. NORA stands for ‘no-race,’ indicating another method to

eliminate the ‘racing’ problem of directly cascaded dynamic logic

blocks. Fig. 2.10 depicts the basic structure of NORA logic which is

characterized by alternating the MOSFETs in the logic block from

PMOS to NMOS logic gates and so on. Note that the function of the

clocked n- and p- FETs in the PMOS logic stage are reversed

compared to the NMOS logic stage [23].

Fig. 2.10 Dynamic CMOS NORA logic structure

Although this structure eliminates the cascading problem, the excess

use of PMOS in forming the logic gates reduces the maximum

clocking speed and increases the surface area of the system. For this

reason, it is preferable to use only the NMOS for the logic gates and

leave the PMOS as precharge elements. Further design considerations

for NORA logic are needed when combining the dynamic NORA

 30

blocks with static blocks. As observed with Domino Logic, the output

may only be allowed to change from low to high once during the

evaluation phase of the NMOS logic and visa-versa for the PMOS, so

only an even number of static blocks may be used in between two of

the dynamic blocks.

Fig. 2.11 clock skew representation

Another significant drawback to this configuration is the use of the

two-phase clock. For a circuit operating at high speeds, the clock

characteristics become increasingly important. The signals of both

clock phases must be delivered at nearly the same instant for the

circuit to operate correctly. Routing a one phase clock to the millions

of circuit elements such that the delay is minimized is a challenging

design issue in and of itself. Routing a second clock phase to a similar

quantity of circuit elements such that the delay is minimized compared

not only to itself, but to the first clock phase becomes a serious

problem. The time delay between the first and second clock phase is

known as clock skew. The presence of clock skew in a circuit reduces

the maximum operation speed of that circuit, since the logic cannot be

correctly evaluated during this delay time [8]. Clock skew, as shown in

Fig. 2.11, can be eliminated by using only one clock phase.

 31

2.3 Handshake Basics

In Fig 1.2(c) one particular handshake basic protocol has been

explained, known as the 4-phase bundled-data protocol also called as

return-to-zero handshake protocol [4]. The below sections explain the

basic principles for designing the handshaking (asynchronous) circuits.

2.3.1 Principles of Bundled-data protocols

In bundled data protocols the data signals use normal Boolean levels to

encode information and separate request and acknowledge wires are

bundled with the data signals. In Fig. 2.12, a bundled data channel is

shown in which data is bundled with request and acknowledge wires.

Fig.2.12 A bundled-data channel

The 4-phase protocol is illustrated in Fig. 2.13. Here the request and

acknowledge wires use normal Boolean levels to encode information,

and the term 4-phase refers to the number of communication actions

[4]:

 32

Fig.2.13 A 4-phase bundled-data protocol

(1) the sender issues/sends Data and sets Req High,

(2) the receiver absorbs/receives the Data and sets Ack High,

(3) the sender responds by taking Req Low and

(4) the receiver acknowledges this by taking Ack Low.

 The sender may initiate the next communication cycle once all above

4 phases are over.

Fig.2.14 A 2-phase bundled data protocol.

The 2-phase bundled data protocol is shown in Fig. 2.14. The

information on the request and acknowledge wires is now encoded as

signal transitions on the wires and there is no difference between a 0 to

1 and a 1 to 0 transition, they both represent a “signal event”. Ideally

the 2-phase bundled-data protocol should lead to faster circuits than

the 4-phase bundled-data protocol, but often the implementation of

circuits responding to events is complex [54].

 33

 The term ‘bundled data’ hints at the timing relationship

between the data signals, whereas the term ‘single rail’ hints at the use

of one wire to carry one bit of data [58]. The protocols introduced

above all assume that the sender is the activity party that initiates the

data transfer over the channel. This is known as a push channel. The

opposite, the receiver asking for new data, is also possible and is called

a pull channel. In this case the directions of the request and

acknowledge signals are reversed, and the validity of the data is

indicated in the acknowledge signal going from the sender to receiver.

In the abstract diagram, the active end of the channel is marked with a

dot.

2.3.2 4-phase dual-rail protocol

The 4-phase dual rail channel is shown in Fig.2.15.In this handshake

protocol, it encodes the request signal into the data signal by using 2

wires per bit of information that is to be communicated. This 4-phase

dual-rail protocol uses two request wires per bit of information a;

Fig.2.15 The 4-phase dual rail channel

one wire a.t is used for signaling a logic 1(true), and another wire a.f is

used for signaling logic 0(false). Thus in this 1 bit channel one can

understand a cycle of 4-phase handshakes in which the “request”

signal in any handshake cycle can always be at either a.t or a.f. Due to

 34

its robustness and delay insensitive nature, two parties thus can

reliably do communication regardless of delays in the wires

connecting the two parties [49].

Fig.2.16 The 4-phase dual rail protocol handshaking

For an information a, the {a.f,a.t} wire pair is a codeword;

{a.f,a.t}={1,0} and {a.f,a.t}={0,1} represents “valid data” (logic Low

and logic High respectively) and {a.f,a.t}={0,0} represents “empty”

(“no data” or “NULL”). The codeword {x.f,x.t}={1,1} is not used ,

and here the important is a transition from one valid codeword to

another valid codeword is invalid and not allowed. Fig. 2.16 illustrates

this protocol operations. Now, one can understand the 4-phase

handshaking [56]:

(1) the sender issues/sends a valid,

(2) the receiver absorbs/receives the codeword and sets the Ack. High,

(3) the sender responds by issuing the empty codeword, and

(4) the receiver acknowledges this by taking acknowledge Low.

Next communication cycle starts after this above cycle. In the abstract

view, the channel is a data stream of valid codewords separated by

empty codewords.

 35

Thus, an N-bit data channel is done by concatenating N wire pairs,

each using the encoding description above and a receiver which

always be able to detect when all bits are valid i.e by it responds by

giving acknowledge high. Also the receiver responds by giving

acknowledge low for the condition when all bits are empty. The dual

rail code has following unique properties [59]:

(1) concatenation of dual-rail codewords is also a dual-rail codeword.

(2) the set of all possible codewords can be disjointly divided into 3

sets, for a given N number of bit,

 (a) the empty or null codeword where (all N)wire pairs are {0,0}.

 (b) the intermediate codewords where some wire-pairs assume the

empty state and some wire pairs assume valid data(as protocol

definition).

 (c) 2N different valid codewords.

Fig. 2.17. Illustration of 4-phase dual-rail channel handshaking

Simple illustration of the handshaking of an N-bit channel is

shown in Fig. 2.17. At receiver end one will see the empty codeword,

 36

a sequence of intermediate codewords and eventually a valid

codeword. On reception and acknowledging the codeword, the

receiver will see a sequence of intermediate codewords, and eventually

the empty codeword to which the receiver responds by setting

acknowledge low and the cycle will move on.

2.3.3 2-phase dual-rail protocol

In this 2-phase dual-rail protocol just like 4-phase dual-rail protocol, it

also uses 2 wires {a.t,a.f }per bit to communicate, but the information

is encoded as transitions(events).In an N-bit channel a new codeword

will be received if exactly one wire in each of the N wire pairs has

made a transition(event). If there is no empty value then a valid

message is acknowledged and followed by another message that is

acknowledged. The below Fig. 2.18. shows simple illustration of the

signal waveforms on a 2-bit channel for the 2-phase dual-rail protocol

[4].

Fig. 2.18. Illustration of 2-phase dual-rail protocol handshaking

2.4 Indication Principle and the Muller C-element

 37

 In synchronous circuits, valid and stable signals found at every

clocking points. But in between the clock-ticks, the signals may not be

stable and usually exhibits hazards and may make multiple transitions

as the combinational circuits stabilize. But in the case of asynchronous

circuits there is no clock.

Fig. 2.19 OR gate

 Table 2.1. Truth table-OR gate

Thus the signals should be valid all the time and every signal transition

should have a meaning. Consequently those hazards and races during

the transitions must be avoided. Hence the concept of indication or

acknowledgement plays vital role in designing asynchronous circuits.

The simple 2-input OR gate and truth table are shown in Fig.2.19 and

Table 2.1, respectively.

On observing the output change from 1 to 0 one may conclude that

both inputs are now at 0. However, when seeing the output change

from 0 to 1 the observer is not able to make conclusions about both

inputs. The observer only knows that at least one input is 1, but it does

not know which. So the OR gate only indicates or acknowledges when

both inputs are at 0. Through similar arguments it can be seen that an

AND gate only indicates when both inputs are 1. Signal transitions that

are not indicated or acknowledged in other signal transitions are the

a b y

0 0 0

0 1 1

1 0 1

1 1 1

 38

source of hazards and should be avoided. A circuit that is better in this

respect is the Muller C-element [53].

Fig. 2.20 Muller C-element symbol and implementation with

specification

The Muller C-element is a state-holding element much like an

asynchronous set-reset latch [4] shown in Fig. 2.20. When both inputs

are 0 the output is set to 0, and when both inputs are 1 the output is set

to 1. For other input combinations the output does not change.

Consequently on observing one can see the output change from 0 to 1

may conclude that both inputs are now at 1; and similarly, an observer

seeing the output change from 1 to 0 may conclude that both inputs are

now 0. Combining this with the observation that all asynchronous

circuits rely on handshaking [30] that involves cyclic transitions

between 0 and 1, it is understood that the Muller C-element is indeed a

fundamental component that is extensively used in asynchronous

circuits.

2.5 Design of Muller Pipeline

The Muller pipeline or Muller distributor is shown in Fig. 2.21.

It is a circuit that is built from C-elements and inverters. Simple

variations and extensions of this circuit form the (control) backbone of

 39

almost every asynchronous circuits. It may not always be obvious at a

first glance, but if one strips off the cluttering details, the Muller

pipeline [34] is always there as the crux. This muller pipeline circuit

has a peculiar beautiful and symmetric behaviour. The Muller pipeline

in Fig 2.21 is a mechanism that relays handshakes. After all of the C-

elements have been initialized to 0 the left environment may start

handshaking. Lets consider the ‘i’th C-element, C[i]: It will propagate

(i.e input and store) a 1 from its predecessor, C[i-1], only if its

successor, C[i+1], is 0. In the same way, it will propagate a 0 from its

predecessor if its successor is at 1.

Fig 2.21 Illustration of Muller pipeline

 It is often useful to think of the signals propagating in an

asynchronous circuit as a sequence of waves, as illustrated at the

bottom of Fig. 2.21. Viewed this way, the role of a C-element stage in

the pipeline is to propagate crests and troughs of waves in a carefully

controlled way that maintains the integrity of each wave [4].

 40

In all interface between C-element pipeline stages one can see

correct handshaking, but the timing may differ from the timing of the

handshaking on the left hand environment; once a wave has been

injected into the Muller pipeline it will propagate with a speed that is

determined by actual delays in the circuit. Eventually the first

handshake (request) injected by the left hand environment does not

respond to the handshake, the pipeline will eventually fill. If this

happens the pipeline will stop handshaking with the left environment-

the Muller pipeline behaves like a ripple through FIFO[55] [58].

The Muller pipeline has a set of beautiful symmetries. First, it’s

the same circuit and it does not matter whether one uses a 2-phase or

4-phase handshaking. The difference is in how one interprets the

signals and uses the circuit. Second, the circuit operates equally well

from right to left. One may reverse the definition of signal polarities,

reverse the role of request and acknowledge signals, and operate the

circuit from right to left. It is analogous to electrons and holes in a

semiconductor; when current flows in one direction it may be carried

by electrons flowing in one direction or by holes flowing in the

opposite direction. Also, the circuit has the interesting property, the

Muller-pipeline is delay-insensitive and it works correctly regardless

of delays in gates and wires [52].

 2.6 4-Phase Dual-rail Pipeline

The Muller pipeline is the basic for 4-phase dual rail pipeline, but

elaborately it has to do with the combined encoding of data and

request. The implementation of a 1-bit wide and three stage deep

 41

pipeline without data processing is shown in fig. Fig.2.22. As per

circuit, it can be understood as two Muller pipelines connected in

parallel, using a common acknowledge signal (Ack) per stage to

synchronize operation. The pair of C-elements in a pipeline stage can

Fig 2.22 Simple 1-bit wide 3-stage 4-phase dual-rail pipeline

store the empty codeword {d.t,d.f}={0,0}, causing the acknowledge

signal out of that stage to be 0, or it can store one of the two valid

codewords {0,1} and {1,0}, causing the acknowledge signal out of that

stage to be logic 1. Since the codeword {1,1} is illegal and does not

occur, the acknowledge signal generated by the OR gate safely

indicates the state of the pipeline stage as being “valid” or “empty” [4]

[6]. So it is understood that an N-bit wide pipeline can be implemented

by using a number of 1-bit pipelines in parallel. But this does not

guarantee to a receiver that all bits in a word arrive at the same time

and often the necessary synchronization is done in the function blocks.

The individual acknowledge signals can be combined into one global

acknowledge using a C-element for the need of bit-parallel

synchronization.

 42

Chapter 3

Architecture and Implementation of ALU

We have discussed so far about the importance efficient low

power design by asynchronous technology for portable battery devices

and motivation of our work in chapter one and the second chapter dealt

about implementing styles of low power and asynchronous design

methodologies. In this section, we are discussing about the

fundamental features, building blocks and the completion detection of

asynchronous circuits[16] architecture and implementing the

architectures through the basic C-Muller element.

3.1 Speed-independence basics

On reviewing the basics of Muller’s model of a circuit and the

conditions for it being independent, a circuit is modeled along with its

environment as a closed network of gates, closed meaning that all

inputs are connected to outputs and vice versa. In this circuit design all

the gates are modeled as Boolean operators with arbitrary non-zero

delays with wires as ideal [31]. Here in this environment the circuit

can be described as a set of concurrent Boolean functions, for every

gate output. Hence the state of the circuit is the set of all gate outputs.

In Figure 3.1, it is illustrated Muller pipeline with an inverter

and a buffer performing the handshaking behaviour of the left and

right environments. A gate whose output is consistent with its inputs is

defined to be stable; also its “next output” is the same as its “current

output”, zi
�= zi . A gate whose inputs have changed in such a way that

 43

an output change is called for is said to be excited; its ‘next output” is

different from its “current output”, i.e zi
�

 � zi . After an arbitrary delay

an excited gate may spontaneously change its output and become

stable with new output values, other gates in turn become excited etc.

Fig 3.1 Muller Model of a Muller pipeline stage with dummy gates

 modelling

On illustrating this, with the circuit in Fig.3.1 is in state

(ri,yi,ci,ai+1) = (0,1,0,0). The inverter ri gets excited corresponding to

the left environment being about to take request high in this state.

After the firing of ri ✁ the circuit reaches state (ri,yi,ci,ai+1) = (1,1,0,0)

and ci now becomes excited. In order to synthesis and analysis one can

construct the complete state graph representing all possible sequences

of gate firings. Generally it is possible that several gates are excited at

the same time in a given state. If one of these gates, say zi, fires the

interesting thing is what happens to the other excited gates which may

have zi as one of their inputs: they may remain excited, or they may

find themselves with a different set of input signals that no longer calls

for an output change. Generally a circuit is said to be speed-

independent if the latter never happens. The practical implication of an

excited gate becoming stable without firing is a potential hazard. Since

delays are unknown the gate may or may not have changed its output,

or it may be in the middle of doing so when the ‘counter order’ comes

 44

calling for the gate output to remain unchanged. Because of the model

involves a Boolean state variable for every gate and for each wire

segments in the case of delay-insensitive circuits even for very simple

circuits the state space becomes very large. Now, we have a model for

describing and reasoning about the behaviour of gate-level circuits in

the following section.

3.2 Asynchronous Circuits- A brief classification with delay

Asynchronous circuits are classified as self-timed, speed-

independent or delay-insensitive depending on the delay assumptions

that made in the gate level. The Fig. 3.2 shows three gates: A, B, and

C. The output signal from gate A is given as input signal on gates B

and C. A speed-independent circuit as introduced above is a circuit

that operates “correctly” assuming positive, bounded but unknown

delays in gates and ideal zero-delay wires. On referring to this Fig.3.2 ,

this means arbitrary dA , dB , and dC, but d1 = d2 = d3 =0 . On assuming

ideal zero-delay wires is not realistic in semiconductor processes. So

by keeping arbitrary d1 and d2 and by requiring d2=d3 the wire delays

Fig. 3.2 A circuit part with gate and wired delays

 45

with gates, but theoretically the circuit is speed-independent [52] one.

Asynchronous circuit which operates correctly with positive,

bounded but with unknown delays in wires as well as in gates in delay-

insensitive (DI), on referring to above Fig. 3.2 this means arbitrary dA ,

dB , dC, d1, d2, and d3. These kind of circuits are always very robust. One

of the ways to show that any circuit is delay-insensitive is to use

Muller model of the circuit where wire segments are modeled as buffer

components. If this equivalent circuit model is speed-independent,

then usually the circuit is delay-insensitive. But the class of delay-

insensitive circuits is rather small unfortunately. As mentioned earlier,

only circuits composed of C-element and inverters can be delay-

insensitive and the Muller pipeline in chapter two and in Fig. 3.2 is

one important example. The circuits that are delay-insensitive with the

exception of some carefully identified wire forks where d2 = d3 are

called often as quasi-delay-insensitive (QDI). Such wire forks, where

signal transitions occur at the same time at all end-points, are called

isochronic [55] [4].

These isochronic forks are used to found in gate-level

implementations of basic building blocks for the designer can able to

control wire delays. In high level of abstraction the composition of

building blocks usually is delay-insensitive. Now it is clear that

difference between DI, QDI and SI. Since the class of delay-

insensitive [57] circuits is very small, basically excluding all circuits

that compute, most circuits that are referred to in the literature as

delay-insensitive are only quasi-delay-insensitive.

 46

3.3 Isochronic forks

From the classification above one can understand that the

specific difference between speed-independent circuits and delay-

insensitive circuits relates to wire forks and, more specifically, to

whether the delays to all end-points of a forking wire are identical or

not. If the delays are identical, the wire-fork is called isochronic. The

need for isochronic forks is related to the concept of indication

principle defined in chapter 2 with Muller C-element and indication.

On viewing the situation in Fig. 3.2 where gate A has changed its

output. Eventually this change in gate A output is observed on the

inputs of gates B and C, and after sometime gates B and C may

respond to the new input by responding a new output. If this sequence

happens one can say that the output change on gate A is indicated by

output changes on gates B and C. On the other hand, if only gate B

responds to the new input and it is not possible to establish whether

gate C has seen the input change as well. Then in this particular case it

is necessary to strengthen the assumptions to d2 = d3 (the fork is

isochronic) and conclude that because the indication of changing

output gate B and C for the input signal change at A.

3.4 Bundled-data circuit relations with speed-independence

Normally the 2-phase and 4-phase bundled-data approaches the

control circuits are speed-independent or in some cases even delay-

insensitive, but the data-path circuits with their matched delays are

self-timed [11]. Circuits designed following the 4-phase dual-rail

approach are generally quasi-delay-insensitive. In the 4-phase dual-rail

pipeline circuits shown in chapter 2, the forks that connect to the

 47

inputs of several C-elements must be isochronic, whereas the forks

that connect to the inputs of several OR gates are delay-insensitive.

The different circuit classes, DI, QDI, SI and self-timed, are

not mutually exclusive ways to build complete systems, but useful

abstractions that can be used at different levels of design. In most

practical designs they are mixed. The choice of handshake protocol

and circuit implementation style is among the factors to consider when

optimizing an asynchronous digital system [46]. It is important to

stress that speed-independence and delay-insensitivity are

mathematical properties that can be verified for a given

implementation. If an abstract component – such as a C-element or a

complex And-Or-Invert gate – is replaced by its implementation using

simple gates and possibly some wire-forks, then the circuit may no

longer be speed-independent or delay-insensitive [7]. As illustrated in

Muller pipelines in chapter 2, it is no longer delay-insensitive if the C-

element is replaced by the gate level implementation which uses

simple AND and OR gates. Furthermore, even simple gates are

abstractions; in CMOS the primitives are N and P transistors, and even

the simplest gates include forks. As SI circuits ignore wire delays

completely some care is needed when physically implementing these

circuits [40].

 In general one might think that the zero wire-delay assumption

is trivially satisfied in small circuits involving 10-20 gates, but this

need not be the case: a normal place and route CAD tool might spread

the gates of a small controller all over the chip. Even if the gates are

placed next to each other they have different logic thresholds on their

inputs, which in combination with slowly rising or falling signals can

 48

cause circuits to malfunction. For static CMOS and for circuits

operating with low supply voltages this is less of a problem, but for

dynamic circuits using a larger VDD the logic thresholds can be very

different [35].

3.5 Building Blocks of Asynchronous Circuits

The below is a set of minimum components that is sufficient to

implement asynchronous circuits is shown in Fig. 3.3. These

components can be grouped in four categories as explained below.

3.5.1 Latches

Latches are one of the primary component in building

asynchronous circuits which provides storage for variables and

implements the handshaking that supports the token flow. In addition

to the normal latch a number of degenerate latches (sink) are often

needed; a latch with only an output channel is a source that produce

tokens with the same constant value, and a latch with only an input

channel is a sink that consumes tokens [50]. Fig.2.22 in chapter 2,

explain the implementation of a 4-phase dual-rail latch.

3.5.2 Function blocks

The function blocks are basically the asynchronous equivalent

of combinatorial circuits and which is another main component for

building asynchronous circuits. They are transparent/passive from a

handshaking point of view. A function block will wait for tokens on its

inputs (an implicit join), then perform the required combinatorial

 49

function, and finally issue tokens on its outputs. Both empty and valid

tokens are handled in this way [33]. It may be necessary to use an

explicit join component. Where some implementations assume that the

inputs have been synchronized.

Fig. 3.3 Building blocks for asynchronous circuits

3.5.3 Unconditional flow control

The flow control will be done with Fork and Join components.

Fork and join are used to handle parallel threads of computation. In

technical terms, forks are used in situation where the output from one

component is input to more components, and join are used where data

from several independent channels need to be synchronized-typically

because they are independent inputs to a circuit. But often it is omitted

 50

joins and forks from a circuit diagrams: in short , the fan out of a

channel implies the definition of a fork, and the fan-in of several

channel implies the definition of a join. A merge component generally

has two or more input channels and only one output channel. On the

input channels handshakes are assumed to be mutually exclusive and

the merge relays input tokens/handshakes to the output.

3.5.4 Conditional flow control

MUX and DEMUX are important components which perform

the usual functions of selecting among several inputs or steering the

input to one of several outputs. The control input is a channel just like

the data inputs and outputs available. A MUX will synchronize the

control channel and the relevant input channel and send the input data

to the data output. The other input channel is ignored. Similarly a

DEMUX will synchronize the control and data input channels and

steer the input to be selected output channel [45].

3.6 4-phase dual-rail implementation of basic components

The 4-phase dual-rail implementations of the basic fork, join

and merge components are important to build complex circuits are

shown in Fig. 3.4. For easy understanding in this figure it shows a

simple fork with two output channels and join and merge components

with two input channels for simplicity. Also it is assumed that all

channels are to be 1-bit channels. But of course, it is possible to

generalize to three or more inputs and outputs respectively according

to circuit requirements, and it is possible for extending to n-bit

channels based on requirements [33].

 51

Fig. 3.4 The 4-phase dual rail implementation of fundamental

components

The basic component fork includes a C-element for combining

the acknowledge signals on the output channels into a single

acknowledge signal on the input channel. The basic component join

does not involve any active components as the request signal is

encoded into the data in 4-phase dual-rail design. The particular fork

in figure 4 duplicates the input data, and the join concatenates the

input data. From a control point of view the different alternatives are

identical: a join synchronizes several input channels and a fork

 52

synchronizes several output channels. In the 4-phase dual rail merge

implementation includes C-element and here the request is encoded

into the data signals and an OR gate is used for each of the two-output

signals z.t and z.f. Acknowledge on an input channel 4-phase dual-rail

is produced in response to an acknowledge on the output channel

provided where the input channel has valid data [44] [41].

3.7 Completion detection implementation with Muller C-elements

The Fig. 3.5 shows an N-bit wide latch. The OR gates and the

C-element in the dashed box form a completion detector that indicates

whether the N-bit dual-rail codeword stored in the latch is empty or

valid. The figure also shows an implementation of a completion

detector using only a 2-input C-element.

Fig. 3. 5 Implementation of N-bit latch with completion detection

 53

In combinational circuits the 4-phase dual-rail pipeline is

implemented in such a way that the circuits must be transparent to the

handshaking between latches. Therefore, all outputs of a

combinational circuit must not become valid until after all inputs have

become valid. Otherwise the receiving latch may prematurely set

acknowledge low before all signals from the sending latch have

become empty. Consequently a combinational circuit for the 4-phase

dual-rail approach involves state holding elements and it exhibits a

hysteresis-like behaviour in the empty-to-valid and valid-to-empty

transitions [14] [45].

3.8 Simple AND gate implementation with Muller C-element

 The AND gate is implemented in dual-rail logic with the Muller

C-elements in Fig. 3.6. The circuit may be understood as a direct

mapping from sum-of-minterms expression for each of the two output

wires into hardware and the truth table for this implementation is given

in Table 3.1. The circuit waits for all inputs to become valid. When

this happens exactly one of the four C-elements goes high. This again

causes the relevant output wire to go high corresponding to the gate

producing the desired valid output. When all inputs become empty the

C-elements are all set low, and the output of the dual-rail AND gate

becomes empty again. Note that the C-elements provide both the

necessary ‘and’ operator and the hysteresis in the empty-to-valid and

valid-to-empty transitions that is required for transparent handshaking.

Note also that the OR gate is never exposed to more than one input

signal being high [32].

 54

Table 3.1 Truth table for AND gate implementation

Fig. 3.6 Dual-rail implementation of AND gate with Muller C-element

Other dual-rail gates such as OR and EXOR can be implemented

in a similar fashion, and a dual-rail inverter involves just a swap of the

true and false wires. Given a set of basic dual-rail combinational

circuits [28] [29] for arbitrary Boolean expressions using normal

combinational circuit synthesis techniques. The transparency to

handshaking is a property of the basic gates into larger combinational

circuits. The transistor count in these basic dual-rail gates obviously

high and it can be implemented efficiently with domino logic for

reduced transistor count [53] [46].

 55

3.9 Hybrid Adder Function

The basic structure of hybrid adder is shown in Fig. 3.7. Each full

adder is composed of a carry circuit and a sum circuit. Here the

concept is that the circuits precharged when signal Reqin =0, and in

evaluation state when Reqin =1, able to detect when all carry signals

are valid and use this information to indicate completion as 4-phase

dual-rail protocol, i.e. Reqout �. There will be latency and if the latency

of the completion detection does not exceed the latency in the sum

circuit in a full adder then a matched delay element is needed to design

as indicated in Fig. 3.7. Generally the latency of the completion

detector may significantly exceed the latency of the sum circuit. With

the use of basic Muller C-element this can be implemented and it is

shown in Fig. 3.8 explained below section. The block diagram

presented here shows the N-bit adder 4-phase bundled-data input

output channels with internal dual-rail carry chain [17].

Fig. 3.7 N-bit Adder Block diagram dual-rail implementation

 56

3.10 4-phase dual-rail adder implementation with Muller C-
 element

The implementation of an AND gate is explained in section

3.8. Using the same basic design it is possible to implement every

other gates such as OR, EXOR, etc. An inverter involves no active

circuitry, as it is just a swap of the two wires. By combining gates any

arbitrary functions can be implemented exactly the same way as when

one designs combinatorial circuits for a synchronous circuit. But

essentially the handshaking is implicitly taken care of and can be

ignored when composing gates and implementing Boolean functions.

This has the important implication that existing logic synthesis

techniques and tools may be used, but the basic gates are implemented

differently that is the only difference here.

The 4-phase dual-rail AND gate implementation in section 3.8

is found rather inefficient: In this design there are 4 C-elements and 1

OR gate approximately has 30 transistors which is five greater than a

normal AND gate whose implementation requires only 6 transistors.

But if larger functions are implemented then the overhead can be

reduced. This design is illustrated in fig 3.8. The circuit in fig 3.8 (b) is

look like PLA design and it illustrates a principle for implementing

arbitrary Boolean functions in general. This is implemented in DIMS-

Delay-Insensitive Minterm Synthesis- since the circuits are delay-

insensitive and because the C-elements in the circuits generate all

minterms of the input variables [4]. The truth table have 3 set of rows

 57

specifying the output when the input is different and they are as

follows: set (1): the empty or null codeword to which the circuit

responds by setting the output empty/ null, set (2): no change for an

intermediate codeword which does not affect the data output, set (3): a

valid codeword to which the circuit responds by setting the output to

the proper value for each input.

Table 3.2 Truth table for 4-phase dual-rail adder

Fig. 3.8 4-phase dual-rail adder (a) symbol and (b) implementation

 58

For designing the asynchronous ALU, the basic circuit is to design an

adder. The above Fig. 3.8 shows the implementation of asynchronous

1-bit full adder circuit with C-elements. Fig.3.8 (a) shows the block

level input and output signals. Since it is a 4-phase dual rail protocol,

the information a, b and c uses 2 wires; a.t, b.t and c.t for signaling a

logic 1 and other wires a.f, b.f and c.f for signaling logic 0. The Table

3.2 shows the truth table for this 4-phase dual rail full adder and the

same implemented with C-elements and OR gates, which is shown in

fig. 3.8(b).

3.11 4-phase Dual-rail Dynamic CMOS Asynchronous ALU

Implementation

Using the logics and principles outlined in chapter 2 and above

basic components implementation, we design an ALU at the transistor

level for single bit operation as shown in the Fig. 3.9 to demonstrate

our design concept. A single bit-slice ALU uses only 53 transistors and

its range of operations in Table 3.3. Since we emphasize on the design

of asynchronous component, there is no hardware implementation for

4-phase dual rail with Muller C. However, the proposed circuit

assumes the signaling from such logic blocks. For example, C0out and

C1out act as two wires of 4-phase logic, which makes reliable

operation between its predecessor and successor blocks.

We extend our 1-bit asynchronous ALU to design a 32-bit ALU,

which requires 1696 transistors. The basic principle of Bundled data –

Bounded delay model of Sutherland’s micro pipelines is used here

[12]. The timing characteristics of all data busses of this architecture

are bundled together. The statuses of the data busses are indicated

 59

(acknowledged) by 4 phase-dual rail handshake signals. The clock

power reduction at the architectural level is mainly due to pipeline

technique. The dynamic logic of completion detection unit ensures

precise internal operation, because of its 4-phase dual logic. It is also

carrying the timing information because it uses common timing

characteristics.

Fig. 3.9. Dynamic CMOS 4-phase dual-rail asynchronous ALU 1-bit

 circuit

In this circuit diagram fig.3.9, the data signals are a.t, a.f, b.t, b.f, C0in

and C1in. The precharging clk signal is used to precharge the required

nodes as per dynamic logic. Depending upon the required logic

 60

function to be done by the ALU, the ADD and X-OR signals will be

given for corresponding logic operation as stated in the Table 3.3.

Logic Funcion
Basic
Operation

a-input b-input

and AND true True
add AND true true
add with carry AND true true
subtract AND true complement
reverse subtract AND complement true
subtract with carry AND true complement
rev. subtract with
carry

AND complement true

test bits AND true true
compare AND true complement
compare negative AND true true

bit clear AND true complement
xor XOR true true
test equal XOR true true
or OR true true
move OR zero true
move NOT OR zero complement

Table 3.3 Functions available with the ALU

Table 3.3 explains the operation available with the designed

ALU where the data signals a and b requires 2 wires for each data bit.

The data signals a.t, a.f and b.t, b.f are required as per the 4-phase

dual-rail logic as explained in chapter 2. Here a.t and b.t used for

representing logic 1 (true), similarly a.f and b.f represents logic 0

levels (complement) as shown in Table 3.3. For the arithmetic

operation ‘add’ and for the logical operations ‘xor’ control signals will

be given logic 1 for the listed above listed operations. The

 61

implemented ALU design can carry out all the 16 operations listed in

Table 3.3 and the simulated results, performance analysis are

discussed in the next chapter.

 61

Chapter 4

Performance Analysis and Simulation Results

The implementation and the operations of designed

asynchronous 4-phase dual-rail domino logic ALU are discussed in the

previous chapter. In this chapter, the simulation results verify the

correct operation of the functions defined and the performance are

analyzed with latest related published works to claim the improved

throughput of our proposed circuit ALU design and the methodology

proposed. Also the SPICE tool, which used for the simulation purpose

and the technology library used are discussed briefly. The simulation

results are plotted for 1-bit operation and performance analysis

4.1 SPICE Simulation tool

The cadence HSPICE and Tanner T-SPICE tools were used for

the entire analysis and the results were tabulated and plotted in this

chapter. The simulation results for the power consumption of typical

addition operation with different supply voltages are analyzed. Since

the circuit designed at CMOS transistor level and asynchronous, the

SPICE tools are used worldwide to prove the efficiency of the circuit

before lay out. i.e the variation between the simulation results by

SPICE tools and post lay out level of the circuit will be comparable.

Also the SPICE tools are the basic simulation tool and if any circuit

performs well with the SPICE simulation performance can be moved to

next lay out level with the same performance. The 0.�✁✂m technology

libraries were used for the simulations by the SPICE tools.

 62

4.2 Analysis of Logic Operations

For a single bit addition operation three inputs: the two operand bits

and a carry input from the previous stage. The addition operation is

limited by the speed of the propagation of the carry signal across the

word. However the carry output from a single bit addition does not

always depend on the carry input and in half of the possible input cases

it may be generated before the input carry state is known. It is therefore

unlikely that a carry signal will have to propagate across many bit

positions before it reaches one where its state has already been

correctly predicted. In synchronous ALUs all operations must take the

same amount of time; a considerable effort has been expended in

schemes such as carry look ahead and carry steering in order to speed

up the addition operation; these approaches require a large quantity of

circuitry to accommodate a few worst cases of operation.

In an asynchronous ALU addition, operation may take different

times depending on the input data, providing that some means of

detecting completion is included. In our design the completion

detection will be done x-or gate circuit as explained in previous

chapter. If the cases with long carry propagation chains are relatively

rare a simple adder may be used which-despite poor worst-case

performance- can deliver typical results in in a reasonable time. This

allows a reduction in size and complexity of the ALU, with a

consequent reduction in power consumption, without radically altering

the typical performance. The performance of our design is illustrated

with different analysis in this section.

 63

The simulated output waveform for the addition operation

performed by this ALU presented in Fig. 4.1. It is performed with

VDD=1.8V, input sequence C1in=1111, C0in=0000, A=0011,B=0101

and the simulated output sequence is output=1001, C0out=1000,

C1out=0111 which coincides the expected specification. This

simulation is done using HSPICE tool with 10ns local clock period at

room temperature 30˚C. The input and output specification for this

addition operation is given in the Table 4.1.

Table 4.1 Input/output logic specification for addition operation by

 ALU.

In Table 4.1, the input data sequence a.t, a.f, b.t, b.f and C1in are

presented in logic levels and since it is addition operation the control

bit ‘add’ is given high logic 1 and ‘xor’ being kept at low logic 0.As the

operation is full addition, the carry bit signal C1in is given high logic 1.

In the output signal ‘sum’ of the addition operation is given by ‘Cout’

and the carry bit will be represented by ‘C1out’ signal as shown in the

simulated waveform in Fig. 4.1.

Signals Data

a.f 1 1 0 0

b.f 1 0 1 0

C1in 1 1 1 1

add 1 1 1 1

xor 0 0 0 0

a.t 0 0 1 1

Input

b.t 0 1 0 1

Cout (sum) 1 0 0 1

C0out 1 0 0 0

Output

C1out 0 1 1 1

 64

Fig. 4.1. Simulated waveforms for the ALU addition operation

The above Fig. 4.1 shows the SPICE simulated waveform for

the one bit ALU addition operation, which follows the specification

given in Table 4.1. The X-OR logic operation input output

signals Data

a.f 1 1 0 0

b.f 1 0 1 0

C1in 0 0 0 0

add 0 0 0 0

xor 1 1 1 1

a.t 0 0 1 1

Input

b.t 0 1 0 1

OUT(xor) 0 1 1 0

C0out 1 0 0 0

Output

C1out 0 0 0 1

Table 4.2 Input /output logic specification for x-or operation by

ALU

 65

specification is for single bit operation is given in Table 4.2 and the

simulated SPICE waveform for this logic operation is given in Fig.

4.2.

Fig. 4.2. Simulated waveforms for the X-OR operation

In Table 4.2, the input data sequence a.t, a.f, b.t, and b.f are

presented in logic levels and operation to be done is XOR the control

bit ‘add’ is given low logic 0 and ‘xor’ being kept at high logic 1. In the

output signal ‘xor’ of the addition operation is given by ‘OUT’ signal

as shown in the simulated waveform in Fig. 4.2.

4.3 Basic Addition Operation and Analysis

Addition is one of the fundamental functions of an ALU. We start

by analyzing the number of transistors used in the addition. About 80%

 66

of the operations require some form of addition [13]. If we improve the

processing time of addition operation, the performance of complete

ALU can also be improved. The latency required by our design is

depended upon the operation, the input data at that incident and the

carry flow across the whole word length, i.e. it needs to propagate carry

until it has predicted by the completion detection stage. The average

length of the mean carry propagation distance is varying according to

input data. In this 32-bit operation, a sum of 140 transistors has used for

precharging (domino logic) and buffer purposes to meet the

specifications at the layout. The 4-phase dual rail logic with CMOS

dynamic implementation so far discussed ensures very simple circuitry

than existing designs and provides three benefits compared to size,

power consumption and performance as discussed in previous chapters.

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

1.6 1.8 2 2.2 2.4 2.6 2.8 3

Fig. 4.3. Simulation Results for power consumption at different VDD.

The Fig. 4.3 shows the bar diagram representation of power

consumption by the same circuit with different VDD ranging 1.6V to

3.0V and keeping the temperature as constant room temperature. The

performance of the ALU is good and working correctly to a wide range

of VDD 1.6 V to 5V. The power consumption against different VDD is

 67

listed in the Table 4.3 and it plotted as a graph for easy analysis in Fig.

4.4.

Table 4.3 Power consumption for addition operation at different VDD

Fig. 4.4. VDD Vs Power consumption of ALU for Adder operation

Sl. No VDD (V) Power consumption
(watts)

1
1.6 4.92E-05

2
1.8 1.02E-04

3
2 1.93E-04

4
2.2 1.48E-03

5
2.4 2.24E-03

6
2.6 9.27E-03

7
2.8 2.11E-02

8
3 3.65E-02

 68

The simulation results of HSPICE-0.�✁✂m technology shows, the

average power consumption for typical addition operation is 1.02e-4w

under 1.8V supply with 1000 sample inputs at room temperature and

average time delay is 3.5ns. The Fig. 4.5 shows the graph

representation of power consumption by the same circuit with different

temperatures and keeping the VDD=1.8V. The power consumption in

different temperature is listed in the Table 4.4.

Sl. No Temperature

(˚C)

Power consumption
(watts)

1
-15 9.44E-05

2
0 9.68E-05

3
15 9.91E-05

4
30 1.02E-04

5
45 1.04E-04

Table 4.4 Power consumption for adder operation at different

 Temperatures

Fig. 4.5. Temperature Vs Power consumption of ALU for Adder
operation.

 69

The Fig. 4.6 shows the graphical representation of delay

performance by the ALU circuit with different VDD ranging 1.2V to

2.6V and keeping the temperature as constant room temperature.

Sl. No VDD (V) Delay (ps)

1
1.2 12250

2
1.4 7200

3
1.6 5250

4
1.8 3500

5
2 2000

6
2.2 1600

7
2.4 1280

8
2.6 1150

9
2.8 1000

Table 4.5 Delay for addition operation with different supply voltages
VDD.

The delay get increased on reduction with VDD and it is found that the

correct performance assured on reducing the VDD for a wide range of

5V to 1.6V with increasing delay and the data are listed in Table 4.5.

 70

Fig.4.6 Supply Voltages (VDD) Vs Delay performance for ALU
addition operation

 Simulation has been performed with our design to find the best

and worst case performance, and the results are listed in table 4.6 A

comparison of the simulated time performance of our design with

other published works given in the below table which proves the better

performance on worst case of 4ns and average case of 3.5ns.

Time(ns) Comparison
with other
related
works

Best case Worst case Average

Ref [14] 2.5 7.5 5

Ref [15] 3 6 4.5

Ref [16] 3 6 4.5

Our design 3 4 3.5

Synch - - 4

Table 4.6 Simulation Results for ALU operation

 71

CO-Correct Operation, SS-Slow Speed, MS-Medium Speed

Table 4.7 Performance Comparison with other published works

A comparison of the simulated time performance and transistor

count of this design with other published alternatives is shown in table

4.7. Our design has much reduction in silicon area. In addition, this

architecture enables to have reduced switching capacitance because of

absence of master clock in the ALU circuit design. It gives reduced

switching actions for every arithmetic operation. In summary, our

proposed design gives a better throughput with minimum number of

transistors.

Existing Designs and Discussed Design

Comparison
Synchronous

ARM ALU [14]

Asynchronous

ARM ALU [14]
Our Design

Technology 1.2um CMOS 1.2um CMOS 0.18um CMOS

Supply
voltage

~ 5V (CO/SS) ~ 5V (CO/SS)
~ 1.8V

(CO/MS)

Self Time
Unit

3000
(# transistors)

2300
(# transistors)

1696
(# transistors)

Timing
Purpose

-- 140
(# transistors)

140
(# transistors)

Data width 32 bit 32 bit 32 bit

 72

Chapter 5

Conclusions

The Asynchronous chips are presently research prototypes and are not

about to replace synchronous ARM cores in commercial production.

However, there is a worldwide resurgence of interest in the potential of

asynchronous design techniques to save power and to offer a more

modular approach to the design of computing hardware.

Our investigation shows that the proposed asynchronous ALU, which

reduce both average-case and worst case operation delays over that

previous asynchronous designs, can be designed in such a way that

with less power and less area. Since we used the 4-phase dual-rail

pipelines in designing our 32-bit ALU circuit, the complexity of

implementation is reduced when compared to the 2-phase dual-rail and

bundled-data protocol designs. Also this ALU design has following

unique asynchronous design advantages.

� Use little average power

� Show small current peaks, and

� Operate over a wide range of the power supply.

Measurements and simulations showed the following advantages of

this design when compared to a conventional synchronous one:

� This asynchronous ALU design gives the maximum

performance for the power received. This comes mainly from

the fact that the asynchronous design needs less of what is the

main limiting factor for the performance, namely power.

Compared to a synchronous design, the asynchronous circuits

 73

needs about 40% of the power for less. The proposed design

having reduced transistor count in comparison with earlier

designs on comparison and better power-delay characteristics.

� This asynchronous design is more resilient to voltage drops,

since it still operates correctly for voltages down to 1.8 V.

� The current peaks of an asynchronous circuits are less

pronounced , making the requirements with respect to the

buffer capacitor more modest.

The power savings which result from removing the global clock,

leaving each subsystem to perform its own timing functions whenever

it has useful work to perform, are clear in theory but there are few

demonstrations that the benefits can be realized in practice with

circuits of sufficient complexity to be commercially interesting. Our

ALU design work is aimed directly at adding to the body of

convincing simulation demonstrations of the merits of asynchronous

technology. It is also clear that, should asynchronous technology gain

acceptance as a low power design style, the ALU work places the

ARM architecture in the vanguard of the asynchronous assault on the

stronghold of the global clock.

The objective of our work is to demonstrate that a self-timed delay

insensitive processing system can deliver competitive performance in a

very flexible way, simplifying power-efficient design and minimizing

electromagnetic interference. Asynchronous designs are naturally

miserly with power, since they are inactive until presented with work

to do. The power benefits are expected to be particularly manifesting

in systems with highly variable workloads, hence the emphasis on

embedded applications. Additional reasons for looking at this

 74

asynchronous ALU design include its lower emission of

electromagnetic radiation due to less coherent internal activity, and its

potential to deliver typical rather than worst-case performance since its

timing adjusts to actual conditions whereas clocked circuit must be

tolerance for worst-case conditions.

5.1 Future Directions

There is considerable resistance amongst industrial designers to

the use of asynchronous design techniques, in part because of obsolete

prospective that view asynchronous design as unreliable which has

been now largely been overcome by new, more rigorous techniques

and in part because of genuine difficulties with production testability

which are only now beginning to be addressed by the asynchronous

research community.

However, clocked design is becoming ever more difficult as

manufacturing process technology shrink. Wiring delay increasingly

dominate logic delays on high performance chips, causing the global

clock wiring to compromise the local logic performance. Clock

generators consume an increasing share of the silicon resource and the

power budget, and increasing clock frequencies cause worsening radio

emissions and power consumption.

The choice facing manufacturers of portable digital equipment

will therefore be either to sacrifice performance or to abandon fully

synchronous design. The pressure will be most apparent in physically

small systems that include both radio receivers and high performance

digital electronics, such as digital mobile telephones and pagers.

PDAs, mobile email terminals and portable multimedia terminals will

 75

also soon benefit from asynchronous design. In the longer term the

modularity, composability and synthesis potential of asynchronous

circuits will make them attractive to a wide range of applications,

when dealing with a global clock signal on a 1000,000,000 transistor

chip will become simply too difficult to manage.

In addition to purely asynchronous technology, hybrid

solutions appear to have future potential. Perhaps islands of

synchronicity communicating asynchronously, or conventional data-

path functions timed using a maximum delay philosophy within an

asynchronously controlled system, could be employed. Key, large

volume applications like general-purpose processors will have to drive

the technology and associated tools development. Only when well-

defined element libraries and high-level synthesizable design

representations are available will asynchronous techniques challenge

the contemporary synchronous approach.

5.2 Publications/ Communications out of this work

1) G. Sundar and C.R. Mandal, “A Design Technique for the

Implementation of Asynchronous ALUs “ in Proc. of

VEDAS-2005, VLSI Society of India sponsored Conference,

Salem, India, June1-2,2005.

2) G. Sundar and C.R. Mandal, “Design Methodologies for

the Implementation of Low Power Asynchronous Designs

Circuits “ in Proc. of INCRUIS-2006 International

Conference, Sona College of Technology, Erode, India, Jan7-

8,2006.

 76

3) G.Sundar, C. R. Mandal, IIT Kharagpur, India and P.

Manikandan, B. D. Liu, L. Y. Chiou , NCKU, Taiwan “

Asynchronous Design Methodology for an Efficient

Implementation of Low Power ALU” communicated to

Proc. Of APCCAS 2006 (IEEE) International Conference,

Singapore Dec. 4-7, 2006 (http://www.apccas.org/)

 77

Bibliography

[1] Inki Hong et. al. Power Optimization of Variable Voltage Core-

Based Systems. IEEE Proceedings, 35th DAC, June 98, pp. 176-181.

[2] L.Benini and G. De Micheli. Transformations and Synthesis of

FSM’s for low power gated clock implementation. IEEE Trans. on

CAD, Vol. 15, No. 6, June 1996.

[3] J. M. Rabaey, M. Pedram. Low Power Design Methodologies.

Ch.1, Kluwer Academic Publishers, 1996, ISBNO-7923-9630-8.

[4] Jens Sparso and Steve Furber. Principles of Asynchronous Circuit

Design: A Systems perspective. Kluwer Academic Publishers,2001.

[5] Scott Hauck. Asynchronous Design Methodologies: An overview,

Proceedings of the IEEE, Vol.83,No. 1. January 1995.

[6] S.B. Furber, P. Day, J. D. Garside, N.C. Paver and J. V. Woods. A

Micropipelined ARM. IEEE International Conference on Computer

Design (1995).

[7] N. Paver, P. Day, S.B. Furber, J. D. Garside, J. V. Woods. Register

locking in an Asyncronous Microprocessor, ICCD ’92, IEEE

International Conference on Computer Design (1992).

[8] Chris Hyung-il Kim, Jae-Joon Kim, , Saibal Mukhopadhyay, and

Kaushik Roy. A Forward Body-Biased Low-Leakage SRAM Cache:

 78

Device, Circuit and Architecture Considerations. IEEE Trans on VLSI

Systems, Vol. 13, NO. 3, Mar 2005.

 [9] V. Tiwari et. al.. Reducing power in High Performance

Microprocessors. 35th DAC, June 1998.

[10] A.Hemani, T.Meincke , S.Kumar, A.Postula, T.01sson,

P.Nilsson, J.Oberg , P.Ellervee’,D.Lundqvist. Lowering power

consumption in clock by using Globally Asynchronous Locally

Synchronous design style, IEEE Proceedings, 35th DAC, Page(s) 873-

878, 21-25 June 1999.

[11] G. M. Jacobs and R. W. Broaderson. A fully asynchronous digital

signal processor using self-timed circuits. IEEE J. Solid State Circuits,

vol.25,pp. 1526-1537, June 1990.

[12] P. Manikandan, B.D. Liu, V.K.P. Tripathi and G. Sundar. Design

and Implementation of VLSI SoC for Remote Sensing Applications,

The 2nd International Meeting on Microsensors and Microsystems, pp

168-169, Jan 15-18, 2006.

[13] J.F. Wakerly. Digital Design: Principles and Practices,3/e

Prentice-Hall, 2001.

[14] J. D. Garside, A CMOS VLSI Implementation of an

Asynchronous ALU, Proceedings of the IFIP Working conference on

Asynchronous Design Methodologies, Manchester, M139PL,

U.K.(1993).

 79

[15] A. De Gloria and M Olivieri. Statistical Carry Lookahead

Adders. IEEE Trans. on Computers, V 45 N 3, and March 1996 page

340-347.

[16] David Kearney, Neil W. Bergmann. Bounded data Asynchronous

Multipliers with data Dependent Computation Times. IEEE

Proceedings, Page(s):186 – 197, 7-10 April 1997.

[17] DeMassa, T. A. and Z. Ciccone. Digital Integrated Circuits. John

Wiley & Sons Inc.: New York. 1996.

[18] Kang, S. and Y. Leblebici. CMOS Digital Integrated Circuits:

Analysis and Design. The McGraw-Hill Companies, Inc.: New York.

1996. pp 322-372.

[19] Kurdahi, F. J. "Dynamic CMOS Circuits," Introduction to VLSI

Design, University of California, Irvine, ECE151, Fall 1995.

http://www.eng.uci.edu/ece/ece151/lec4/dynamic.html

[20] Pihl, J. Design Automation of High-Speed Digital Signal

Processing in VLSI Design with Applications in Speech Recognition

Systems Based on Hidden Markov Models, Ph.D. thesis defended

November 1, 1996.

http://www.fysel.unit.no/People/Pihl/art_html/art_html.html

[21] Schindler, V. "Dynamic vs. Static CMOS Logic," High Speed

RSA Hardware Based on Low-Power Pipelined Logic, Ph.D. thesis

defended December 1996. http://www.iaik.tu-

graz.ac.at/Lehre/Dissertationen/vschindl/node53.html

 80

[22] Terman, C. "Precharge/Evaluate Logic," Introduction of VLSI

Systems, Massachusetts Institute of Technology, Class 6.371, Fall

1996. http://cerberus.lcs.mit.edu/6.371/lectures/L9/

[23] Weste, N. H.E. and K. Eshraghian. Principles of CMOS VLSI

Design: A System Perspective, 2nd Edition. Addison-Wesley

Publishing Company.

[24] Yuan, J. and C. Svensson. "High-Speed CMOS Circuit

Technique." IEEE Journal of Solid-State Circuits. vol. 24. pp 62-70.

February 1989.

[25] Yuan, J. and C. Svensson. "New Single-Clock CMOS Latches

and Flipflops with Improved Speed and Power Savings." IEEE Journal

of Solid-State Circuits. vol 32. pp 62-69. January 1997.

[26] Yin-Kuan Lin and Ting-Chi Wang. "Chapter 5: CMOS Circuit

and Logic Design," Introduction to VLSI Design, Chung Yuan

Christian University.

http://www.ice.cycu.edu.tw/~vlsi/Chapter5/Chapter5.htm

[27 J. Rabaey. Digital Integrated Circuits: A Design Perspective.

Prentice-Hall, 2003�.

[28] W. J. Bainbridge and S. B Furber. Asynchronous macrocell

interconnect using MARBLE. in “Async ‘98 “, pages 122-132. IEEE

Computer Society Press, April 1998.

 81

[29] W. J. Bainbridge and S. B. Furber. MARBLE: An asynchronous

onchip macrocell bus. Microprocessors and Microsystems, 24(4):213-

222, April 2000.

[30] A. Bardsley. Implementing Balsa handshake circuits. PhD thesis,

Department of Computer Science, University of Manchester, 2000.

[31] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Automatic

synthesis of gate-level speed-independent circuits. Technical Report

CSL-TR-94-648, Stanford University, November 1994.

[32] G. Birtwistle and A. Davis, editors. Proceedings of the Banff VIII

Workshop: Asynchronous Digital Circuit Design, Banff, Alberta,

Canada, Aug.28- Sept.3, 1993.

[33] I. Bogdan, M. Munteau, P. A. Ivey, N. L. Seed, and N. Powell.

Power reduction techniques for viterbi decoder implementation.

European Low Power Initiative for Electronic System Design

(ESDLPD) Third International Workshop, pages 28-48, 2000.

[34] J. A. Brzozowsky and C.-J.H. Seager. Asynchronous Circuits.

Springer Verlag, Monographs in computer Science, 1994.

[35] S. M. Burns. Performance Analysis and Optimization of

Asynchronous Circuits. PhD thesis, Computer Science department,

California Institute of Technology, 1991. Caltech-CS-TR-91-01.

[36] S. M. Burns and A. J. Martin. Syntax-directed translation of

concurrent programs into self-timed circuits. In J. Allen and F.

 82

Leighton, editors, Advanced Research in VLSI, pages 35-50, MIT

Press, 1988.

[37] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous

Systems. Phd thesis, Stanford University, October 1984.

[38] T. –A. Chu. Synthesis of self-Timed VLSI Circuits from Graph-

Theoretic Specifications. PhD thesis, MIT laboratory for Computer

Science, June 1987.

[39] T.-A. Chu and R. K. Roy (editors). Special issue on on

asynchronous circuits and systems, IEEE Design & Test, 11(2), 1994.

[40] T.-A. Chu and L. A. Glasser. Synthesis of self-timed control

Circuits from graphs: An example. In Proc. International Conf.

Computer Design (ICCD), pages 565-571. IEEE Computer Society

Press, 1986.

[41] A. Davis. A data-driven machine architecture suitable for VLSI

implementation. In Proceedings of the First Caltech Conference on

VLSI, pages 479-494, Pasadena, CA, January 1979.

[42] A. Davis and S. M. Nowick. Asynchronous circuit Design:

Motivation, background, and methods. In G. Birtwistle and A. davis,

editors, Asynchronous Digital Circuit Design, Workshops in

Computing, pages 1-49. Springer-verlag, 1995.

 83

[43] A. davis and S. M. Nowick. An introduction to asynchronous

circuit design. Technical Report UUCS-97-013, department of

Computer Science, University of Utah, September 1997.

[44] S. B. Furber and P. day. Four-phase micropipeline latch control

circuits . IEEE Transactions on VLSI Systems, 4(2):247-253, June

1996.

[45] J. D. Garside, The Asynchronous Logic Homepages.

http://www.cs.man.ac.uk/async/.

[46] D. A. Gilbert. Dependency and Exception Handling in an

Asynchronous Microprocessor. PhD thesis, Department of Computer

Science, University of Manchester, 1997.

[47] D. A. Gilbert and J. D Garside. A result forwarding mechanism

for asynchronous pipelined systems. In Proc. International Symposium

on Advanced Research in Asynchronous Circuits and Systems

(Async’97), pages 2-11, IEEE Computer Society Press, April 1997.

[48] L. A. G;asser and D.W. Dobberpuhl. The design and analysis of

VLSI Circuits. Addison-Wesley, 1985.

[49] S. Hauck. Asynchronous design methodologies: An overview.

Proceedings of the IEEE, 83(1):69-93, January 1995.

[50] H. Jacobson , E. Brunvand, G. Gopalakrishnan, and P. Kudva.

High-level asynchromous system design using the ACK framework. In

Proc. International Symposium on Advanced Research in

 84

Asynchronous Circuits and Systems, pages 93-103. IEEE Computer

Society Press, April 2000.

[51] J. Liu. Arithmetic and control components for an asynchronous

microprocessor. PhD thesis, Department of Computer Science,

University of Manchester, 1997.

[52] A. J. Martin. Compiling communicating processes into delay-

insensitive VLSI circuits. Distributed Computing, 1(4):226-234, 1986.

[53] A. J. Martin. Synthesis of Asynchronous VLSI circuits, 1991.

[54] C. J. Myers. Asynchronous Circuit Design. John Wiley & Sons,

July 2001.

[55] C. D. Nielson. Evaluation of function blocks for asynchronous

design. In Proc.EURO-DAC, pages 454-459. IEEE Computer Society

Press, September 1994.

[56] C. D. Nielson. Low Power Asynchronous VLSI Design. PhD

thesis, Department of Information technology, technical University of

Denmark, 1997.

[57] L. S. Nielson, C.Niesson, J. Sparso, and C. H. Van Berkel. Low-

power operation using self-timed circuits and adaptive scaling of the

supply voltage. IEEE Transactions on VLSISystems, 2(4): 391-397,

1994.

[58] A. M. G. Peeters. The ‘Asynchronous’ Bibliography.

http://www.win.tue.nl/~wsinap/pdf/peeters96.pdf.

 85

[59] Philips Semiconductors. PCA5007 handshake-technology paper

IC data sheet. http://www.semiconductors.philips.com/pip/PCA5007H.

