
A
ATARI® A Warner Communications Company ©

Use with ATARI 800™

PERSONAL COMPUTER SYSTEM

ATARI®
MACRO ASSEMBLER

Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Home Computer Division.

However, because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the

accuracy of printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu-
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

PRINTED IN U.S.A. MANUAL AND PROGRAM CONTENTS ©1981 ATARI, INC.

CONTENTS

1 INTRODUCTION 1

Features of This Package 1

Macros 1

Conditional Assembly and Code Du plication 1

Systext Files 1

Program Listing Control 1

Cross-Reference Tables 1

Standard ATARI Computer and 6502 Mnemonics 2

Contents of This Software Package 2

Procedures 2

Program Loading Instructions 2

Creating a Source Program 2

Assembling a Source Program 3

Purpose of This Manual 3

References 3

2 ASSEMBLER EXECUTION 5

Command Line Syntax 5

Command Line Options 5

Command Line Examples 6

User Interface 7

3 FILE USAGE 9

Source Input Files 9

System Text Files 9

Object Output File 9

Listing File 9

Source Listing Format 10

Sample Listing 10

Symbol Map Format 14

4 LANGUAGE STRUCTURE 15

Statements 15

Label Field 15

Operation Field 15

Variable Field 15

Contents iii

Statement Termination 16
Comments 16
Definitions 16
Symbols and Names 16
Numbers 17
Character Strings 17
Expressions 18
Operands 18

5 MACRO FACILITY 21

Macro Definition 21

Macro Call 21

Code Duplication 22
Nesting 22

6 PSEUDO-OPERATIONS 23

ASSERT 23

DB 24
DC 24
DS 24
DW 25

ECHO . . . ENDM 25

EJECT 26
END 26
EQU or = 27
ERR 27
IF ... ENDIF, IF ... ELSE ... ENDIF 27
INCLUDE 28
LINK 29
LIST 31

LOC 32

MACRO . . . ENDM 33
ORG 35

PROC...EPROC 35

REAL6 36
SET 36
SPACE 36

SUBTTL 37
TITLE 37
USE 38
VFD 38

iv Contents

7 PSEUDO-OP QUICK REFERENCE 41

8 INSTRUCTION MNEMONICS 43

9 USING THE ATARI MACRO ASSEMBLER
WITH THE ATARI ASSEMBLER EDITOR
SOURCE FILES 49

10 ERROR CODES 51

Contents v

1

FEATURES OF
THIS PACKAGE

INTRODUCTION

The ATARI® Macro Assembler is a software development tool for writing 6502
assembly language programs for the ATARI 800™ Home Computer The features of

this assembler include macros, conditional assembly, code duplication, access to

library definitions, program-listing control, and cross-reference tables. It offers fast

compilation and uses standard 6502 mnemonics.

MACROS

The macro feature allows you to define code words to represent multiple instruc-

tions. It makes it easy for you to use a sequence of code many times in a program.

CONDITIONAL ASSEMBLY AND CODE DUPLICATION

Conditional assembly allows the generation of source code based on certain condi-

tions. Combined with macros this offers a powerful and versatile way of coding
assembly language programs. An ECHO pseudo-operation enables you to repeat

sections of code (similar to the macro feature, but it does not allow parameter
passing).

SYSTEXT FILES

Often you will want to create and store symbols and macro definitions on a library

file. Once created, the symbols can be referenced by any of your source programs.

Such a library file can ease your program development effort.

PROGRAM LISTING CONTROL

The LIST pseudo-op lets you tailor and annotate programs to fit your exact needs.

The pseudo-op makes documentation easier by allowing listing control and page
headings.

CROSS-REFERENCE TABLES

The Macro Assembler also includes an optional cross-reference table so that you
can reference labels and variables in the source program quickly.

Introduction 1

STANDARD ATARI COMPUTER AND 6502 MNEMONICS

CONTENTS OF
THIS SOFTWARE
PACKAGE

PROCEDURES

A file containing the ATARI Home Computer Hardware Register addresses and OS
Shadow Register addresses is included on your Macro Assembler diskette. You may
reference standard ATARI Computer mnemonics in your programs using this file.

See Systext reference in "Command Line Options" in Section 2.

Standard MOS Technology 6502 microprocessor coding format is used in this

assembler. The formation of expressions also follows the standard conventions.

The Macro Assembler includes:

• A diskette containing both the Macro Assembler and Program-Text Editor™

software

• A reference card giving pseudo-ops, error codes, and Program-Text Editor

commands and messages

• This reference manual for the ATARI Macro Assembler

• An operators manual for the ATARI Program-Text Editor

PROGRAM LOADING INSTRUCTIONS

1. Connect the ATARI 800 Home Computer to a television set and to a wall

outlet as instructed in the operators manual.

2. Connect the ATARI 810™ Disk Drive to the computer console and to a wall

outlet as instructed in the ATARI 810 Disk Drive Operators Manual. Verify

that the disk drive is set to DRIVE CODE 1 as instructed in the operators

manual.

3. Open the cartridge door on the top of the computer console. Remove all

cartridges from the top front cartridge slots. Close the cartridge door.

4. Turn on your television set.

5. Turn the disk drive POWER (PWR) switch to ON. Two red lights (the BUSY
light and the PWR ON light) will come on.

6. When the BUSY light goes out, open the disk drive door by pressing the door

handle release lever.

7. Insert the diskette containing the Macro Assembler and Program-Text Editor

programs into disk drive 1.

8. Switch the POWER (PWR) switch on the computer console to ON.

The DOS II Menu will now appear on your screen.

CREATING A SOURCE PROGRAM

To use the editor, refer to the ATARI Program-Text Editor Manual.

2 Introduction

PURPOSE OF
THIS MANUAL

REFERENCES

After you create your source program, exit the Program-Text Editor using the com-
mands that will return you to DOS:

1. Press USUI .

2. Type EXIT and press flBl .
(This returns you to DOS.)

Then, to assemble your source program:

1. Type the letter L and press SIB-
2. Type AMAC and press

ASSEMBLING A SOURCE PROGRAM

1 . Refer to "Command Line Syntax" (in Section 2) for the command line syntax

and command line options. Press after the command line.

2. After the assembly, press the 1111111 key to return to DOS. Your DOS direc-

tory will now show that you have created an object file with an extension,

OBJ.

This manual is intended to show you how to use the Macro Assembler. If you plan

to use the Program-Text Editor for creating your source program, it is suggested

that you read the ATARI Program-Text Editor Manual
,
then practice creating files.

A knowledge of assembly language and ATARI DOS II is also necessary. The texts

listed below will assist in your study of assembly language. If you wish to become
familiar with the special features of the ATARI Home Computer, a copy of the

ATARI Technical Users Notes will be needed.

We recommend the following books:

MOS Programming Manual by MOS Microcomputers

SY6500/MCS6500 Microcomputer Family Programming Manual by SYNERTEK
6502 Assembly Language Programming by Lance Leventhal

6502 Software Design by Leo Scanlon

6502 Software Gourmet Guide and Cookbook by Robert Findley

ATARI publications:

ATARI DOS II Reference Manual
ATARI Technical Users Notes

Introduction 3

2

COMMAND
SYNTAX

COMMAND
OPTIONS

ASSEMBLER EXECUTION

LINE The Macro Assembler is accessed by the ATARI DOS II Menu option L. When DOS
asks for a filename to load, type:

AMAC

Once AMAC is loaded into memory, it will ask you to "Enter source filename and
options." The source filename must always be specified. Any options you wish to

use should follow the filename, separated by either a comma or space. The com-
mand line is terminated by a carriage return. The command line cannot be edited

using the cursor control keys.

The general form of the command line is: <filespec> optl ,...optn. Where
<filespec> is the source file to be assembled and is of the form
<device>: <filename> .< extension > . The above command line could have
been typed with any mixture of upper- or lowercase characters. The assembler will

convert all command line characters to uppercase before interpretation.

LINE The 'optl ,...optn' are optional parameters (in any order) chosen from this list:

H = Dn:

(Default is H = Dn:

where n is the

same disk drive as

the source file)

Generate object output file to the specified disk drive

where n may be 1 , 2, 3, or 4. If no filename is specified, the

object file will be named with the input source filename

and the extension, OBJ.

H = <filespec> Write object code to <filespec>.

H = 0 Do not generate any object code.

L=P: List output to printer.

L=Dn: List output to specified disk drive (n= 1, 2, 3, or 4). List

filename has the input source filename and the extension

PRN.

L = S: Output listing to the screen.

L = 0 (Default' Do not produce listing for this assembly.

O = n Preset the value of the run address of the object program.

Specifying "0 = n" on the command line is exactly like

the statement "END n" found at the end of an assembly

program.

0 — 0 (Default) Set the value of the run address to zero.

Assembler Execution 5

PS = n (Default is

PS = 63)

PS = 0

S= <filespec>

S

S = 0 (Default)

R = F

R = S

R = 0 (Default)

SL = n

(Default is

SL = 80 for P: and

SL = 38 for S:)

Set page size to <n> source lines per page. Page size

must be less than 127. When page size is less than 10, no

title or subtitle lines nor page ejects are printed in the list

file, and a full cross-reference is disallowed.

Do not print title and subtitle lines and page ejects to list

file for this assembly.

Specify systext file. The S option may be repeated. The
user may specify as many systexts as desired, so long as

combined number of systexts and link files does not ex-

ceed the file limit of 40.

Use the default systext D:SYSTEXT.AST.

Specify no systext for this assembly.

Generate full reference map. List all global symbols and
their references on the file specified by the L parameter.

Generate short reference map. List all global symbols and
their values only on the file specified by the L parameter.

Do not generate reference map.

Set the line length. Maximum length of the line output to

the list file will be <n> characters; the rest of the line is

discarded if <n> is greater than the device line

length.

All numeric argument values (for 0 = n, PS = n, and SL=n) may be specified ac-

cording to the general syntax for numbers. In particular, an explicit radix (decimal,

binary, octal, or hexadecimal) can be used. Refer to Section 4, “Numbers/' for radix

specification.

All lowercase letters on the command line are converted to uppercase before inter-

pretation.

COMMAND LINE DiTestit.asm

EXAMPLES will read input file D1 :TESTIT.ASM (D: implies D1 :), no listing will be produced, and
the ATARI binary format object file will be D1 :TESTIT.OBJ

.

D:TESTIT.ASM H=0 R = F L = S:

will assemble D1 :TESTIT.ASM, suppress object file generation, and send a listing

with full reference map to the screen.

D2:TESTIT.ASM H = D: L=D2: R=F O = $200

The assembler will assemble the file D2:TESTIT.ASM generating the object file

D1:TESTIT.OBJ, and will produce a listing and full reference map in

D2:TESTIT.PRN. In addition, it will also set the run address to $200.

6 Assembler Execution

D2:TEST1T.ASM S S = D2:MSYS.AST L = P: R = F H — D: 0-S1700

The assembler will process the two systext files D1 :SYSTEXT.AST and
D2:MSYS.AST, assemble the file D2:TESTIT.ASM, produce the object file

D1 :TESTIT.OBJ with a run address of $1700, and print a listing with full reference

map on the printer.

USER INTERFACE The assembler execution may be prematurely terminated by pressing the

key. When output listing is directed to the screen, its execution can be temporarily

halted by simultaneously pressing the 111311 key and the 1 key. Pressing those two
keys again will restart execution.

If a disk-write error happens (usually disk or directory full), the offending file (ob-

ject or list file) is erased, an error message is issued to the screen, and further at-

tempts to write to the file are suppressed. Assembly then continues normally.

Assembly time errors are printed to the screen as well as to the list file.

Assembler Execution 7

3

SOURCE
INPUT FILES

SYSTEM
TEXT FILES

OBJECT
OUTPUT FILE

LISTING FILE

FILE USAGE

You can specify source input files by using the:

• First command line argument

• Systext file argument (S parameter)

• LINK pseudo-instruction

• INCLUDE pseudo-instruction

All input files must be in Program-Text Editor format. They consist of a line or

lines of ATASCI1 characters terminated by ATASCII End-of-Lines <EOL>.

A system text file (systext) is an assembly language file of symbols and macro
definitions. The programmer can predefine symbols here for many different pro-

grams. Some examples are:

• ATASCII control characters (BS, TAB, ESC, EOL,...)

• Addresses (entry points into CIO, SIO, and channel locations)

• Macros

If an assembly error is encountered while scanning a systext file, the assembler

aborts with an error message.

The object output file generated by the assembler has a default file extension of

OBJ and is in ATARI binary format. Refer to the ATARI DOS II Reference Manual
for detail specifications of binary format.

The output listing of the source program generated by the assembler has a

default extension of PRN.

The Macro Assembler has a flexible set of listing control pseudo-ops which allows

the user to generate only the desired program content.

Page heading (unless suppressed via PS = 0) contains the assembler version and

page number as well as optional user-specified title information (see TITLE and
SUBTTL pseudo-ops).

The LIST pseudo-op (or L command line argument) controls which source lines are

listed. Each code line listed begins with 20 columns of information generated by

the assembler.

Column 1 of the listing output is reserved exclusively for errors; a listing free of

assembly errors will not have any printing in column 1. An error count is reported

at the end of the assembly. (See Section 10, " Error Codes/')

File Usage 9

SOURCE
FORMAT

SAMPLE

LISTING i 2

123456789.123456789.

E addr# hhhhhhhhhh
R addr = vvvv

R -

O addr = vvvv #
R addr

+ hhhhhhhhhh
addr hhhh Aaddr

Line that generates code.

EQU, SET, IF, etc.

Line that is skipped.

Location and origin counters are unequal.

Macro-generated line.

Destination address of PC relative jumps.

Column Description

1 Error flag or blank. See Section 10 for the meaning of error flags

2 Blank.

3-6 Address location of this instruction (value of the location counter).

6 — sign means line not assembled due to IF. ..ELSE. Line only listed if

LIST F in effect.

7 # sign means the location and origin counters are unequal.

8 + sign means assembler-generated line. Line listed if LIST M in

effect.

9-18 hhhhhhhhhh is the resultant code. Up to five bytes are listed. If LIST

G or D is in effect, multiple lines will be listed with up to five bytes

on each.

11-14 vvvv = value of expression.

19-20 Always blank.

21-80 Source statement.

LISTING I/O EQUATES
= 009B EOL = $9B
= 0030 IOCB3 = $30
= 0340 ICHID = $0340
= 0341 ICDNO = ICHID + 1

= 0342 ICCOM = ICDNO + 1

= 0343 ICSTA = ICCOM + 1

= 0344 ICBAL = ICSTA + 1

= 0345 ICBAH = ICBAL + 1

= 0346 ICPTL = ICBAH -F

1

= 0347 ICPTH = ICPTL + 1

= 0348 ICBLL = ICPTH +1
= 0349 ICBLH = ICBLL + 1

= 034A ICAX1 = ICBLH + 1

= 034B ICAX2 = ICAX1 -FI

10 File Usage

= 0003 OPEN = $03
= 0005 GETREC = $05
= 0009 PUTREC = $09
=oooc CLOSE = $0C
= 0004 OREAD = $04
= 0008 OWRIT = $08
= 0088 EOF = $88
= E456 CIOV = $E456
= 0040 IOCB4 = $40

;FIRST 1 NIT THE IOCB FOR OPEN

0000# = 5000 ORG $5000

;DATA REGION
5000 44323A5445 ;NAME1 DB / D2:TEST1 ,EOL

= 0050 BUF1SZ = 80
= 5009 BUF1 = *

5009 = 5059 ORG * + BUF1 SZ
5059 50323A9B NAME2 DB 'P2:',EOL

505D A230 START LDX #IOCB3
505F A900 LDA #LOW NAME1
5061 9D4403 STA ICBAL,X
5064 A950 LDA #HIGH NAME1
5066 9D4503 STA ICBAH,X
5069 A900 LDA #0
506 B 9D4B03 STA ICAX2,X

•"OPEN" THE DISK

506E A903 LDA #OPEN
5070 9D4203 STA ICCOM,X
5073 2056E4 JSR CIOV
5076 BC4303 LDY ICSTA,X
5079 1003 A507E BPL LI

507 B 4CA250 JMP ERR2

•CHANNEL 4 IS PRINTER

507E A240 LI LDX #IOCB4
5080 A959 LDA #LOW NAME2
5082 9D4403 STA ICBAL,X
5085 A950 LDA #H ICH NAME2
5087 9D4503 STA ICBAH,X
508A A908 LDA #OWRIT
508C 9D4A03 STA ICAX1 ,X

508F A900 LDA #o
5091 9D4B03 STA ICAX2,X

/'OPEN" THE PRINTER

5094 A903 LDA #OPEN
5096 9D4203 STA ICCOM.X
5099 2056E4 JSR CIOV
509C BC4303 LDY ICSTA.X
509 F 1004 A50A5 BPL TP10

File Usage 11

;ERROR - JUST BRK

50A1 00 ERR1 BRK
50A2 00 ERR2 BRK
50A3 00 ERR3 BRK
50A4 00 ERR4 BRK

•SETUP TO READ A RECORD

50A5 A230 TP10 LDX #IOCB3
50A7 A905 LDA #GETREC
50A9 9D4203 STA ICCOM,X
50AC A909 LDA #LOW BUF1
50A E 9D4403 STA ICBAL,X
50B1 A950 LDA #HIGH BUF1
50B3 9D4503 STA ICBAH,X

!read records

50B6 A950 LOOP LDA #LOW BUF1SZ
50 B8 9D4803 STA ICBLL,X
50 BB A900 LDA #HIGH BUF1SZ
50BD 9D4903 STA ICBLH,X
50C0 2056E4 JSR CIOV
50C6 1004 A50CC BPL PRNTR

;NEC STATUS ON READ EOF

50C8 C088 TP20 CPY #EOF
50CA D0D7 A50A3 BNE ERR3

;PRI NT A RECORD

50CC BD4803 PRNTR LDA ICBLL,X
50CF A240 LDX #IOCB4
50D1 9D4803 STA ICBLL,X
50D4 A230 LDX #IOCB3
50D6 BD4903 STA ICBLH,X
50D9 A240 LDX #IOCB4
50DB 9D4903 STA ICBLH,X
50DE A909 LDA #PUTREC
50E0 9D4203 STA ICCOM,X
50E3 A909 LDA #LOW BUF1
50E5 9D4403 STA ICBAL,X
50E8 A950 LDA #HIGH BUF1
50EA 9D4503 STA ICBAH,X
50ED 2056E4 JSR CIOV
50F0 BC4303 LDY ICSTA,X
50F3 1003 A50F8 BPL L3

50F5 4CA450 JMP ERR4
50F8 A230 L3 LDX #IOCB3
50FA BC4303 LDY ICSTA,X
50FD C088 CPY #EOF
50 FF F003 A5104 BEQ L2

5101 4CA550 JMP TP10

5104 A90C L2 LDA #CLOSE
5106 9D4203 STA ICCOM,

X

5109 2056E4 JSR CIOV
51 0C A90C LDA #CLOSE
510E A230 LDX #IOCB3
5110 9D4203 STA ICCOM,

X

5113 2056E4 JSR CIOV
5116 00 BRK
5117 END

No ERRORS, 39 labels, $A3E6h free.

BUF1 5009 1#36 2/28 2/30 2/60 3/2
BUF1SZ 0050 1#35 1/37 2/35 2/37

CIOV E456 1#25 1/51 2/12 2/39 3/ 4 3/18
CLOSE oooc 1 #21 3/16 3/20

EOF 0088 1#24 2/45 3/12

EOL 009 B 1#3 1/34 1/38

nERRI 50A1 2#18
ERR2 50A2 1/54 2#19
ERR3 50A3 2#20 2/46

ERR4 50A4 2#21 3/ 8

CETREC 0005 1#19 2/26

1CAX1 034A 1 #1

5

1/16 2/ 4

ICAX2 034B 1#16 1/45 2/ 6
ICBAH 0345 1#10 1/11 1/43 2/ 2 2/31 3/ 3
ICBAL 0344 1# 9 1/10 1/41 1/60 2/29 2/61
ICBLH 0349 1#14

.
1/15 2/38 2/54 2/56

ICBLL 0348 1#13 1/14 2/36 2/50 2/52
ICCOM 0342 1#7 1/ 8 1/50 2/11 2/27 2/59

3/22

ICDNO 0341 1#6 1/ 7

ICHID 0340 1# 5 1/6
ICPTH 0347 1#12 1/13

ICPTL 0346 1#11 1/12

ICSTA 0343 1# 8 1/ 9 1/52 2/13 2/40 3/ 6
IOCB3 0030 1# 4 1/39 2/25 2/53 3/10 3/21

IOCB4 0040 1#26 1/58 2/51 2/55

LI 507 E 1/53 1#58
L2 5104 3/13 3#1

6

L3 50F8 3/7 3#10
nLOOP 50 B6 2#35
NAME1 5000 1#34 1/40

NAME2 5059 1#38 1/59 1/61

OPEN 0003 1#18 1/49 2/10

nOREAD 0004 1#22
OWRIT 0008 1#23 2/ 3

PRNTR 50CC 2/41 2#50
PUTREC 0009 1#20 2/58

nSTART 505D 1#39
TP10 50A5 2/14 2#25 3/14

nTP20 50C8 2#45

File Usage 13

SYMBOL
MAP FORMAT

When R = S is selected, the short symbol map is printed at the end of the program

listing. For each symbol name in the program, the following is printed:

sa symbol hhhh, where:

<s> is blank or "s" for a name introduced in a systext file.

<a> is either blank or

U = undefined, or

D= doubly defined, or

n = not referenced.

< symbol > is the name of the symbol.

< hhhh > is the symbol value in hexadecimal, or "mac" if the name is a macro.

Four symbols are printed on each line, using the default line length.

When R = F is selected, the full cross-reference map follows the source listing. On
each line, in addition to the R — S information above, cross-reference information is

listed. Each reference has the form:

ppp/ll

where < ppp > equals page number and < II > equals line number. For a definition

reference, the / is replaced by #.

Names beginning with a :
(local symbols) and a ? (usually macro invented) are not

included in either type of symbol map output.

Symbols defined in a systext file appear in the cross-reference only if they are used

during the assembly; they are flagged with an s.

14 File Usage

4

STATEMENTS

LANGUAGE STRUCTURE

A Macro Assembler source program consists of a sequence of statements, com-
ments, and definitions. Statements are the fundamental units of assembly. Com-
ments do not affect assembler operation or object output. Definitions may be con-

ditionally assembled, saved for later assembly, or repeated.

All characters in a statement are converted to uppercase except those in the com-
ment field.

A statement is divided into three fields: a label field, an operation field, and a

variable field.

LABEL FIELD

The label field begins with the first character of the statement and is terminated by
a blank or an end of statement. If a colon (:) is the last character of the label field, it

is discarded. For example:

SYMBX: ADC MEM,X ;comment

SYMBX is the defined label.

OPERATION FIELD

The operation field begins with the first nonblank character after the label field

and terminates with the next blank character. Machine op codes, pseudo-ops, and
macro calls all occur in the operation field. If this field is empty, the variable field

must be empty also. For example:

SYMBX: ADC MEM,X ;comment

ADC is the machine op code.

VARIABLE FIELD

The variable field begins with the first character after the operation field and is ter-

minated by an end of statement. Variables, expressions, and other arguments used
by the operation field appear in this field. For example:

SYMBX: ADC MEM,X ;comment

MEM,X is the variable.

Language Structure 15

STATEMENT
TERMINATION

COMMENTS

DEFINITIONS

SYMBOLS AND
NAMES

A statement is terminated by:

Beginning of comment (;), or

End-of-Line, or

Logical end of statement mark (!).

SYMBX: ADC MEM,X ;comment
SYMBY: ADC MEM,X
SYMBZ: ASL ! ASL ! ASL ! ASL

;
4 statements

In the last example (SYMBZ), one source line contains four statements. Three of

them are terminated with an !, the last by a Identical object code would be

generated if the ! were replaced by End-of-Line <EOL>. When an ! and a
;
occur

inside quotation marks, they do not function as separators.

A comment begins with a
;
following the variable field of a statement. A comment

affects neither the assembler operation nor the object code generated.

Comments that begin in column 1 are full-line comments; they begin with a
;
or an

*. (Please note that an * signifies a comment only when found in column 1 — col-

umn 1 of input is listed at column 21 on an output listing.) A comment is ter-

minated by EOL.

LABEL: LDA 129 ;This is a "comment/'

;This is a full-line comment.
*This is another full-line comment.
FROG: STA MEM,X This is not a legal comment.

;(above comment needs a ;)

Definitions begin with specific types of statements (MACRO, ECHO, IF). The end of

a definition is dependent on what started the definition, for example, ENDM is

used to terminate MACRO and ECHO definitions, while ENDIF terminates an IF

range.

A symbol is a sequence of characters that identifies a value or a macro. The first

character cannot be a digit. Symbols may be any length, but they must be unique in

the first six characters. The following characters may be used in a symbol name:

A-Z The uppercase letters of the alphabet

a-z The lowercase letters of the alphabet (converted to uppercase by the

assembler

May only be first character indicating a local symbol

? If first character, then the symbol is excluded from the reference map

@ Additional alpha extension. Cannot be first character of an identifier,

since it is also a prefix for octal numbers.

0-9 Digits

16 Language Structure

NUMBERS

CHARACTER
STRINGS

The underline character () may occur in a name as written but is discarded.

Lowercase letters are mapped into the corresponding uppercase. When a colon oc-

curs as the first character in a name, it denotes a name local to the current PROC
(see PROC pseudo-op in Section 6). A colon at the end of a name in the label field is

interpreted as a terminator but in any other position, it is ignored.

Examples:

ERROR 5:

JMP RESTART

TEST LDA COUNT
BNE Errors

:LOCAL: DEC

;the assembler ignores
,
label is

ERROR5
;the assembler uses first 6

characters: 'RESTAR'

;'Error5' converted to ERROR5
; : local : is a local symbol

A number can be in any one of three forms, depending on the prefix.

Prefix Base

% 2 Binary

@ 8 Octal

$ 16 Hexadecimal

The lack of a prefix implies decimal.

Digits greater than the radix are not allowed. The underline character () is

ignored.

The Macro Assembler provides constant conversion formatting for 6-byte real

numbers as specified in the current ATARI BASIC. Real numbers are not valid ex-

pression arguments in variable fields. (See "REAL6," pseudo-op in Section 6).

Examples:

BINVAL EQU %10 001 010
OCTVAL EQU @212
HEXVAL EQU $8A

The assembler accepts ATASCII characters $20-$7E as valid characters. A char-

acter string consists of any sequence of characters surrounded by single quotation

marks ('n . . . n'). Within a string, a single quotation mark character is represented by

two successive single quotation marks.

Character strings can be used in the TITLE and SUBTTL statements, as a DB or DC
subfield, or as operands of relational operators.

The LSTR operator returns the length of a character string (see "Expressions"^ this

section).

Language Structure 17

EXPRESSIONS

OPERANDS

Examples:

TITLE 'Sample Expressions'

DB 'This is a STRING.',$9B

DB 'Control characters are illegal in a long string'

DB $9B
;Nonprintable characters may be represented

;by using their hexadecimal values/
,

;such as $9B for EOL',

DW $2766, 'bp', 'BP' ;2-byte values

LDA #43 ;a decimal number
ADC #'C' ;an ATASCII character

CMP ;an ATASCII character

An expression consists of operands combined with operators to produce a value.

Operators of equal precedence are evaluated left to right. Brackets can be used to

override the order of evaluation, since 6502 instructions use parentheses for in-

direct addressing. Expressions are evaluated using 16-bit twos complement (un-

signed) arithmetic. Overflow is ignored.

Real numbers are not valid arguments in expressions.

Examples:

DB 'Here are some fancy expressions:'

DB 43 + 22 shl 3 mod 6

DB 'Q' + RE FI xor [99 and REF2]

AND low ['ZZ' - ['A' xor 'a' + ['A' xor 'a'] shl 8]]

DW rev [*0 - *L]

An operand is either a symbol, an expression enclosed in brackets, a number, a

character string, or one of the following special elements:

* = current location counter

*L = same as *

*0 = current value of origin counter

*P = current position counter number of defined byte

See LOC and ORG pseudo-ops for further discussion of *L and *0. Refer to the

VFD pseudo-op for details on *P.

The comparison operators return a value of zero for false and $FFFF for true.

Numeric tests treat values as unsigned, so that [
-1 < 0] will produce the answer

false. Character string tests use the ATASCII collating sequence.

18 Language Structure

Operators

+ Sum or positive sign
— Difference or negative sign
*

Multiply

/ Divide

NOT Bit-by-bit complement
AND Logical product, conjunction
& Logical product, conjunction (same as AND)
OR Logical sum, disjunction, inclusive OR
XOR Logical difference, inequivalence, exclusive OR
= EQ Equality

< > NE Inequality

< LT Less than

< = LE Less than or equal to

> GT Greater than

> = GE Greater than or equal to

SHL Shift left n bits

SHR Shift right n bits

HIGH Unary, high value to 8-bit field = x / 256
LOW Unary, low value to 8-bit field = x MOD 256
MOD Modulus function

REV Unary Reverse = ((LOW x) left and right SHL 8) + (HIGH x)

DEF Test symbol previously defined
LSTR Return the length of a character string

Precedence Levels

Highest Brackets

HIGH LOW DEF REV LSTR
*

/ MOD SHL SHR
+ — unary

+ — binary

= <> < <= > > = NE EQ LT LE CT GE
NOT
& AND

Lowest OR XOR

Language Structure 19

5

MACRO FACILITY

A macro is a sequence of source statements that are saved and then assembled
through a macro call. A macro call consists of a reference to a macro name in the

operation field of a statement. It often includes actual parameters to be
substituted for formal parameters in the macro code sequence, so that code
generated can vary with each assembly of the definition.

Use of a macro requires two steps: definition of the macro and reference to the

macro.

MACRO
DEFINITION

A macro definition consists of three parts: heading, body, and terminator.

Heading A macro definition starts with the name of the macro and the

substitute parameter names in the variable field.

Body The body begins with the first statement after the heading that is

not a comment line. The body consists of a series of instructions.

All instructions other than END, including other macro definitions

and calls, are legal within the body. However, a definition within

a definition is not defined until the outer definition is called.

Therefore, an inner definition cannot be called directly.

Substitute parameters can occur anywhere in the body. They are

prefixed by a percent sign (%):

%1 = first parameter

%2 — second

%9 = ninth parameter
%K = 4 hex digits, representing the serial number

of this macro call

%L = the label field of the macro call

%M = the name of the macro
%% = replaced by a single percent

Terminator A macro definition is terminated by an ENDM pseudo-instruction.

The assembler counts the nesting level of MACRO/ECHO and
ENDM pairs occurring in a macro body, so that the definition is

terminated only by the corresponding ENDM.

Note: The ENDM pseudo-op must be preceded by a tab () character. Press fgg
to get the tab character.

Macro Facility 21

MACRO CALL

CODE
DUPLICATION

NESTING

A previously defined macro is called when its name occurs in the operation field of

a statement. If actual parameters appear in the call, they are substituted for the

corresponding formal parameter in the macro body without evaluation. Only after

the entire body has been expanded does assembly resume. Thus the statements

generated by the macro may themselves contain further macro calls or definitions,

with the nesting limited only by available memory.

Note: When writing recursive macros, take care in the coding of the termination

condition(s). A macro that repeatedly calls itself will cause the assembler to ter-

minate (eventually) with the message "Memory Overflow."

The ECHO pseudo-instruction is used to repeat a code sequence. It is written

similarly to a macro definition but with the following differences: heading is ECHO,
not MACRO; no parameters are involved; the variable field of the ECHO statement

specifies how many times the body is to be repeated. ENDM is also used to ter-

minate an ECHO sequence (see ECHO pseudo-op).

ECHO, MACRO, and IF blocks may be nested in completely arbitrary fashion, sub-

ject only to the constraint that it be properly nested; i.e., each block must be con-

tained within the surrounding block.

22 Macro Facility

6

ASSERT

PSEUDO-OPERATIONS

The Macro Assembler provides a comprehensive set of pseudo-operations (pseudo-

ops) that permits you to control the assembly process.

For ease of comprehension, the following notations are used in this manual:

iglab means the label field is ignored by the pseudo-op

<exp> means that an expression is required

[exp] means that an expression may appear, at your option

{exp} means that the item inside the braces { } may appear zero or

more times

CHECK ASSEMBLY CONDITION

iglab ASSERT <exp>

where: iglab = ignored label field

exp = any legal expression: Nonzero implies true

Zero implies false

ASSERT allows you to check for and flag illogical assembly conditions such as in-

correct parameter values, programs that are too large, and undefined symbols.

The expression is evaluated and a P error will be generated if the expression is false;

i.e., if the expression evaluates to zero.

The expression is not examined in Pass 1 of the assembler, so ASSERT can correctly

check any condition. Forward references in the expression are evaluated correctly.

Examples:

To check that the location counter in a given piece of code is within bounds, in this

case below $2000, add the following line at the end of the assembly:

ASSERT *< $2000;test for limit exceeded

If the location counter reaches $2000, a P error will generate.

If you are writing a utility subroutine and wish to check that a required symbolic

definition has been supplied by the user of the subroutine, you might code:

Pseudo-Operations 23

ASSERT DEF [SYMB1]

If the required symbol SYMB1 is not defined by the user within the assembly, a P er-

ror will be generated. Note that the check for symbol definition is postponed until f

after Pass 1, allowing you to define SYMB1 anywhere in the source code.

t

DB DEFINE BYTE

LABEL: DB <exp> ..., <exp>

where: <exp> = any legal expression, value, or string

DB allows you to directly specify the content of individual bytes of memory.

A string will generate as many bytes as it has characters; the first character will be

the first byte generated. Characters in the string generate their 7-bit ATASCII codes

without parity.

DB is used to intersperse code with text strings and for data tables.

The label field is significant; it will address the first byte generated.

Examples:

PNCHRS: DB ',./;@@ <>? + !"#$%&' '()_* = + (tm):-[]@',0

DB $80

DB LAB,LAB2,3,$46,$0AF/xX /

,1 7 + QVAL*4,'coffee'

DC DEFINE CHARACTER

LABEL: DC <exp> ..., <exp>

where: <exp> is any legal expression, value, or string

DC operates like DB, but the high-order bit (parity bit) of the last byte of each ex-

pression is set.

DC is used just like DB. The only difference is the parity bit of the last byte of each
term.

Examples:

TBLHDR DC 'This is a table of offsets'

ADRLST DC 128, $36, $15, @21, 159

DS DEFINE SPACE I

5
;

LABEL: DS <exp16>

where: <exp16> = any legal expression, value, or string
’

DS allows you to reserve large blocks of memory. The expression <exp16> will be
evaluated as an unsigned 16-bit value, and that value will be used to increment the

assembler's internal origin and location counters.

24 Pseudo-Operations

DW

ECHO..

Memory allocated is not initialized, and will contain unknown values at program
execution time. The label field is significant; it will address the first memory byte
allocated.

DS reserves space for use at execution time; it can be used to "skip over" an ex-

isting piece of ROM or provide for uninitialized data storage.

Example:

STORG: DS 256 ;allocate 256 bytes

DEFINE WORD

LABEL: DW < expl 6 >...,< expl 6 >
<exp16> = any expression or value or 1 to 2

character string

where: <exp16> = any expression, value, or string

DW defines the contents of blocks of memory. Values and expressions in the
operand field are computed as unsigned 16-bit values and placed in memory as a
machine word; the assembler places the Least Significant Byte (LSB) first, followed
by the Most Significant Byte (MSB).

The label field is significant; it will address the first byte generated.

DW is intended to build tables of 16-bit values.

.ENDM

Examples:

Table of Addresses
;Power on
;Master reset

;System calibrate

;Recalibration

;Power down
;Button press

Emergency shutdown
DW ACTN1 ,ACTN2,ACTN3 ;Action numbers 1

DW 0 ;End of table

ECHO BLOCK

LABEL: ECHO <exp>

ENDM

DW PWRON
DW MSTRST
DW SYSCAL
DW RECAL
DW PWRDN
DW BUTTON
DW EMERC

,2,3

where: <exp> = numeric expression

ECHO . . ENDM is a simple code-duplication facility. Code between an ECHO and
its ENDM will be assembled as many times as specified by the <exp>.

The label field is significant; it addresses the value of *0 when the ECHO pseudo-
op is encountered.

Pseudo-Operations 25

EJECT

END

An ECHO . . . ENDM construct may not exceed 255 repetitions; 0 (zero) repetitions

means the ECHO . . . ENDM code is skipped. ECHO . . . ENDM is convenient for

repetitious coding problems. An ECHO . . . ENDM sequence is much easier to

create and maintain than, say, 127 repetitions of a 6-line procedure.

Note: The ENDM pseudo-op must be preceded by a tab () character.

Example:

;
The following example will create a table

;
of 20 entries of 4 bytes each and

;
initialize each entry to a value of

;
$10 37 00 00.

TABLE: ECHO 20 ;20 times

DB $10, $37, $00, $00

ENDM ;End table

EJECT PAGE

iglab EJECT
iglab = ignored label field

EJ ECT forces a page eject in the assembly listing if the listing is currently turned on.

EJECT can be used anywhere in an assembly source program.

The TITLE pseudo-op sets the internal title string and forces an EJECT.

Example:

EJECT

END PROGRAM

LABEL: END [exp]

END tells the assembler where to stop assembly and begin the cross-reference

map. The optional address field expression specifies the run address for an object

program.

END must be the last statement of the last link file of an assembly.

The label field is significant, and addresses the value of the internal *0 counter

when the END is processed.

Example:

FREESP: END ;end of program

26 Pseudo-Operations

EQU or :=

ERR

IF... ENDIF,

IF. ..ELSE. ..ENDIF

EQUATE VALUE TO SYMBOL

LABEL: EQU <exp16>
LABEL: = <exp16>

where: <exp16> = 16-bit expression or value or

1 to 2 character string

EQU defines the symbol on the left as the value of the 16-bit expression in the
operand field.

EQU creates symbols (labels) for use with other assembler instructions. Unlike SET,
EQU defines a fixed value to a symbol that cannot be changed during the
assembly.

The operand <exp16> must be an absolute value at the time of evaluation; any
symbols used in the expression must have been previously defined.

Examples:

TSTCHR EQU
TS2CHR: EQU
ZAP EQU $900
ZONK: = ZAP * 2

FORCE ERROR FLAG

ERR allows you to force an assembly error. The address field is ignored. When the
assembler detects an impossible or undesirable condition at assembly time, ERR
allows this to be flagged.

Examples:

IF * > 4000

h

ERR ;Program too long

ENDIF

iglab IF <exp>
<code for special situation >

iglab ENDIF

iglab IF <exp>
<assembly code>

iglab ELSE

< assembly code>
iglab ENDIF

where: <exp> = expression: nonzero = > true

zero = > false

Pseudo-Operations 27

INCLUDE

IF . . . ENDIF and IF . . . ELSE . . . ENDIF control textual input to the assembler. At

assembly time, <exp> is evaluated and the result determines where the assembler

will resume assembling the input file.

Whenever a single program should be configured as two (or more) distinct versions,

IF ... ENDIF and IF . . . ELSE . . . ENDIF can test assembly-time values and assemble

only the appropriate source lines.

Expression <exp> values for an IF must be numeric; strings greater than two

characters are not allowed.

IF . . . ENDIF and IF . . . ELSE . . . ENDIF constructs are “nestable"; depth of nesting

is limited only by memory space available at assembly time.

Any “label" in the label field is ignored; a descriptive name can be placed here to

help associate an IF with its ELSE (if used) and ENDIF.

Examples:

IF

J SR
1

OUTM
;1 is nonzero, therefore true

JMP
ENDIF

BOOT ;these two lines will be assembled

LABEL: IF DEF X ;Condition

J SR PATH1 ;LABEL is ignored, but

LABEL: JMP
JMP
ENDIF

ELSE
PATH2

;assists readability.

INCLUDE ANOTHER SOURCE FILE

LABEL: INCLUDE <filespec>

where: <filespec> = < Dn:f ilename.ext > ,
n can be 1, 2, 3, or 4

INCLUDE specifies another file to be included in the assembly as if the contents of

the referenced file appeared in place of the INCLUDE statement itself. The inclu-

ded file may contain other INCLUDE statements. The listing of code in INCLUDE
files is controlled by the I option of the LIST pseudo-op. (See INCLUDE example.)

INCLUDE allows you to divide large programs into manageable pieces for ease of

editing, common use of libraries, file manipulations, and so forth.

Example:

The command line

D:INCLDEX.ASM
combined with the following, file setup:

'INCLUDE example'

$100

D:L1

D:L2

D2:L3.ACD

<INCLDEX.ASM contents>
TITLE

ORG
INCLUDE
INCLUDE
INCLUDE

;*** End INCLDEX.ASM

28 Pseudo-Operations

L1VAL
<D:L1 contents >

LDA
;*** End LI. ASM

<D:L2 contents

>

LDA L2VAL
;*** End L2.ASM

<D2:L3.ACD contents

>

L1VAL DB
L2VAL DB

END
;*** End L3.ACD

0

;Stop assembly here.

This would input to the assembler the following sequence of code:

TITLE

ORG
LDA

;*** End LI ASM
LDA

;*** End L2.ASM
L1VAL DB
L2VAL DB

END
;*** End L3.ACD
;*** End INCLDEX.ASM

INCLUDE example'

$100

L1VAL

L2VAL

0

;Stop assembly here.

LINK LINK TO ANOTHER SOURCE FILE

iglab LINK <filespec>

where: <filespec> = < Dn:filename.ext>, n can be 1, 2, 3, or 4

The LINK pseudo-op is similar to the INCLUDE facility, except that link files are not

assembled until the assembler reaches the end of the current input file. Whenever
a LINK pseudo-op is found, it is stored away for processing along with any other

LINK statements encountered when the current file is finished processing.

Each source file that contains links to other files will be completely processed, and
its links will then be processed in order of occurrence. Any link that contains

sublinks will be processed in an identical manner; link files may nest arbitrarily

deep, as long as the total number of files does not exceed 40.

If A, Q, S, T, U, and X are assembly-code files, and if A links to Q, S, and X, and S

links to T, and T links to U, then the order of assembly will be:

A, Q, S, T, U, X.

If the <filespec> extension is missing, it defaults to the extension used in the cur-

rent input file; i.e., the file that contains the LINK pseudo-op.

Pseudo-Operations 29

Examples:

Link D2:PART1 ;Assemble file
/ D2:PART1 /

;using the same extension as

;the primary file

LINK D:UTI L.ACD
BLORP: LINK D2:PART2.ASM /BLORP' is ignored

LINK allows you to divide large programs into manageable pieces for ease of

editing, common use of libraries, file manipulations, and so forth. The LINK facility

supports linking across diskettes, so the entire source program does not have to be

contained on the same diskette.

Example:

The command line

AMAC D:LINKEG.ASM

combined with the following link file setup:

CLINKEG.ASM contents>
TITLE 'LINK example'

ORG $100

LINK D:L1

LINK D:L2

LINK D2:L3.ACD
;*** Endx LINKEG.asm

<D:L1 contents>
LDA L1VAL

;*** Endx LI .asm

<D:L2 contents>
LDA L2VAL

;*** Endx L2.asm

<D2:L3.ACD contents

>

L1VAL DB
L2VAL DB 0

END ;Stop assembly here.

;*** Endx L3.acd

would input to the assembler the following sequence of code:

TITLE 'LINK example'

ORG $100

Endx LINKEG.asm
LDA L1VAL
Endx LI .asm

LDA L2VAL
Endx L2.asm

DB
DB 0

END ;Stop assembly here.

Endx L3.acd

30 Pseudo-Operations

LIST OUTPUT LISTING CONTROL

iglab LIST *

iglab LIST <opt>...,<opt>

where: <opt> = optional minus sign followed by one of the following.

C List listing controls: EJECT, PACE, SPACE, SUBTTL, and TITLE lines. (Default

OFF.)

D List detailed code: i.e., list every byte generated by DB, DW, VFD, multi-line

statements, and so forth.

F List code skipped by IF...ENDIF or IF...ELSE...ENDIF. (Default ON.)

G List all generated code: i.e., list every byte placed in the output object file,

regardless of origin. Overrides -L. (Default OFF.)

I List code in INCLUDE files. (Default OFF.)

L Master LIST control. When -L option is in effect, nothing is listed except lines

with errors, or when -L is overridden by the G option. (Default ON.)

M List all lines generated by macro references. (Default ON.)

R Accumulate cross-references. (Default ON.)

S List code referenced in a systext file. (Default OFF.)

LIST controls the listing produced during an assembly. However when an L = 0

command line option is selected, LIST pseudo-op has no effect. The variable-field

argument to LIST must be an *, or a set of options.

The LIST pseudo-op operates on a stack: each element of the stack is a set of op-

tion flags. The flag on top of the stack controls the content of the listing produced.

Each call to the LIST pseudo-op will push, or pop, a flag on or from the stack.

"LIST *" means pop the list-option stack.

"LIST M" means make a copy of the current flag, setting the M-flag to ON, and
push the new flag setting onto the stack.

LIST has obvious applications for detailed listing of newly written code, detailed

listing of untested macro expansions, and suppressing the listing of library code.

Example:

A common code library may contain a set of routines all having the following IF

block at the beginning:

IF ILIST = 0 ; if common code list turned off

LIST -L, -R ;no listing, no references

ENDIF

Pseudo-Operations 31

Assume that the global symbol ILIST equals zero. A new flag setting is pushed onto

the LIST option stack; the options (-L, -R) specify no listing is to be printed, and no

cross-reference accumulation is to be done.

Each common code routine also has this IF...END1F at its end:

IF ILIST = 0 ;if common code listing was off

LIST * ;go back to original list options

ENDIF

Now that the common code routine has been assembled, the LIST option stack will

be popped. This returns the LIST option stack to its condition before the library was

assembled.

LOC SET LOCATION COUNTER

LABEL: LOC <exp16>

where: <exp16> = 16-bit expression or value

LOC sets the location counter. The expression is evaluated as an unsigned 16-bit

value and assigned to the Macro Assembler's internal location counter (*L).

Code generated while the internal LOC counter (* L or *) does not equal the internal

ORG counter (*0) will be flagged with # in column 7 of the listing.

The label field is significant; the label defined there will be set to the value of *L

before *L is changed to <exp16>.

LOC assists you in generating self-overlaying programs. Code generated that way
can be positioned anywhere in memory (using ORG), and the code will assemble as

if it was located at the address expressed in the LOC statement. Of course, the code

must be moved at run time to the address specified in its LOC statement before it

can be executed.

Code assembled in one place for execution elsewhere can be especially handy for

ROM-resident software, when pieces of code are copied from ROM to RAM before

execution.

LOC is also useful for enhancing the readability of data tables for code conversion.

The following example is a table of external BCD codes. The location counter is set

to the ATASCII value of the first character in the table. In that way, the location

field of the assembly listing contains an ATASCII value and the generated code
field contains its associated external BCD value.

Examples:
;Example of using LOC to enhance readability of

listings. The location counter will be set to

;the ATASCII value that corresponds to the first

;entry of a table of external BCD values.

0000 = 5000 ORG $5000

5000 = 0041# LOC 'A'

32 Pseudo-Opera tions

0041# 61 EBCTBL: DB $61 ;The LOC field of the listing

0042# 62 DB $62 ;contains the ATASCll value

0043# 63 DB $63 ;which corresponds to the

0044# 64 DB $64 ;external BCD value in the

0045# 65 DB $65 generated code field.

END

No ERRORS, 1 labels, $2403 free.

nEBCTBL 0041 1# 8

;Example of code to be assembled at $2000
to be

transferred to a ROM at $0F000

= 0500 COUNT

0000 = 2000 ORG
2000 = F000# LOC
F000# A907 LDA
F002# 8D0005 STA
F005# 4C0AF0 JMP
F008# EA NOP
F009# EA NOP
F00A# CE0005 LI DEC
FOOD# EA NOP
F00E# END

EQU $0500 ;RAM working

storage

$2000
$0F000

#07
COUNT
LI

COUNT

No ERRORS, 2 labels, $23F7 free.

COUNT 0500 1# 4 1/8 1/12

LI F00A 1/9 1#12

MACRO... ENDM macro definition

MACNAM: MACRO parml, . .., parmn
< body

>

ENDM ;end of MACNAM definition

wFiere: <body> = any desired text whiicFi may include:

%1..%9 = parameters number 1 ... 9

%K = Fiexadecimal number of this macro call

%L = label field of macro call

%M = name of the macro

MACRO . . . ENDM is the macro definition construct.

The symbols in the variable field represent substitutable parameters. The symbol
names are for documentation purposes only and may not appear in the body of the

macro.

Parameters within the macro are represented by %x, where x is replaced with a

decimal digit (1-9). %K within the body will be replaced with the serial number of

the macro call as four hexadecimal digits. %L within the body will be replaced

with the label field of the macro call. %M within the body will be replaced with the

macro call.

Pseudo-Operations 33

The label field is significant; it denotes the name of the macro during an assembly.

Note: The ENDM pseudo-op must be preceded by a tab () character.

Macros may generate lines which turn out to be macro calls. Thus, a macro may
directly or indirectly call itself. Care must be taken so that such a "recursive

macro" does not call itself indefinitely.

Macros can be used to generate many copies of a procedure with different internal

constants, or in conjunction with VFD to assemble fancy machine op codes (see

VFD pseudo-op). There are many other potential uses for macros; these examples

are only intended to demonstrate some of these uses.

Example:

One way to find the number of bits needed to contain a value is to compute the

logarithm base 2 of the value. To do that at assembly time, we can use recursive

macro calls to achieve a looping effect. Note that the condition tested on VAL en-

sures that the series of nested calls must eventually terminate.

;
COMPUTE SYM = Log 2

LOG2: MACRO SYM,VAL
IF [% 2] > 1

LOG2 %1,[%2]/2
%1

:

SET %1 -El

ELSE

%1

:

SET 0

ENDIF
ENDM

Example:

;macro to take the high nibble from a memory location

;and the low nibble from the accumulator, storing the

;resu It in the accumulator

NPACK: MACRO ADDR
EOR %1
AND #0F

EOR %1
ENDM

Example:

It is sometimes necessary to be able to create a symbol name that is different for

each call of a macro. The %K implicit parameter feature provides the means to do
this. In the following macro, a unique jump-target label is created on each call.

Note that all the labels begin with the ? character so that they will not clutter up
the symbol table map.

;
Set accumulator^ 0 if sign bit is set.

PARVAL: MACRO
BMI ?%k
LDA #0

?%K:
ENDM

34 Pseudo-Operations

ORG ORIGIN COUNTER

LABEL: ORG <exp16>

where: <exp16> = any absolute, previously defined 16-bit

value or expression

ORG sets the address of the first byte of a piece of code (or data) to a physical loca-

tion in memory.

The label field is significant; it will address the value of *L, before <exp16> is

evaluated.

The ORG command can be used in a program as often as desired. ORG cannot
change the current USE block. (See USE pseudo-op.) ORG changes the block-

relative value of the origin and location counters of the current USE block.

ORG is almost always used at the beginning of an assembly to define the starting

position in memory of the resultant code. If not explicitly set by ORG (or the 0 =
command-line parameter), the default value of the origin and location counters is

zero.

Example:

PROG: ORG $100 ;Assemble at location $0100
SOCK: ORG *0 ;assign *0 to *0 and *L

PROC. . . EPROC DEFINE LOCAL SYMBOL RANGE

LABEL: PROC
< body

>

EPROC

PROC tells the assembler that the following code is a procedure that may contain

local symbols. A local symbol is a symbol that begins with a colon (:). It does not

appear in the cross-reference map and cannot be referenced outside of the PROC
range.

The label field is significant; it addresses the value of the *0 counter when the

PROC statement is processed.

PROC should be the first instruction of any procedure that contains local symbols.

A PROC is terminated by EPROC or the next PROC.

When assembling large programs where symbol table space is at a premium, local

symbols can be used whenever appropriate to reduce memory requirements.

Example:

1 N IT: PROC procedure
LDA #0 ;let A = 0

LDY #0 ;Y indexes through memory
:Loop: STA (BECMEM),Y ;:Loop: is local symbol

INY ;-won't appear in cross-reference

BNE :LOOP ;Write 256 locations

Pseudo-Operations 35

REAL6

SET

SPACE

DEFINE REAL NUMBER VALUE

LABEL: REAL6 <fpnum>

where: <fpnum> is a floating point number

REAL6 provides constant conversion into 6-byte real numbers as supported by the

ATARI operating system.

The label is significant because it denotes the starting location of 6 bytes of the

converted number.

Example:

PI: REAL6 3.14159

DEFINE VALUE FOR SYMBOL

LABEL: SET <exp>

where: <exp> = numeric expression

The SET pseudo-op defines a symbol to a value representing the 16-bit expression

of the operand field. SET works just like EQU, except that LABELS defined with SET
may be redefined.

The expression in the variable field must be an absolute value at the time of

evaluation. Any symbols used must have been previously defined.

Example:

TSTVAL SET 027h

DB TSTVAL

TSTVAL SET 099h

TSTVAL SET 063 h

OUTPUT BLANK LINES TO LISTING

iglab SPACE <exp1>
iglab SPACE <exp1 >,<exp2>

where: <exp1 > , < exp2 > = unsigned, numeric expressions

SPACE places blank lines in a listing. If SPACE has one argument, it will output that

many blank lines only if doing so will not exceed the length of the current page. If

<exp1 > lines will not fit on the current page, SPACE will force an EJECT.

36 Pseudo-Operations

If SPACE has two arguments, they are both evaluated and <exp1 > blank lines will
be placed in the (currently on) listing only if the current page will have <exp2>
lines left afterwards. If the current page does not have that sufficient room, SPACE
will force an EJECT.

SPACE is useful when inserted just before a small procedure if X is the length of the
procedure (X lines),

SPACE 4,X

< procedure>

will output 4 lines to the listing if the procedure will still fit on the current page. If

the spacing and the procedure will not fit on the current page, SPACE will force an
EJECT.

SUBTTL DEFINE SECOND LINE OF OUTPUT LISTING

iglab SUBTTL < string

>

where: < string > = any string up to 32 characters

SUBTTL allows you to specify secondary title information. SUBTTL without a
<string> argument is ignored. To erase the current subtitle, use an empty string.

Example:

TITLE 'Section 8 — Pseudo-Ops'
SUBTTL 'SUBTTL syntax and description'
SUBTTL '

'
; erase current subtitle

TITLE DEFINE FIRST LINE OF OUTPUT LISTING

iglab TITLE <string>

where: < string > = any string up to 32 characters

TITLE allows you to set/reset the assembler's internal page-heading string. TITLE
with a string argument will place that string in the page header (see "Sample
Listing," Section 3). If the string contains zero characters, the page header is reset
to empty. TITLE without a string argument does not alter the current page header.

The first call to TITLE * will not eject a listing page; successive calls will always
force an EJECT after any arguments are processed.

TITLE is commonly placed at the beginning of each file used in an assembly. Each
linked file will begin assembly on a fresh page, topped with an appropriate header
to describe its general contents.

Example:

TITLE 'XONC.asm — Interface Subroutines.'

Pseudo-Operations 37

USE DEFINE BLOCK AREA

iglab USE name

USE establishes a new “USE block" or resumes use of a previously established

block. The block in use is the block into which code is subsequently assembled. A

program may contain up to 60 different USE blocks. The assembler is responsible

for computing the length and actual origin of each block. Origins are assigned to

each block in the order they are first encountered.

Associated with each USE block are registers to maintain the last values of the

origin and position counters (*0 and *P). See ORG and VFD for a description of

those counters. Initially, the values of these counters default to zero for each USE

block. The value of the location counter (*L) is not saved, but set equal to the value

of the origin counter. If a LOC had been in effect previously, resetting of the loca-

tion counter to produce the desired results is the responsibility of the programmer.

USE allows the programmer to specify consecutive pieces of code in discontiguous

source segments. It is more convenient than using ORG.

Example:

USE BTABL ;(at beginning of program)

BTABL: ;define base of jump vector

USE * ;(return to normal org)

NXLAB: LDX SometEiing

USE BTABL
DW NXLAB ;add address to jump vector

USE *

STX Addr ;more

USE BTABL ;(at end of program)

DW 0 ;mark end of vector

USE *

END

VFD VARIABLE FIELD DEFINITION

LABEL: VFD < Fexp > \ < exp> ,...,< Fexp> \ <exp>

where: 1 < = <Fexp> <=16
<exp> = any numeric expression

VFD defines variable fields. Each <Fexp> denotes a field width. Each <exp>
denotes an expression to be placed into that field; <exp> values that exceed their

associate <Fexp> field width values are truncated to match the <Fexp> value.

Negative values are evaluated with unsigned twos-complement arithmetic. For ex-

ample, -32768 is 32768 and -1 will be represented by 65535. The resultant values are

truncated to match the <Fexp> field width.

38 Pseudo-Operations

VFD manipulates the position counter (*P) to keep track of the bits remaining in a
byte at the end of a VFD pseudo-op. If the next pseudo-op encountered is another
VFD, the next field generated will begin with the unused bits left in the current
byte. If the next code-generating pseudo-op is not VFD, the assembler will pad out
the unused byte field with zeros.

VFD allows you to specify arbitrarily complex data fields without regard to byte or
word boundaries.

Example:

MVINST: VFD 2\01 ,3\DDD,3\SSS

VFD can be used this way inside MACRO-ENDM constructs to assemble code for
unusual processors, special peripheral chips, and so forth.

Example:

SPEC: VFD 7\@43,9\l'&& /

VFD 1 3\$429

SPEC is a label point to a 29-bit field definition. The first 7 bits contain the value 43
octal. The next 9 bits contain the truncated string &&. The next 13 bits contain the
value 429 hexadecimal. The *P counter currently points into the fourth byte after
SPEC, with 3 bits left in the current byte.

Pseudo-Operations 39

7

PSEUDO-OP QUICK REFERENCE

iglab ASSERT <exp>
LABEL DB <exp>,<exp>
LABEL DB 'ABCDE7f',$0D
LABEL DC 'ABCDE'
LABEL DS <exp>
LABEL DW <exp>,<exp>
LABEL DW 'Xu',1 234/y'

LABEL ECHO <exp>
iglab EJECT
iglab ELSE

LABEL END [exp]

iglab ENDIF
iglab ENDM
iglab EPROC
LABEL EQU <exp>
iglab ERR
iglab IF <exp>
LABEL INCLUDE <filespec>
iglab LINK <filespec>

iglab LIST <opt>
iglab LIST *

LABEL LOC <exp>
NAME MACRO < parms>
LABEL ORC <exp>
LABEL PROC
LABEL REAL6 <exp>
LABEL SET <exp>
iglab SPACE <exp1 >,<exp2>

iglab SUBTTL 'text'

iglab TITLE 'text'

iglab USE <name>
LABEL: VFD <exp> <exp>,..
LABEL = <exp>

;Check assembly condition

;Define bytes

;Define long strings

;DB with 80h added onto the last byte

;Define space

;Define words
;Define 1- or 2-character strings

;Duplicate code <exp> times

;Page eject

;Part of conditional assembly
;End of assembly
;Terminate range of IF

terminate MACRO or ECHO
terminates local symbol range

;Define LABEL equals <exp>
;Force error flag

;Begin conditional assembly
;lnclude another source file

;lnclude another source file

at the end of this source file

;<opt> = list control option

;Pop list control stack

;Set location counter

;Begin macro definition

;Set origin counter

;Begin local symbol range

;6-byte real constant conversion

;Reset LABEL to <exp>
;Space <exp1 > lines if <exp2> lines

left on this page

;Set listing subtitle

;Set listing title

;Use block declaration

;Variable field definition

;Synonym for EQU

<exp> = required expression

[exp] = optional expression

'text' = strings

<filespec> = < device > : < filename > . < extension >
iglab — ignored label

Pseudo-Op Quick Reference 41

8

INSTRUCTION MNEMONICS

The instruction mnemonics provided by the Macro Assembler are identical to the
standard mnemonics defined by MOS Technology, with these exceptions:

• Quotation marks denoting character strings must be properly paired. (Some
6502 assemblers allow an unterminated quote for a 1-character string.)

• In this assembler, the symbols < and > are binary operators (less than and
greater than). Some 6502 assemblers define these symbols as unary operators
(high and low). See Section 4 for operator definitions.

Examples:

AMAC

CMP #'?'

LDX #high EXP
LDY #low EXP

Notation

MOS
CMP #'?

LDX #> EXP
LDY #< EXP

dd 8-bit. signed displacement:
-128 < = dd < = +127

mmmm 16-bit address expression
nn 8-bit constant: 0< = nn < = 255
rel 16-bit address within:

*-126 < = rel < = *+129
zz Page 0 location: 0 < = zz < = 255

HEX OPCODE ADDRESS REMARKS

DATA MOVEMENT

Register to register transfer.

AA TAX ;T ransfer A to X
A8 TAY ;T ransfer A to Y
BA TSX ;T ransfer S to X
8A TXA ;Transfer X to A
9A TXS ;Transfer X to S
98 TYA ^Transfer Y to A

Load constant into register.

A9 LDA #nn
A2 LDX #nn
AO LDY #nn

Instruction Mnemonics 43

Load register from memory.
A5 LDA zz

B5 LDA zz,X

A1 LDA (zz,X)

B1 LDA (zz),Y

AD LDA mmmm
BD LDA mmmm,X
B9 LDA mmmm)
A6 LDX zz

B6 LDX zz,Y

AE LDX mmmm
BE LDX mmmm,Y
A4 LDY zz

B4 LDY zz,X

AC LDY mmmm
BC LDY mmmm)

Store register into memory
85 STA zz

95 STA zz,X

81 STA (zz,X)

91 STA (zz),Y

8D STA mmmm
9D STA mmmm)
99 STA mmmm)
86 STX zz

96 STX zz,Y

8E STX mmmm
84 STY . zz

94 STY zz,X

8C STY mmmm

Stack load/stores.

48 PHA
08 PHP
68 PLA
28 PLP

DYADIC ARITHMETIC

Add operand and carry.

69 ADC #nn
65 ADC zz

75 ADC zz,X

61 ADC (zz,X)

71 ADC (zz),Y

6D ADC mmmm
7D ADC mmmm,X
79 ADC mmmm)

;Push accumulator
;Push processor status

;Pop accumulator
;Pop processor status

44 Instruction Mnemonics

Subtract operand and borrow.

E9 SBC #nn
E5 SBC zz

F5 SBC zz,X

El SBC (zz,X)

FI SBC (zz),Y

ED SBC mmmm
FD SBC mmmm,X
F9 SBC mmmm,Y

Compare 8-bit operand with accumulator.

Set flags as if subtracting, but do not alter accumulator.

C9 CMP #nn
C5 CMP zz

D5 CMP zz,X

Cl CMP (zz,X)

D1 CMP (zz),Y

CD CMP mmmm
DD CMP mmmm,X
D9 CMP mmmm,Y

Compare 8-bit operand with index register.

EO CPX #nn

E4 CPX zz

EC CPX mmmm
CO CPY #nn

C4 CPY zz

CC CPY mmmm

MONADIC ARITHMETIC

Decrement by 1

.

C6 DEC zz

D6 DEC zz,X

CE DEC mmmm
DE DEC mmmm,X
CA DEX
88 DEY

Increment by 1

.

E6 INC zz

F6 INC zz,X

EE INC mmmm
FE INC mmmm,X
E8 INX

C8 INY

Arithmetic control.

18 CLC
D8 CLD
B8 CLV
38 SEC
F8 SED

;Clear carry flag

;CIear decimal mode
;Set overflow flag

;Set carry flag

;Set decimal mode

Instruction Mnemonics 45

DYADIC LOGICAL/BOOLEAN OPERATIONS

29

25

35

21

31

2D
3D
39

09

05

15

01

11

0D
ID
19

49

45

55

41

51

4D
5D
59

24

2C

ROTATE

0A
06
16

0E

IE

8-bit logical product, conjunction.

AND #nn

AND zz

AND zz,X

AND (zz,X)

AND (zz),Y

AND mmmm
AND mmmm,X
AND mmmm,Y

Logical sum, disjunction, inclusive OR.

ORA #nn
ORA zz

ORA zz,X

ORA (zz,X)

ORA (zz),Y

ORA mmmm
ORA mmm rn

,
X

ORA mmmm,Y

Logical difference, inequivalence, exclusive OR.

EOR #nn

EOR ZZ

EOR zz,X

EOR (zz,X)

EOR (zz),Y

EOR mmmm
EOR mmmm,X
EOR mmmm,Y

Logical compare.

Set flags as follows:

Z = 1 if A AND mem = 0

Z = 0 if A AND mem = 1

S = bit 7 of mem
V = bit 6 of mem
(mem = mmmm or zz).

BIT zz

BIT mmmm

AND SHIFT

Arithmetic shift left.

ASL A
ASL zz

ASL zz,X

ASL mmmm
ASL mmmm,X

46 Instruction Mnemonics

4A
Logical shift

LSR
right.

A
46 LSR zz

56 LSR zz,X

4E LSR mmmm
5E LSR mmmm,X

2A
Rotate left.

ROL A
26 ROL zz
36 ROL zz,X

2E ROL mmmm
3E ROL mmmm

,
X

6A
Rotate right.

ROR A
66 ROR zz

76 ROR zz,X

6E ROR mmmm
7E ROR mmmm,X

JUMPS
90 BCC ;lf carry clear
BO BCS ;lf carry set

F0 BEQ
; If equal (

= 0)

30 BMI ;If minus
DO BNE ;lf not equal (< >0)
10 BPL ;lf plus
50 BVC ;lf overflow clear
70 BVS ;lf overflow set

4C JMP mmmm
6C JMP (mmmm)

CALL SUBROUTINE
00 BRK ;Software interrupt

20 JSR mmmm Jump subroutine

RETURN FROM SUBROUTINE
40 RTI

60 RTS
;Return from interrupt

;Return from subroutine

MISCELLANEOUS CPU CONTROL
58 CLI

EA NOP
78 SEI

;Clear interrupt mask (El)

;Set interrupt mask (DI)

Instruction Mnemonics 47

9

USING THE ATARI MACRO ASSEMBLER
WITH THE ATARI ASSEMBLER EDITOR

SOURCE FILES

If you have a source program that has been developed using the ATARI Assembler
Editor cartridge, and you want to use the Macro Assembler to assemble it, you will
have to be aware of the following differences:

• The Macro Assembler does not accept line numbers.

• The = for EQU must be embedded between at least two blanks.

• Comments must be preceded by a semicolon.

• The following pseudo-ops are recognized by the Macro Assembler:

BYTE is equivalent to DB
END is equivalent to END
.PAGE is equivalent to TITLE
SKIP is equivalent to SPACE
.WORD is equivalent to DW

• The following are not recognized by the Macro Assembler:

BYTE
WORD

• The Macro Assembler does not recognize * = for setting the origin counter;
use ORG instead.

• All strings must be bracketed by quotation marks (") for the Macro
Assembler to interpret them properly.

Using the ATARI Macro Assembler with the ATARI Assembler Editor Source Files 49

10

ERROR CODES

Errors are flagged by a single-letter code in column one of the output listing. Lines
containing errors are always written to the screen, regardless of the output selec-
tion.

A = Address error. Instruction specif ied does not support the addressing mode
specified.

D = Duplicate label error. The last one defined is used.

E = Expression error. An expression on the source line in the address field is

unrecognizable.

F = Bad nesting of control statements. Bad nesting of IF . . . ELSE . . . ENDIF
statements. When this occurs on the END line, it means an IF was not ter-

minated.

I = Instruction field not recognized. Three NOP bytes are generated.

L — Label field not recognized. Three NOP bytes are generated.

M = MACRO statement error. Improper macro definition.

N = Error in number: digit exceeds radix; value exceeds 16 bits, and so forth.

O = Stack table overflow occurred in evaluating expression; user should
simplify expression. Too many LINK files. Too many PROCs. Too many
USE blocks.

P = Programmer-forced error. See ASSERT and ERR pseudo-ops.

R = Expression in variable field not computable.

S = Syntax error in statement. Too many or too few address subfields.

U = Reference to an undefined symbol.

V = Expression overflow: resultant value is truncated.

W = Not within VFD field width (1 < = width < = 16).

Y = Misplaced instruction: extraneous ENDM. When this occurs on the END
line, it means a MACRO or ECHO was not terminated. Make sure that
ENDM is preceded by a tab () character.

Error Codes 51

LIMITED 90-DAY WARRANTY
ON ATARI® HOME COMPUTER PRODUCTS

ATARI, INC ("ATARI") warrants to the original consumer purchaser that this ATARI Home Computer Product (not including computer pro-
grams) shall be free from any defects in material or workmanship for a period of 90 days from the date of purchase. If any such defect is

discovered within the warranty period, ATARI'S sole obligation will be to repair or replace, at its election, the Computer Product free of
charge on receipt of the unit (charges prepaid, if mailed or shipped) with proof of date of purchase satisfactory to ATARI at any authorized
ATARI Computer Service Center. For the location of an authorized ATARI Computer Service Center nearest you,

call toll-free: In California (800) 672-1430 or write to: Atari, Inc.

Continental U.S. (800) 538-8737 Customer Service/Field Support
1 340 Bordeaux Drive

Sunnyvale, CA 94086

YOU MUST RETURN DEFECTIVE COMPUTER PRODUCTS TO AN AUTHORIZED ATARI COMPUTER SERVICE CENTER FOR IN-
WARRANTY REPAIR.

This warranty shall not apply if the Computer Product: (i) has been misused or shows signs of excessive wear, (ii) has been damaged by be-
ing used with any products not supplied by ATARI, or (iii) has been damaged by being serviced or modified by anyone other than an
authorized ATARI Computer Service Center.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, ARE HEREBY LIMITED TO NINETY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR INCIDENTAL DAMAGES
RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED. Some states do not
allow limitations on how long an implied warranty lasts or do not allow the exclusion or limitation of incidental or consequential damages,
so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

DISCLAIMER OR WARRANTY
ON ATARI COMPUTER PROGRAMS

All ATARI computer programs are distributed on an "as is" basis without warranty of any kind. The entire risk as to the quality and perfor-
mance of such programs is with the purchaser. Should the programs prove defective following their purchase, the purchaser and not the
manufacturer, distributor, or retailer assumes the entire cost of all necessary servicing or repair.

ATARI shall have no liability or responsibility to a purchaser, customer, or any other person or entity with respect to any liability, loss, or
damage caused directly or indirectly by computer programs sold by ATARI. This disclaimer includes but is not limited to any interruption of
service, loss of business or anticipatory profits, or consequential damages resulting from the use or operation of such computer programs.

REPAIR SERVICE

If your ATARI Home Computer Product requires repair other than under warranty, please contact your local authorized ATARI Computer
Service Center for repair information.

IMPORTANT: If you ship your ATARI Home Computer Product, package it securely and ship it, charges prepaid and insured, by parcel post
or United Parcel Service.

A
ATARI®

A Warner Communications CompanyQPRINTED IN U.S.A. C060028 REV. 1

