Computational Relativity and Gravitation
at Petascale:
Simulating and Visualizing
Astrophysically Realistic Compact Binaries

Scott C. Noble
Pl: M. Campanelli

J. Faber, B. Mundim,
Y. Zlochower

Center for Computational Relativity and
Gravitation
Rochester Institute of Technology (RIT)

NEIS-P? Symposium * Blue Waters * NCSA * May 21, 2013



Circumbinary Accretion Problem:
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Multimessenger Synergy

Electromagnetic Gravitational Wave
sSurveys Observatories

Pan-STARRS

Pan-STARRS:
©2010-2?
o4 skies per month

Large Synoptic Survey Telescope (LSST):
©2021-2032
e | sky every 3 days

Advanced LIGO

* GW Detection/Localization <---> EM Detection/Localization;
* GW and light are connected theoretically but originate in wholly different mechanisms
* --> independently constrain models;
 Either GW or EM observations of close supermassive BH binaries would be the first of its kind!
* Follow up (X-ray, sub-mm) observations can often be made via coordinated alert systemes;

eCosmological “Standard Sirens”: New Distance vs. Redshift Measurement
Schutz 1986, Chernoff+Finn 1993, Finn 1996, Holz & Hughes 2005



Black Hole Accretion Anatom




Black Hole Accretion Anatomy
*|deal Magnetohydrodynamics (MHD)

*General Relativity (GR)

*Radiative Transfer, Ray-tracing

*Multi-species thermodynamics




The Codes

Harm3d

® Ideal-MHD on curved spacetimes (does not evolve Einstein’s Equations)

® 8 coupled nonlinear Ist-order hyperbolic PDEs ; | constraint eq. (solenoidal): Constrained
Transport, FluxCT method;

®  Finite Volume, methods, Lax-Friedrichs, HLL fluxes (approx. Riemann solvers); PPM
reconstruction; “Method of Lines”: 2nd-order Runge-Kutta;

®  “Mesh refinement” via coordinate transformation: Egs. are solved on uniform “numerical”
coordinates related to “physical” coordinates via nonlinear algebraic expressions;

Parallelization via uniform domain decomposition; |1 subdomain per process
No threading, simple MPI distribution;
Computationally & memory access “intensive”, little /0 and MPI overhead;

O(107 - 108) cells evolved for O(10°) time steps;

Bothros

LazEv & Einstein Toolkit




The Codes

Harm3d

Bothros

e Predict electromagnetic emission from relativistic gas simulations;
e Solves the Radiative Transfer and Geodesic Equations in curved spacetimes;

e RT Eq: | nonlinear ODE; Geodesic Egs: 8 coupled linear ODEs;

e Post-processes Harm3d simulation data;

e  O(10% time frames of O(10°) rays that travel through 4D data cube of O(10'%) spacetime points from
which O(10) functions are interpolated onto light ray’s path;

e Very Data (1/0) Intensive -- processes Terabytes of data!
e Originally trivially parallelized, i.e. no MPI or OpenMP support;

e --> Many redundant disk reads!

LazEv & Einstein Toolkit




The Codes

Harm3d

Bothros

LazEv & Einstein Toolkit

e ET = “an open, community developed software infrastructure for relativistic
astrophysics”’;

e Comprised of Cactus, Carpet, Whisky, McLachlan, (parts of Harm3d);
e E.g,solves Einstein’s equations, w/ or w/o Hydro/MHD;

e Block structured adaptive mesh refinement;

* www.einsteintoolkit.org

e LazEv = RIT’s unique set of ‘“thorns” that formulate and discretize Einstein’s
equations;


http://www.einsteintoolkit.org
http://www.einsteintoolkit.org
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Approximate Two Black Hole Spacetimes
Yunes++2006, Mundim++2013

* Solve Einstein’s Equations approximately, perturbatively;

* Used as initial data of Numerical Relativity simulations;
* Closed-form expressions allow us to discretize the spacetime best for accurate matter solutions;

* Physically valid up until the last few orbits prior to merger;
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Cost of __ ‘oximate S

Buffer Zone (O3 4)

Far Zone (C 4)
1R ) T e

Cost of Near Zone Metric

Inner Zone BH TACC /Ranger
- 2400 procs
- 300x 160x400 cells
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¢ Significant effort spent optimizing
subroutine, with the aid of
symbolic manipulation software
(Maple);

Percent of Runtime
N
o
flux_ct_paro_fast2
dyn_fullpn_opt_nz_gcov_

source
Utoprim_2d_fast
advance
rescale_prims_r
invert_matrix2
conn_func_fd4
get_state
reconstruct_fast

e Metric evaluation accounts for
~35% of runtime;
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Load Balancing Domain Decomposition
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e Different zones of the spacetime vary in
computational cost of evaluating metric;

e Strategy: decompose costlier regions into
smaller domains, balancing effort across
MPI processes;

e Black Holes (or zones) move through the
grid --> “dynamic” load balancer;

® Need to alter static array definitions to
dynamic allocations to handle nonuniform
decomposition across processors;

Relative Cost

Zone Per Cell

Inner 3
Inner/Near Buffer 4

Near |
Near/Far Buffer )

Far




Harm3d Goals

® Solve the Load Imbalance Problem:

® Static Memory Allocation --> Dynamic Memory Allocation ;

® Nonuniform domain decomposition (different subdomain sizes
across processors):

® Generalized subdomain boundary conditions (passing of ghost zone data);
® Generalized data reduction routines;
® Load Balancing Algorithm:
® Method to distribute cost evenly;
® Ability to re-evaluate cost distribution and redistribute;
® Profile complete package on BWV with a production run;
® Incorporate OpenMP:

® Preliminary tests suggest only modest performance improvement;

® May incorporate GPUs ala Jian Tao’s talk & (Zink 201 1)



Load Balancing Algorithm

Start with global domain with cost estimates for each cell;
Order subdomains by cost;

Bisect most expensive domain along longest extent (maintain
cubical domains);

. Assign processor to new subdivision;

Determine neighbor relationships;

Repeat Steps 2 - 5 until all processors have been assigned;



. ] 2-d Cost Model
Validation of Load Balancer

through Simulated Cost
Distribution:

Domain o
Count Decomposition Cost Imbalance

Colors differentiate domains




Validation of Load Balancer through
Simulated Cost Distribution:

Perfect Balance
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Validation of Load Balancer through
Simulated Cost Distribution:
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Saturation of Domain Decomposition

-=> |n practice, more processors will not be added at saturation point
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Performance on Blue Waters :
Runtime Efficiency
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i Staizic code seg. fau.lts With eStatic = statically allocated grid functions;
Cray’s default optimizations; eDynamic = dynamically allocated grid functions;

eLittle difference between PGI and Cray compilers;
eLittle difference between Static and Dynamic memory allocation;
*Decrease in rate with more zones consistent with prior profiles;



Performance on Blue Waters :

Relative Performance Per FPU

Good Scaling Performance
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Towards Radiative Transfer in

BOth rFOsS G oal S Time-dependent General Relativity

¢ Parallelize post-processing tool via MPI and OpenMP;
e Will explore how GPUs can offload effort in the future;

X-ray Emission from Single Black Hole Disk Binary Black Hole System in Photon “Cloud”

Noble & Krolik 2009 *Thesis Project of Billy Vazquez (grad student);
Schnittman, Krolik, Noble 2012



Bothros’s Parallelization Model

Evaluates problem extent; Assigns duties;
Broadcasts what data is available on |OUs;

Reads time slices from disk,; Serves data to CUs when its needed,
Replaces processed slices with new ones;

Requests data from IOUs; Interpolate data onto rays;
Integrate radiative transfer eq.; Advance rays to next data slice;

Strategy |: Strategy 2:

One unit per core, each threaded One unit per thread

T

* Requires facility for master
threads to make MPI calls
(MPI_THREAD_FUNNELED)




Einstein Toolkit/LazEv Goals

® |mplement threading via OpenMP throughout new GRHydro code of ET;
® Analysis routines;
® Reconstruction at cell interfaces;
® Stress-energy calculation;

® |nversion of nonlinear algrebraic equations to find primitive variables
from conserved variables

® “GRHydro: A new open source general-relativistic
magnetohydrodynamics code for the Einstein Toolkit”, arXiv:1304.5544

® FEvaluate the performance gain on Blue Waters;



Thank you to Jing Li and the rest of the
support team at NCSA!!!

Conclusions:

® Blue Waters provides a singular facility and opportunity for us to calculate the most
accurate electromagnetic predictions of coalescing supermassive black hole binaries;

® We are close to finishing our NEIS-P? version of Harm3d;
® Experiments on Blue Waters confirm our earlier performance models;
® Dynamic code scales well on Blue Waters;
® | oad balancer is expected to at least HALVE effort!
® Bothros development underway;
® LazEv & Einstein Toolkit development done, but need to profile more on BVV;

® Soon, we will have circumbinary disk simulations at unprecedented accuracy, longevity,
and physical realism!

Questions? Discussion....




